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Abstract: This report describes the algorithms and formulas used to reconstruct the hybrid auto or
cross spectra from the ALMA correlator output.

This process includes the quantization correction (”Van Vleck correction”) for the 2 bit quantization,
Fourier Transform, calibration for tunable filter passband response and for different amplitude among
sub-channels, stitching of the sub-channel spectra in a single composite spectrum, and final correction
for the sampler 3-bit quantization.

The final product consists in normalized ACF and CCF spectra, processed and presented in a consis-
tent and uniform way for all correlation modes.

1 Introduction

All acronyms and mathematical symbols are defined in Appendix C
The ALMA correlator produces a series of correlation functions (auto correlations, ACF, or cross

correlations, CCF), of a digital representation of the radio signal, quantized either at 2, 3 or 4 bit.
Each CF may represent a segment of delay lags (e.g. in CCF positive and negative lags are computed
separately), and/or a different segment of the data, either spectral (in frequency division mode) or
temporal (in time division mode). For sample representations greater than 2 bits/sample, different parts
of a single correlation function are also computed separately, but the relevant re-assembly is done in
hardware by the LTA.

Having so many different configuration modes result in a quite complex data processing structure,
with several alternate branches.

In this document we will deal with the data processing required to produce a normalized ACF or CCF
spectrum. The data processing for ALMA is described in document “Specifications and Clarifications
in ALMA correlator”, by S. Scott [11]. The processing described in this report replaces the procedure
described there up to point 6. Subsequent processing remains unchanged.

Normalization of the spectra is performed as described in Scott [11]: for autocorrelation spectra, the
average spectral density across the spectrum is unitary, and the quantity given in the cross spectra is the
spectral cross correlation coefficient. The digital total power is given in units of the sampler quantization
step.

The processing is kept as consistent as possible for all the correlator modes, i.e. time and frequency
division, 2, 3 and 4 bit quantizations.
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1.1 Scope

This document is relevant to the implementation of the correlator quasi real time software for processing
the observed spectra. It provides general suggestions on software implementation topics, but do not sug-
gest specific software implementations. Whenever possible different alternative approaches are suggested.
It does not address astronomical calibration issues.

The input of the process is a set of raw correlation coefficients for each sub-channel, correlator plane
and antenna (for ACF spectrum) or baseline (for cross spectrum). The output is a set of normalized auto
and cross spectra, together with digital total power data.

1.2 Description of the problem

The usual processing of correlation data, described in [11], consists in lag normalization, correction for
quantization, and subsequent calibration using a reference spectrum (usually the ACF signal) to correct
for bandpass effects. This approach is not appropriate for the ALMA correlator in frequency division
mode, for the following reasons:

• In frequency division mode, the signal is quantized twice, i.e. at the analog 3-bit sampler and
after spectral processing in the Tunable Filterbank. Both these quantizations introduce a nonlinear
distortion in the correlation function, that must be corrected.

• The bandpass response due to the digital filter is fully deterministic, both in amplitude and in
phase, and therefore can be corrected using the filter design data.

• Having several subchannels, it is easier to realign and combine them in a single spectrum at an
eaerlier processing stage than to deal with separate spectra that must be individually calibrated.

1.3 Processing steps

The general steps required for the processing of a set of raw correlation lags, to produce a set of auto-
correlation and crosscorrelation coefficients is performed in the following steps:

1. Lag averaging: this includes assembling a complete CF from correlator products computed in
different correlator planes

2. Normalization of raw lags, to obtain the quantized correlation product (chapter 2)

3. 2-bit (or 4-bit) quantization correction, using the appropriate correction function. The correction
is dependent from the total power levels derived by zero-lag ACF (chapter 3)

4. FFT with appropriate taper, and with 1/2 channel frequency shift (chapter 4)

5. Bandshape correction, using a precomputed shape and with data-dependent correction (chapter 5)

6. Re-gridding of the corrected spectra inside the final composite spectrum (chapter 6)

7. Normalization of the output spectrum, and computation of the associate power level

8. Correction for the 3 bit quantization in the sampler (chapter 7)

9. Final rescaling of the output spectra, to comply with the conventions of [11] (chapter 8)

The processing corresponds in reverse to the signal processing in the station hardware, as shown in
fig. 1.

