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ABSTRACT
Using high-resolution three-dimensional realisations of turbulent fields, we investigate the
limits on achievable performance of atmospheric phase correction using water-vapour ra-
diometers arising from following effects: the incoherent measurement of power from water by
the radiometers (in contrast to coherent detection of the astronomical signal); the different ta-
pers of the response patterns of the astronomical and radiometer receivers; and, the differences
in the directions of the radiometer and astronomical beams. We quantify the limit on perfor-
mance as the fraction of atmospheric phase fluctuations that is not tracked by the radiometers.
We find that, for parameters relevant for ALMA, the performance in high-frequency bands
will be limited in approximately equal parts by the two effects, i.e., the differences due the
incoherent vs coherent processes measured by the two receivers, together with their differ-
ent tapers, and the angular displacements of the beams. For the lower frequency bands, the
angular displacements of the beams becomes the dominant source of error.

1 INTRODUCTION

The ALMA project will use 183 GHz water-vapour radiometers
(WVRs) to measure the fluctuations in atmospheric properties
along the line of sight of each of the 12m telescopes in the array.
These measurements by the WVRs, together with ancillary data
collected by other instruments, will be used to infer corrections for
the phase fluctuations in the astronomical signal introduced by the
atmosphere.

The goal of this note is to investigate how the following effects
limit the accuracy with which this phase corrections may be done:

(i) The fact that the WVRs measure the power of emission from
water while the phase fluctuation are a results of excess path due to
water vapour within the coherent astronomical beam;

(ii) The different illuminations patterns on the primary reflector
of the WVR and astronomical beams; and,

(iii) The angular offsets between the astronomical and WVR
beams.

In order not to obscure the above effects we do not consider the
effect of measurement error within the WVRs or the uncertain-
ties associated with converting these measurements to excess path
lengths.

This topic has been investigated before by Gibb & Harris
(2000). This note extends on their work by:

(i) Using high-resolution three-dimensional simulations of tur-
bulence to quantify the difference between fluctuations of the phase
of the astronomical signal and the radiometer outputs.

(ii) Directly computing the beams rather than assuming they are
Gaussian.

(iii) Taking into account the coherent nature of the astronomical
signal.

The ALMA Memo by Asaki et al. (2005) also uses statistical
realisations of turbulence to simulate phase fluctuations, although
their aim is to investigate phase correction for the ALMA Compact
Array. We note that our method differs in that we directly simulate
the three dimensional turbulence and compute the effect on the as-
tronomical and WVR signals while they simulate two dimensional
screens with varying structure functions.

2 METHOD

We want to calculate how the phase of an astronomical is affected
by the turbulence and how well the WVRs can trace and predict
these fluctuations. There are three main stages to this:

(i) Generating high resolution, three dimensional, realisations of
turbulent fields

(ii) Calculating the astronomical and WVR beam shapes as
functions of height

(iii) Using the above two items to generate time series of phase
of the astronomical signal and WVR measurements.

In this note we assume that fluctuations of atmospheric prop-
erties are sufficiently described by only a single variable, q(x,y,z),
which represents the water vapour content. To simplify calculations
we assume that q describes variation about the mean so that 〈q〉= 0.

We next describe how q influences the propagation of astro-
nomical radiation and the what the WVRs measure. We make the
following assumptions:

(i) That fluctuation in refractive index of the atmosphere are di-
rectly proportional to q so that n(x,y,z)−1 ∝ q(x,y,z).

(ii) That emission at frequencies that the WVRs measure from
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Figure 1. Simulation of three dimensional turbulence on a 1025×129×129 grid (i.e., a sub-section of the grid used for the simulations below). Top: a single
horizontal slice k = 0, where k is the vertical index of the grid; Middle: sum of slices 0 < k < 10; Bottom: sum of slices 0 < k < 100.

each element of volume are proportional to q and that this emission
is always fully optically thin so that radiative transfer effects are
not important. Observed radiometer brightness temperatures and
the field q are then related in a linear way.

Assumption (i) above is likely to be good in the conditions under
investigation although the factor of proportionality depends slightly
on the temperature. Assumption (ii) is dependent on the frequency
at which the WVRs observe, the absolute quantity of water, tem-
perature, etc. In general it will not hold, but with WVR designs
that have several channels that sample different parts of the water
vapour emission line (the ALMA design has four channels, Hills
et al. 2001), it is usually possible to derive an equivalent quantity
that is linear in q.

2.1 Generating the turbulent field

We wish to generate statical realisations of a turbulent field
q(x,y,z), namely a field that obeys the property:
〈[

q(r′)−q(r′+ r)
]2〉

= Dq(|r|) = Dq(r) = 6.88
(

r
r0

)ξ
. (1)

The factor of 6.88 on the right hand side is conventional so that
r0 is then the Fried parameter (Lane et al. 1992). For approaches
which use two-dimensional turbulent screen the question arises of
the correct exponent ξ in the defining structure function Dq: when
the geometry of the telescope is much smaller than the thickness of
the turbulent layer a coefficient of ξ = 5/3 is appropriate while in
the opposite limit ξ = 2/3 is more appropriate. Here we are gen-
erating three-dimensional turbulence so the expected exponent is
ξ = 2/3 – the observed steepening of the structure function is nat-
urally reproduced in our case by averaging over volumes of the
turbulent field (see Figure 1).

The algorithm we actually use to compute the statistical reali-
sations of q is a generalisation to three dimensions of the algorithm

of Lane et al. (1992). It has been developed by us for this applica-
tion and can efficiently simulate fields with more than 109 volume
elements.

Since we wish to quantify the effect of differences between the
astronomical and WVR beams, the resolution of the realised fields
must be good enough to resolve this; for the results presented here
we use 1m3 in all simulations. Most of the simulations (except that
shown in Figure 1) have been carried out for fields with dimensions
of the order of 4097×257×513 resolution elements.

2.2 Refractive index and the received astronomical signal

This section sumarises the theory which relates fluctuations in the
refractive index (i.e., q in our case) to the received astronomical
signal at each antenna.

The fundamental property that we use is that the signal re-
ceived may be computed as the surface integral of the product of
the incoming field and the antenna voltage response over any plane
(or any other infinite surface) between the source and the antenna.
Working in Cartesian coordinates {x,y,z} such that z is the direc-
tion from the antenna toward the source, we write the incoming
wavefront as the complex electric field E(x,y,z) and the antenna
voltage response pattern as A(x,y,z). The above property means
that the received signal is:

V =

∫ ∫
dxdyA(x,y,z)E(x,y,z) (2)

evaluated over any plane z = h. Clearly the signal does not depend
on the plane over which the integral is evaluated and so A and E
must vary with height above the telescope in such a way that V
does not change.

When the medium in which radiation propagates is homo-
geneous, the problem of calculating V is easily solved using
Fourier transforms, i.e., the angular response functions is simply
the Fourier transform of the aperture plane response function:
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Figure 2. Horizontal cuts of the amplitude (left) and phase (right) of the astronomical beam for eight distances from the antenna starting at the aperture plane
(bottom) and increasing in 500 m steps to 3500 m (top).

A(u,v) = FT [A(x,y;z = 0)] . (3)

This makes it possible to calculate easily how a single antenna
will respond to a source as a function of its position. Alternatively,
the surface integral of Equation 2 may also be calculated at the
aperture of the antenna (that is, z = 0), which is convenient since
A(x,y,z = 0) is easy to compute. In the case of a point source and a
homogeneous atmosphere, the incoming radiation at z = 0 will be
a plane wave and so the integral is easy to compute.