For TDM only steps 1–4 and 9 are required. In frequency division mode, steps 1–5 must be separately
performed on all sub-channels, that are combined together in step 6 and further processed in steps 7–9
as a single entity.

In FDM, the resulting spectrum does not usually span the full 2 GHz band, and may contain holes
in the frequency coverage.

In the following chapters, each of the above operations is described in more detail.
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Figure 1: Signal processing in the station hardware (top row), and corresponding data processing in the
software (bottom row)

2 Normalization of raw lags

The Short Term Accumulator (STA) in the correlator chip accumulates the correlation product R4(τ)
over the chosen dump time. For hardware considerations, the quantity accumulated is R4 + 9, where the
offset of 9 has been chosen to avoid negative numbers. The total number of samples in a millisecond is
(125000− 270) where 125000 is the number of clock cycles, 270 is the number of clock cycles lost in the
correlator chip dump. Dump time may be either 1 or 16 ms, after which the STA results are accumulated
in the LTA.

The lower 10 bits of the register are not read (6 bits for 1 ms dump time), and thus the raw lag is divided
by 64 or 10241. Therefore the offset in a dump period is Vs16ms = 9(125000−270)/64−0.5 = 17539.65625.
Subtracting 0.5 from Vs compensates the error of truncation vs. rounding during STA readout. The total
bias in a complete integration is then

Vs = Vs16msNpNd (1)

where Np is the number of correlator planes co-added in the LTA, and Nd = tint/tdump is the number
of correlator chip dumps.

3 and 4 bit modes use 4 planes of the correlator, to synthesize a 4 bit multiplier from four 2 bit
multipliers. For 3 bit mode only the lower 3 bits are used, i.e. the sample values have a restrict range,
but the same hardware multiplier is used. The 4 planes are co-added with relative weights of 1, 4, 4 and
16, so the total offset implied in this scheme is increased by a factor of 25 (225 instead of 9). The simplest
way to consider this is to include an extra factor of 25 in Np.

The values of Np for the available correlator modes are listed in tab. 1. This is the product of a factor
of 32 for TDM, a factor of 25 for 3x3 and 4x4 quantization, and a factor of 2 for the oversampled modes
at 62.5 MHz bandwidth (at 31.25 MHz oversampling is performed in the correlator hardware, without
involving the LTA).

Mode Quant. Oversample Band Np

TDM 2x2 2GHz 32
TDM 3x3 2GHz 800
FDM 2x2 no any 1
FDM 2x2 yes 62.5 2
FDM 2x2 yes 31.25 1
FDM 4x4 no any 25
FDM 4x4 yes 62.5 50
FDM 4x4 yes 31.25 25

Table 1: Np for the available correlator modes. Bandwidth refers to the single sub-channel

1Actually, one bit is discarded in the multiplication table, as the offset multiplication result is always an even number,
and 5 or 9 bits are discarded in the STA readout
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The normalization process is then expressed by the formula

R4(τ) = 9K
L(τ) − Vs

Vs
(2)

where L(τ) is the LTA raw lag output for delay τ .
The factor K is 1 for 2 bit modes, and 25 for 3 and 4 bit modes.
It is important to note that R4 is a correlation product, and includes total power information for the

2 bit quantized signal. In particular R4 is generally not equal to 1.0 for the zero-lag autocorrelation, but
is typically around 3.5, 11 and 35 for respectively an optimally quantized 2, 3 and 4 bit signal. 2

3 Quantization correction

The correlation functions must be corrected for the effect of the quantization. This applies both at the
quantization of the analog signal in the analog sampler, and at the requantization of the multi-bit digital
signal after the Tunable Filterbank. The mathematical treatment is the same, irrespective of the analog
or digital nature of the quantized signal.

Quantization correction depends on the exact ratio of the quantization step to the RMS amplitude for
the two signals correlated (one signal in the case of ACF). In the ALMA quantization process, thresholds
(or signal level) are set initially to the optimum value with respect to the signal level, within a relatively
coarse accuracy (±0.25 dB for the analog 2 or 3-bit quantization, ≈ 1% for the 2-bit quantization
inside the TFB), and then kept constant. During the observation, level may change, and thus accurate
measurement of this ratio must be performed in order to reconstruct the signal.

This aspect is particularly important for a hybrid correlator, as the accurate relative calibration of
the individual sub-channels is essential for accurate realignment of the reconstructed spectrum. A total
power error of the order of the dynamic range (10−4 to 10−5) is thus required to correctly align each
sub-channel in the composite spectrum and avoid platforming.

The RMS signal amplitude before the quantization can be measured either directly, or inferred from
zero-lag ACF. A direct measure of the digital total power in each sub-channel is in principle possible, but
would saturate the the control bus bandwidth in most realistic scenarios. The latter method is usually
much simpler, as the zero-lag ACF is directly available from the ACF data. Some bookkeeping is required
to associate the zero-lag ACF of the two signals composing a CCF.

3.1 Zero delay autocorrelations

For Gaussian noise, the zero delay autocorrelation of a 2 bit sampled signal of amplitude σ expressed in
units of the quantization step l is given by the formula:

R(0) = 9 − 8 erf

(

1√
2σ

)

(3)

The relation can be directly inverted, using the inverse erf routine derived by Blair et al., and
implemented as part of the GBT software by F. Schwab [12].

For multi-bit quantization, a similar relation can be derived. If N is the total number of levels,
and assuming multiplicative weight 2k + 1 for level k (the multiplication scheme adopted in the ALMA
correlator), the zero-lag ACF is given by:

R(0) = (N − 1)2 −
N/2−1
∑

k=1

8k erf

(

k√
2σ

)

(4)

It is possible to recover σ for all the antennas, BBCs and sub-channels by numerically inverting this
relation (that is strictly monotonically crescent). A computer routine to invert this relation with standard
numeric algorithm is also given by Schwab.

2The signal level must be adjusted at the sampler input for the quantization scheme adopted. The signal RMS amplitude
at the analog sampler input should be set to 1.70 times the (3 bit) sampler quantization step in 3 bit TDM and all FDM
modes, and to 2.01 times the quantization step in 2 bit TDM mode, ±0.5 dB. This implies that in 2 bit TDM mode the
RF level must be raised by 1.4 dB.
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3.2 Quantization correction

The digital cross correlation R4 of the 2-bit quantized signal is a function of the cross correlation ρ of the
two continuous3 signals x1, x2 before the digitization stage, of the two normalized quantization steps l1
and l2 (or the normalized signal amplitudes σ1, σ2), and of the multiplication scheme adopted. The 2 bit
4 level multiplication scheme adopted in the ALMA correlator is implicitly assumed here. It is important
to note that the function ρ(R4) depends strongly on l1, l2, i.e. on the amplitude of the input signals.
Correcting R4 assuming a constant input level is absolutely not acceptable.

Several numeric approaches to compute R4(ρ) are available. The process is however quite computing
intensive. It is possible to speed up this process by tabulating ρ as a function of R4, σ1, σ2, but the
number of tabulated points needed for a meaningful interpolation with the required accuracy is quite
high.

Several efficient algorithms to implement this quantization correction have been developed. For ex-
ample, a set of routines developed for GBT are publicly available [12], and have been adapted to the
ALMA multiplication table, for the 2, 3 and 4 bit cases. These routines compute a spline interpolation
table for given values of σ1, σ2, and apply it to the correlation function. Calculating the table is still
quite computer intensive, and for short integration times it is beyond the available computing power.
If, as it is usually the case, the RMS of the signal stays constant for a significant amount of time, one
can compute the table for each sub-channel and baseline only once, and apply it to all the correlation
functions for the whole time interval.

An efficient relation for R4(l1, l2, ρ) have been found by Schwab:

R4(l1, l2, ρ) = −8 + 2

(

arcsin(ρ)

π
+ 3erf

(

l1√
2

)

+ erf

(

l2√
2

))

+

+8 (L(0, l1, ρ) + L(0, l2, ρ) + L(l1,−l2, ρ) + L(l1, l2, ρ))

where L(l1, l2, ρ), is the cumulative bivariate probability that x1 > l1 and x2 > l2, and l1,2 = 1/σ1,2.