We note two straightforward points. First, when calculating
the surface integral at z = 0 an aperture of finite size will still of
course have a finite angular response. This can be appreciated by
considering an incoming plane wave at an angle u from the vertical:
this will cause a range of phases across any finite-sized apertures
leading to a decrease in the final complex sum when calculating V .

Second, although conventionally the integral of Equation (2)
is done at z = 0 or z = ∞, it may be done at any z. If the incoming
waves are planar and the medium through which they propagate is
homogeneous, they can be trivially computed at any z. Similarly, if
the medium of propagation is homogeneous, the antenna voltage re-
sponse A(x,y,z) may be quite easily approximately computed from
the aperture-plane response A(x,y;z = 0) using the Fresnel integral.

The general case of propagation through an in-homogeneous
medium is more complicated. If smallest scale structure in the
medium is at the length scales of about ∆ and the wavelength of
radiation is λ then diffraction due to the medium becomes impor-
tant a distance approximately ∆2/λ into the medium. In the case

of the present study ∆ ≈ 1m since the resolution of our statistical
realisations of turbulence is 1 meter and λ ≈ 1mm so diffraction
due to inhomogeneities may become significant at around 1km.

Since the thicknesses of turbulent layers we consider in this
note are all smaller then this length, we can apply the following ap-
proximation. We flatten the turbulent layer in the required direction
(that is, taking into account the offset the beams) and consider that
it as a thin screen. That is, we compute:

q′(x,y;θ ,ξ ) =

∫
dr q(rx(z),ry(z),z) = (4)

∫
dzq(x + zsin(θ )sin(ξ ),y + zsin(θ )cos(ξ ),z), (5)

where the angles θ and ξ define the offset of the beam with respect
to the vertical such that ξ = 0 is an offset in the direction of the
baseline and ξ = π/2 is an offset in the windward direction.

It is this computation of q′ from q which produces the correct
steepening of the structure function without supplying the exponent
ξ but rather just the physical thickness of the turbulent layer in the
atmosphere.

The integral of Equation 2 is then very conveniently per-
formed at the height of the turbulent layer without the need to com-
pute the diffraction due to atmospheric fluctuations. If we are con-
sidering a single source exactly on the antenna axis then we can
assume E(x,y;z = h) = 1 and thus:

V [q′] =
∫ ∫

dxdy ·A(x,y,z = h) · eiCwq′(x,y) (6)
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where Cw is the conversion factor between phase and water content.
The argument of V [q′]/V [0] is the phase shift introduced by atmo-
spheric turbulence q and the magnitude of V [q′]/V [0] corresponds
to the decrease amplitude of received signal due to the turbulence,
i.e., ‘radio-seeing’.

2.3 The signal measured by the WVRs

Computing the signal received by the WVRs is relatively simple
because the emission from the water molecules will not be coher-
ent and because we have assumed that radiation is propagating in
a perfectly optically thin way. The signal received by the WVRs,
W [q], could therefore be computed by integrating the water-vapour
distribution q weighted by the antenna power-response pattern
P(x,y,z) = |A(x,y,z)|2. For consistency with Equation (6), we how-
ever also calculate the power received by the radiometers from ‘flat-
tened’ water-vapour distribution q′:

W [q′] =
∫ ∫

dxdy ·P(x,y,z = h) ·q′(x,y). (7)

2.4 Computing the antenna response patterns

We assume that the astronomical beam has a -12 dB edge taper and
that the WVR beam has -18 dB edge taper. Both beams are mod-
elled as Gaussian with the blockage by the secondary mirror (but
not the supports) taken into account (we also of course take into ac-
count the truncation of beams by the size of the primary reflector).
The antenna response at an altitude h is computed using Fresnel
integrals, which we approximate by adding quadratic phases to the
aperture-plane field distribution and using the straightforward Fast-
Fourier Transform (FFT).

For the astronomical beam both the phase and the amplitude of
the antenna response are calculated and they are shown as functions
of altitude in Figure 2. For the WVR beam only the power response
is relevant and it is shown in Figure 3.

2.5 Time series of phase and WVR measurements

The geometry which we use to generate the simulated time series
is as follows. We assume that the two antennas are observing at
the zenith and are separated by a distance b in the y direction and
calculate the differences between the received phases (of the as-
tronomical signal), which we will write φ , and powers from the
WVRs, which we denote by W . In order to generate the time series
we sequentially translate this baseline in the x-direction. We will
assume that the sampling is done at 1s so the distance translated is
simply v/1s where v is the wind-speed, i.e., the speed with which
an apparently frozen phase screen is moving across the telescope.
The geometry is shown in Figures 4 and 5. When the antennas are
not observing toward the zenith, the quantities h and w should be
scaled by the secant of the zenith angle to account for the longer
apparent distance to the turbulent layer and the greater apparent
thickness of the turbulent layer respectively.

This procedure produces astronomical phase differences φi

and water vapour differences Wi . We assume that the best estimate
of phases from water vapour measurements, φ̂ , is the best-fit lin-
ear scaling, i.e., φ̂i = cWi, where c is a constant. The error in our
estimate of phase fluctuation is φ − φ̂ and we define the overall
fractional error as:
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Figure 3. Horizontal cuts of the power response of the water-vapour ra-
diometer beam for the same eight distances as shown in Figure 2.

(δσ)2 =

〈(
φ − φ̂

)2〉−
〈
φ − φ̂

〉2

〈
φ2〉−〈φ〉2

. (8)

In order to reduce the effect of statistical variance when computing
δσ we generate ten statistical realisations of Kolmogorov turbu-
lence and quote δσ as the mean of the values computes for each
turbulence realisation.

3 RESULTS

For the results presented in this section the following parameter
ranges were considered.

Turbulent layer thicknesses (w) in the range from 1 to 500 m
have been used. The smallest values w are unlikely to be physi-
cally relevant but we include them for comparison with thin-screen
approximations. The results for different thicknesses are shown by
different line styles.

Simulations have been made for three heights of the turbulent
layer: h = 250m, h = 750m and h = 1250m. Measurements us-
ing two site testing interferometers at the Chajnator site by Robson
et al. (2001) indicate that most of turbulence is below 500 m while
Beaupuits et al. (2005) show with radiometric tests that the turbu-
lent layer is likely to be around h ≈ 700m. Hence, the range of
heights we have used in our simulations brackets the likely heights
of the turbulent layer at the ALMA site.

Three values of length of the baseline between the antennas
have been used: b = 64m, b = 128m and b = 256m. We have
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Figure 4. Illustration of simulation of time series of fluctuations

Astronomical beam

WVR Beam

h = 750m

w = 500m

z-direction

Turbulent layer

Figure 5. Illustration of the geometry of the turbulent layer and the astro-
nomical and WVR beams.

not considered longer baselines because it would be considerably
more complex to carry out simulations of both the sufficient size
to accommodate these baselines and the sufficient resolution to
resolve the effects of the differences between astronomical and
WVR beams. Furthermore, the relative size of error due to beam-
mismatch is less significant at longer baselines.

All simulations presented here have been carried out under the
assumption that astronomical observing is being carried out λ =
1mm. We have of course assumed that the radiometers are observ-
ing close to water vapour line they are measuring, i.e., 183 GHz.

It has been assumed that the displacement between the astro-
nomical and the WVR beams is in the direction perpendicular to
wind. We note that if the displacement is in the direction of the
wind it may, in principle, be possible to reduce the error due this
displacement by shifting the WVR measurements in time. This can
not be done in the present geometry.

The range of displacement angles (δθ ) considered is from
zero up to 30 arc-minutes. The displacements of astronomical from
the WVR beams in the present design of ALMA 12-m antenna and
front-ends are shown in Table 1 and they range from 3.58 to 9.13
arc-minutes. Hence, the range of displacements considered in the
figure is larger than the maximum that will occur in the case of
ALMA, but. It is nevertheless plotted to better show the trends and
also as an aid for those considering designs of similar antennas.