3.2.1 Polynomial approximation

An alternative approach has been described in [3]. The relation R4(l1, l2, ρ) has been expanded in powers
of ρ up to ρ5, and inverted up to the same accuracy. The resulting relation is quite accurate up to ρ = 0.2,
i.e. for almost all the correlation points.

The approximate relation has the form R4 = aρ + bρ3 + cρ5, where a, b, c are given by:

a =
2

π

(

1 + 2 exp(−l21/2)
) (

1 + 2 exp(−l22/2)
)

(5)

b =
1

3π

(

1 + 2(1 − l21) exp(−l21/2)
) (

1 + 2(1 − l22) exp(−l22/2)
)

(6)

c =
1

60π

(

3 + 2(3 − 6l21 + l41)) exp(−l21/2)
) (

3 + 2(3− 6l22 + l42)) exp(−l22/2)
)

(7)

and the inverse relation is

ρ =
1

a
R4 −

b

a4
R2

4 +

(

3b2 − ac

a7

)

R5
4 (8)

These relations are symmetric, i.e. ρ(−R4) = −ρ(R4), if no DC bias is present in the sampled data.
The correlation coefficient ρ(τ) must then be multiplied by σ1σ2, to obtain the cross product between

the input continuous signals, R(τ).
This approach requires less computing time than the spline interpolation technique, as the computing

intensive expression R4(l1, l2, ρ) needs not to be computed to build the spline interpolation table. If it
is not known in advance whether the interpolation will be required (i.e. if there are correlation products
with |ρ| > 0.2) the spline interpolation table must be computed anyway, and the polynomial relation can
be used to speed up the construction of the spline table for the inner part of the correction curve. The
speed-up is modest, around a factor of 2, but worth the extra effort.

3Here with continuous we may intend either an analog signal or a digital signal represented with many bit accuracy
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3.2.2 3 and 4 bit quantization correction

The 3 and 4 bit cases can be treated in a similar way. From [3] for the generic N level case the N bit
correlation coefficient RN can be expressed as a polynomial in odd powers of ρ, truncated to ρ5. The
particular case N = 4 gives the coefficients in equations 5-7. 3 bit quantization requires N = 8 even if
the samples are actually quantized with 4 bits, as only 8 separate values are used.

RN (ρ) =
2

π

5
∑

k=1

ρk

k!
Ck(l1)Ck(l2) (9)

C1 = 1 + 2

N/2−1
∑

i=1

exp(−(il)2/2) (10)

C3 = 1 + 2

N/2−1
∑

i=1

(1 − (il)2) exp(−(il)2/2) (11)

C5 = 3 + 2

N/2−1
∑

i=1

(3 − 6(il)2 + (il)4) exp(−(il)2/2) (12)

where il = i/σ is the ith threshold, and l = 1/σ is the threshold spacing normalized to the signal
RMS amplitude.

4 Fourier Transform

For detailed discussion on the Fourier Transform, we refer to chapter 2.1 in [2]. There it is shown that,
if the sub-channels are overlapped by a even number of spectral points, it is convenient to compute the
Fourier transform in a set of frequencies νi given by

νj = (j + 1/2)∆ν, j = 0 . . . (N − 1) (13)

where N is the number of (positive) correlation lags and ∆ν = 1/(2N∆τ) is the spectral point
spacing. In this way, it is possible to discard an integer number of spectral points on each side of the
band. Incidentally, this is convenient also for time division mode, or for modes with a single sub-channel,
as the spectral points are spaced evenly across the observed spectrum, without a ”special” first and last
point.

Computationally, the simplest way to obtain this shift in the frequency channels is by multiplying the
correlation function R(τ) before Fourier transform by an exponential:

S(νj) = F

[

C(τk) exp

(

2πi
k

4N

)]

(14)

where F [C] denotes the Fourier transform, and the index k assumes the values [−N . . . (N − 1)]. An
efficient algorithm to perform modified FFT on real data is described in appendix A.