A sample of the simulated phase fluctuations in the astronom-
ical signal, the simulate signal received by the radiometers and the
difference for the when the beams are perfectly coincident is shown
in Figure 6. Figure 7 shows how the root-mean-square of fluctua-
tions varies with the baseline length for a number of baseline thick-
nesses.

The key results are shown in Figures 8 and 9. The both show
fractional error in fluctuations as seen by the astronomical signal
and the radiometers as the function of beam displacement. Figure 8
shows this variation three heights of the turbulent layer while Fig-
ure 9 shows the variation for three baseline lengths.

The final result is shown in Figure 10, which illustrates the
effect of the tapers of the astronomical and radiometer beams by
repeating the simulation for radiometers with -5 dB and -30 dB ta-
pers. Because the radiometer measures incoherent radiation from
water, the -5 dB taper corresponds closely to the -12 dB taper of
the astronomical receivers. As a result, it can be seen that the dis-
crepancy between phase fluctuations and radiometer outputs is very
small for small beam displacements. With a -30dB edge taper, the
radiometer beam in the near field is a rather narrow cyclinder and
therefore samples the water only close to the centre of the astro-
nomical beam. The resulting discrepancy between measurement by
the radiometer and the phase fluctuation of the astronomical signal
is shown in the bottom plot of Figure 10.

4 DISCUSSION AND CONCLUSIONS

Due to design constraints, the water vapour radiometers for ALMA
will not sample parts of the atmosphere which are geometrically
exactly the same as those causing the fluctuations in the phase of
the received astronomical signal. This effect alone will cause some
error in estimates derived from the WVR measurements that are
used to correct for the atmospheric phase fluctuation, and the results
shown in the previous section quantify the size of these errors.

The specification for atmospheric phase correction for the
ALMA project require that the residual (i.e., after correction) root-
mean-square fluctuations are equal to or less than 10µm(1+ c

1mm )

2007 ALMA Memo 573



6 Nikolic, Hills and Richer

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

φ
(r

ad
)

φ
(r

ad
)

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2

t (hours UT)t (hours UT)

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

∆
φ

(r
a
d
)

∆
φ

(r
a
d
)

Figure 6. Simulated phase fluctuations (bottom panel) and the error in phase fluctuations inferred from the simulated radiometer data (top panel). The
simulation was carried out for a 128 m long baseline, a 500 m thick turbulence layer and a wind speed of 6 m s−1. The astronomical and WVR beam shapes
used were as shown in Figures 2 and 3 and the beams were assumed to be exactly aligned.

per antenna plus two per-cent of fluctuation on any one baseline.
Here c is the precipitable water vapour column. As the error due
to geometric mismatch discussed here is proportional to the mag-
nitude of the fluctuations, it should ideally be accounted for in the
proportional part of the error budget.

Measurements of un-corrected atmospherically-induced phase
fluctuations at the ALMA site (reviewed by Evans et al. 2003) show

that in good night time conditions, the fluctuations on a 300 m long
baseline are around 100µm, while in poor day-time conditions they
may be as high as 900µm. Extrapolating from Figure 7, this cor-
responds on a 128 m baseline to approximately 60 and 600µm.
Hence under good night time conditions a proportional error in
phase correction of around two-percent will still be small compared
to the specification for the additive error (minimum 10µm per an-
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Figure 7. Root-mean-square of phase fluctuations of the received signal as
function of baseline length for four thicknesses of the turbulent layer: thin-
screen (solid line), 10 m, 100 m and 500 m (dot-dash-dot line).

tenna or 14µm per baseline). Under conditions when uncorrected
fluctuations are strong, a proportional error of two-percent, will
however be comparable to the additive error. Although the mag-
nitude of uncorrected fluctuations increases on long baselines, as
discussed below, the relative importance of the errors studied in
this memo decreases.