If the sub-channels are overlapped by an odd number of channels, the conventional FFT, computed on
frequencies νj = j∆ν with j = 0 . . .N , can be used. Since the first and last channels of conventional FFT
of a real data set has half width, it is possible to discard a semi-integer number of channels from each
side of the spectrum. To simplify the data reduction pipeline, and to guarantee a coherent interpretation
of the output channel frequencies, the 1/2 spectral point offset is always applied. This constrains the
number of overlapped points to be even (or zero). In the present correlator firmware, the subchannel
overlap is fixed to 1/16 of the subchannel width, and the number of overlapped channels is always a
power of 2.

In any case, discarding of unwanted spectral points is performed after the calibration described in the
next section.



Algorithms for hybrid correlator data correction 7

4.1 Tapering functions

Appropriate tapering T (τ) must be used before Fourier transform for apodization of the spectrum. ALMA
specifications require that at least the following tapering functions w(i) must be provided. The index i
runs from 0 (zero lag ACF) to N/2, with N the two sided size of the correlation. The function is even,
w(−i) = −w(i).

• Uniform: constant weight (no tapering)

• Bartlett (triangular): w(i) = 1 − |2i/Ni|

• Welch (parabolic): w(i) = 1 − (2i/N)2

• Hanning: w(i) = 0.5 + 0.5 cos(2πi/N)

• Hamming: w(i) = 0.54 + 0.46 cos(2πi/N)

• Blackmann: w(i) = 0.42 + 0.5 cos(2πi/N) + 0.08 cos(4πi/N)

• Blackmann-Harris: w(i) = 0.35875+0.48829 cos(2πi/N)+0.14128 cos(4πi/N)+0.01168 cos(6πi/N)

According to [11], in the ALMA processing software the FFT routine is normalized so that the average
spectral density over the whole spectrum is equal to unity for the autocorrelation spectra, and scaled
accordingly for cross spectra. The quantity recorded for cross spectra is thus the correlation coefficient
as a function of frequency.

In this way, absolute amplitude is lost, and is recovered in later processing by appropriate astronomical
calibration. In a hybrid correlator however it is important to keep track of the actual signal amplitude,
and therefore the correlation is normalized to the amplitude σ1σ2 of the two input data streams. In
this way the average (real) spectral density for ACF is equal to the input total power, in units of the
quantization step.

The final normalization to conform to the ALMA convention is done only at the end of the processing,
as described in chapter 8, after the sub-channels are stitched together and the 3 bit quantization correction
has been applied.

5 Bandshape correction

The resulting spectrum must be corrected for the filter shape and slope, as described in [2].
The combined response for the two digital filters and the tapering can be precomputed for all the

observation modes. For each spectral channel j in the sub-channel, the integral response a(j) and its first
momentum m(j) are tabulated in a response file. For symmetric filter taps and tapering function, these
values are real. a(j) is symmetric with respect to the sub-channel center, while m(j) is antisymmetric. A
separate response file is available for each spectral resolution, sub-channel width and tapering function.
A procedure to compute these values from the filter taps and the tapering function w(j) is reported in
appendix B. With the 7 tapering functions above, 2 sub-channel widths (62.5 and 31.25 MHz) and 8
resolutions (64-8192 spectral points), a total of 102 calibration files are required.

The calibration algorithm is then:

1. Each (complex) spectral point is divided by a(j), obtaining a first corrected spectrum, S ′(j).

2. S′ is differentiated, obtaining d(j) = (S ′(j + 1)−S′(j − 1))/2. The first and last points are linearly
extrapolated from the two next ones, as in d(0) = 2d(1) − d(2).

3. The spectrum is corrected for the small offset in channel barycenter induced by the filter slope:
S(j) = S′(j) + m(j)d(j).

4. A new estimate of d(j) is obtained, and used to estimate a better correction for S ′(j)
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Only 2 iterations of steps 2-3 are sufficient, as more iterations just spread around numeric noise.
The correction function contains an appropriate scale factor that includes all the processing in the

two stage filters.
The spectrum amplitude is affected by four more factors:

• A factor of 222 or 218, to account for 11 or 9 bits discarded before the second quantization unit,
respectively for 2 and 4 bit quantization

• A multiplicative, programmable, factor, used to rescale the filter output for optimal 2 bit quantiza-
tion. This factor is determined in the SCC before the correlation, and is typically different for each
sub-channel. The cross spectrum must be divided by these factors, one for each of the two baseline
antennas

• A conversion gain of the digital mixer. This value is dependent on the particular sine table used in
the mixer, but is constant and deterministic. For the mixer table adopted in the TFB, it is equal
to 5.21 [1]

• A factor equal to the frequency division factor used (32 for normal TFB mode, or 64 for half
bandwidth mode) 4

At the end of this process, the rescaled spectra from each sub-channel are calibrated and corrected
to the same scale, corresponding to the output of the 3-bit sampler. The quantity in the spectra is
proportional to a spectral density, i.e. power per unit frequency and the scale is the same irrespective of
spectral resolution and observing mode.

6 Sub-channel stitching

Each corrected spectrum must be re-gridded in the final hybrid spectrum, dropping the first and last
channels. The digital local oscillator for each sub-channel has a tuning step of (2/216) GHz. i.e. 1/32
of a channel at the minimum resolution. It is thus possible to tune each sub-channel in order to place
all spectral points on a common frequency grid. In this case the re-gridding operation corresponds to
computing the correct index in the composite spectrum.

The amount of spectrum to be dropped is a fixed quantity in frequency, related to the filter shoulder
shape and the tapering function T (τ). This is independent from the spectral resolution, and from the
sub-channel width (this latter is either 62.5 MHz or 31.25 MHz).

Thus if the sub-channel width is B, the number of spectral points N , the spectral resolution per point
∆ν = B/N , the number of spectral points to delete at each end is:

Nd =
62.5MHz

32∆ν
=

62.5MHz

B

N

32
(15)

Let Sk(j) be the spectral point j of sub-channel k. Let assume that sub-channels are numbered from
0 to (M − 1), spectral points from 0 to (N − 1) and the spectra produced with the modified FFT routine
that computes spectral points centered at frequency νj = ∆ν(j + 1/2). Let ν0k be the local oscillator
frequency for sub-channel k. It is always possible to set ν0k to an exact multiple of ∆ν, and this restriction
can be enforced without losing significant flexibility. We assume thus that ν0k = n0k∆ν. For continuous
coverage starting at frequency ν0 = n0∆ν, we have n0k = n0 + (k + 1/2)(N − 2Nd). Then the frequency
for spectral point j of sub-channel k is given by

4This factor is due to the convention used for the FFT normalization. The FFT routine normalizes the average spectral
density to the total power in the time domain. In the frequency division mode, the average spectral density is calculated
on a number of spectral points that is 1/32 or 1/64 of the total number of points in the whole channel. For example, for
uniform spectral density, the total power in each sub-channel is 1/32 the total power over the whole IF bandwidth, and thus
the average spectral density calculated for each sub-channel is 1/32 the total average. The factor is physically linked to the
change in sampling rate, or in delay spacing in the correlator, and is not dependent on the actual bandwidth observed.
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νjk = ν0k − B

2
+

B(j + 1/2)

N
(16)

= ∆ν(n0 + k(N − 2Nd) + j − Nd) +
∆ν

2
(17)

If the resulting spectrum is represented by an array with the same indexing convention, i.e. spectral
point l has frequency νl = ν0 + ∆ν(l + 1/2), the stitching process is a copy of arrays Sj(k) to the final
spectrum Sh

8 (l). The suffix 8 here indicates that S8 is computed on a 3 bit, 8 level signal representation,
i.e. has not been corrected for 3 bit quantization.

Sh
8 (l) = Sj(k) j = Nd . . . (N − Nd − 1), k = 0 . . . (M − 1) (18)

l = k(N − 2Nd) + j − Nd l = 0 . . . (M(N − Nd) − 1) (19)

For example, in full bandwidth mode, 32 spectra of 64 points each are computed with an overlap
of 4 points. 2 points are dropped from each sub-channel edge, and the spectral points j of spectrum k
correspond to points 60k+ j−2 in the final spectrum (k = 0 . . . 31, j = 2 . . . 61). A total of 1920 spectral
points are computed.

The 4/64 overlap has been chosen considering the phase performance near the band edges of a of
a 64-point correlator (see [2]). TFB filter shape has been designed accordingly, so this is the optimum
value for the current hardware implementation. It is possible to use different values, with the constrain
of a even number of spectral points in the overlap, but this is not currently supported by the firmware
correlator.