The typical case we consider in this note is a baseline between
antennas of length 128 m and a turbulent layer which at a height
750 m (this case is shown in Figures 8, 9 and 10). The physical
thickness of the turbulence layer at Chajnator is likely to be be-
tween 100 and 500 m, i.e., between the bottom two lines in the
plots of the previous section. As can be seen from the plots, the
fractional error due to the geometric mismatch is in the range be-
tween one and two per-cent when the beams are exactly aligned and
the increase with angle of mis-alignment becomes significant when
the displacement is about 5 arc-minutes. Therefore in the case the
ALMA, the geometric mismatch is of the order of the proportional
part of the error budget and in order to meet the specifications it
will be necessary to minimise other effects which introduce errors
that are primarily proportional to the magnitude of fluctuations.

The differences between the three plots in Figure 8 show the
significance of the height of the turbulent layer. If the WVR and
astronomical beams are exactly aligned the height is only of small
importance (arising due to diffraction of the beams). As expected,
the error due to misalignment increases with increasing height of
the turbulent layer: if the layer is at 1250 m then the fractional er-
ror due to mis-alignment becomes significant at an mis-alignment
angle of around 2.5 arc-minutes.

The three plots in Figure 9 show how the calculated limits on
performance vary with the length of the baseline between the an-
tennas. They show that at longer baselines the effect of geometric
mismatch becomes relatively less significant. The final Figure 10
illustrates the significance of the taper of the radiometer beam. It
is easier to minimise the spillover of the radiometers with a large
taper, but as is illustrated in this figure, this is at a cost of limita-
tions on the accuracy with which the fluctuations can be measured.
The -18 dB maximum taper specified by ALMA is a compromise
between these trade-offs. The top panel of Figure 10 shows that if
the taper were as low as -5 dB, this would make the error with ex-
actly aligned beams insignificant. On the other hand, a large taper
of -30 dB would significantly increase the error due to geometric
mis-match.
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Figure 8. Fractional error in estimated phase fluctuations as function of the
beam offset. Bottom plot is for a turbulent layer at a height of 250 m, middle
for height of 750 m and top for height of 1250 m. For each layer height, the
error for four layer thickness have been calculated: thin-screen (solid line),
10 m thick layer (dashed line), 100 m thick layer (dotted line) and 500 m
thick layer (dash-dot-dash line).

Within the context of ALMA these results may be summarised
as follows. It has been possible to minimise the effect of the dis-
placement of the radiometer and astronomical beams by placing
the highest frequency receiver bands closest to the pick-off mirror
of the radiometer. These displacements are shown in Table 1.

Because of this, for the highest frequency bands, the angu-
lar displacement of the astronomical and WVR beams contributes
about the same to the phase correction error budget as the other
effects studied in this memo, namely the error due to the incoher-
ent nature of the water-vapour radiometer measurement as opposed
to the coherent detection of the astronomical signal and the differ-
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Figure 9. Fractional error in estimated phase fluctuations as function of
beam offset, as in Figure 8, but showing the significance of the baseline
length. The turbulent layer is assumed to be centred at a height of 750 m
and errors have been calculated for four thicknesses: thin-screen (solid line),
10 m (dashed line), 100 m (dotted line) and 500 m (dash-dot-dash line). The
three panels show the results for three baseline lengths (top to bottom): 64,
128 and 256 m.

ent edge tapers of the two receivers. (In practice of course effects
not considered in this note, such as the radiometer measurement er-
ror and the uncertainty in atmospheric modelling, will also be im-
portant.) Unless the turbulence is concentrated at very low heights
in the atmosphere, the larger angular displacement of the lower-
frequency receivers will place further significant limits on the pos-
sible performance of the radiometers, as shown in Figure 8.
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is for -5dB taper; bottom plot is for -30 dB taper. Baseline length is 128 m
height of turbulent layer 750 m as before.
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