At the end of this process, the composite spectrum corresponds to a portion (likely with holes, at
least at the two edges) of the spectrum at the sampler output. It is thus equivalent to a portion of the
spectrum observed with a conventional high speed 3-bit correlator on the same digitized signal.

7 Quantization correction for 3 bit sampler

The spectrum S8(ν) is still affected by quantization losses and distortions due to the 3-bit quantization
in the analog 4 GHz sampler.

In general for a frequency division scheme it is not possible to completely correct these effects, as
the input spectrum is not completely observed. By dropping part of the spectrum, or in narrow-band
modes by observing only a small portion of it, we lose information necessary to correct for quantization
effects. To reconstruct the original spectrum it would be necessary to have at least a rough estimate of
the spectrum, e.g. by a short and coarse observation in time division mode.

The relation between the 3-bit, 8 levels correlation function R8(ρ) and the original correlation ρ is
much more linear than in the 4-level case, and in most cases the correction could be approximated with
a linear function in the spectral domain. The sensitivity of the correction to the signal level is also less
severe than for the 4 bit case, so a fixed relation could be used, assuming a nominal signal level at the
sampler input.

Therefore we have the following possibilities to correct for 3-bit quantization, in order of decreasing
complexity (and accuracy):

• Perform a short TDM observation, to estimate the spectrum in the unobserved portions of the IF
band. The TFB itself can be used as a 32-point filterbank, to obtain a coarse spectrum of the whole
IF band. From that, the algorithm described in chapter 7.1 can be used

• Estimate the spectrum in the unobserved portions of the IF band using a digital total power
measurement to constrain the integrated spectrum

• Measure the digital total power at the TFB input ad use a linear correction for the auto and cross
spectra, as described in chapter 7.3

• Use the linear correction with the nominal value for the digital total power
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7.1 Direct approach

The usual approach in FFT spectrometers (the hybrid design can be considered equivalent to a N =
32 Fourier instrument) is to derive the correlation function from the uncorrected spectrum, apply the
quantization correction in the time (delay) domain, and re-transform the correlation function to the
spectral domain. In our case this is not possible, as the spectrum is not known on the whole spectral
domain (2 GHz bandwidth). Different methods to estimate the spectrum in the unknown regions are
thus necessary.

The direct approach is to measure, with a coarse and quick time-division mode observation, the
complete IF band. The derived spectrum is then used to fill the unobserved portions of the band. The
method works both for ACF and CCF.

The coarse spectrum can be observed in time multiplexed mode, with a very short integration time.
A 16 ms observation determines the spectrum with an accuracy of a fraction of a percent, much better
than the absolute calibration of the individual IF channels. The observation must be performed in the
same instrumental configuration, in particular the amplitude of the signal at the sampler input should
be the same used for 3 bit quantization, even if 2 bit correlation is performed.

Let call this reference spectrum Sr, while the spectrum to be corrected is Sh. The corresponding
correlation functions are Rr and Rh. The same symbols with a suffix, e.g Rr

8 indicate the corresponding
quantities computed with a quantized representation with the indicated number of levels.

The coarse spectrum Sr(ν) must be observed in general with two bit quantization, as the 3 bit TDM
mode is available only in some polarization modes, and has a different resolution than the spectrum to
be corrected Sh. Therefore it must be modified to be compatible to the latter.

The simplest way to do this is (see fig. 2):

• Correct the observed correlation function (CF) Rh
4 (τ) for 2 bit quantization, to Rh(τ)

• Correct back Rh(τ) for 8 bit quantization, applying the correction routine backward. In this way a
CF with a simulated 8 bit quantization error is obtained

• Expand the CF Rr
8 with zeros to the appropriate length for the hybrid spectrum (e.g. to 8192 lags

for a 32x256 lags hybrid configuration)

• Fourier transform the resulting Rr
8(τ) to obtain Sr

8

• Fill the unobserved regions of the spectrum Sh
8 with Sr

8

• Transform back the resulting Sh
8 to Rh

8

• Correct it for 8 bit quantization, obtaining Rh(τ)

• Re-transform to Sh(ν)

All direct and inverse FFTs are performed using the modified algorithm described in chapter 4. All
quantization corrections must use the total power values derived from the zero-lag full-bandwidth ACFs
RH(0).

A coarse estimate of the ACF spectrum can be derived using the TFB as a 32-point filterbank. The
32 subchannels must be positioned at equispaced points in the 2 GHz IF band, in order to completely
cover it, and a digital total power measurement is performed with a short integration time. This has the
advantage of using only the control computer, and the total power data can be easily stored together
with other auxiliary informations.

The resulting spectrum is quantized to 3 bit, 8 levels (is Sr
8 apart from a constant scale factor), so

it can be directly used, after interpolation, to fill the unobserved portions of the ACF spectrum. For
CCF, the integrated spectrum provides information on the digital total power, from which the linear
approximation in chapter 7.3 can be used.

This method is usually quite time consuming, so alternative approaches are proposed.
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Figure 2: Quantization correction scheme using a TDM correlation function. The function is corrected
for 2 bit quantization (QC4) and de-corrected for 3 bit quantization (QC8), to obtain an equivalent 3 bit
TDM spectrum with the same resolution of the FDM spectrum. The spectra are merged together, and
corrected for 3 bit quantization in the time domain

7.2 Interpolation of the unknown spectral regions

If a separate observation in TDM is not available, one may try to reconstruct the unobserved part of the
spectrum with different methods.

Of course it is impossible with this approach to consider the effect of strong spectral features in the
unobserved portions of the spectrum, but the consequent errors affect the observed portions only for
unrealistically large spectral features.

If the digital total power at the TFB input is available, we may exploit the known relation between
the total power and the integral of the spectrum over the whole 2 GHz bandwidth. It is thus possible to
constrain the shape of the spectrum outside the observed region.

For example, one may assume that the unobserved edges at the two sides of the spectrum can be
approximated with a linear slope. Constraining the total area of the spectrum to be equal to NR8(0),
and assuming it to be continuous at the edges of the observed region, and to have equal amplitude at
the two edges of the IF bandwidth, one can fill the unobserved regions with reasonable values. If more
disjoined spectral regions are observed, the spectrum between them can be simply interpolated.

The resulting spectrum can then be transformed back to the time domain, corrected and re-transformed
to the frequency domain.

The signal amplitude can be measured using the TFB total power meter. All the 32 TFB sub-channels
must be used in parallel to measure the 32-fold time multiplexed input signal. This can be done in parallel
with the normal use of the TFB filters, as the total power circuitry is independent from the filter. The
requirements on the control system are however the same cited in chapter 3. As the gain error is much
less sensitive to amplitude variations than in the 4 level case, the total power measurement can be much
coarser, e.g. it can be performed only once at the beginning of an integration or of a group of integrations.

Simulation results with this approach give results only marginally better than with the linear algorithm
described in the following chapter.

7.3 Linear approximation

For cross correlation, where ρ � 1, the quantization distortion R8(R) is with good approximation linear,
and can be derived from the linear term of equation 9. As the FFT is a linear operation, the quantization
correction can be expressed as a simple multiplication in the spectral domain:

S(ν) = aS8(ν) (20)

The main effect of quantization is an amplification of the input spectrum by a factor (1/a), where a
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can be derived from expression 10

a =
πσ1σ2

2

(

1 + 2
3
∑

i=1

exp

(

− i2

2σ2
1

)

)−1(

1 + 2
3
∑

i=1

exp

(

− i2

2σ2
2

)

)−1

(21)

where σ1, σ2 are the signal RMS amplitudes for the two antennas, with respect to the corresponding
threshold spacing. These values can be computed from the digital total power measurement, R8(0) = σ2

8 ,
and inverting relation 4 for the N = 8 case. This quantization gain depends on the signal level, and for
a 1dB variation of the sampler input, it varies by ' 0.3 dB. This relation is quite accurate for |ρ| ≤ 0.3,
and introduce only modest nonlinearities even for |ρ| ≤ 0.8.

For the autocorrelation, at least for a few points near τ = 0 where ρ ≈ 1, the linear relation 21 is
incorrect. These points usually affect only the total power and in lesser way the overall bandshape.

The result of the 3 bit quantization under these assumptions is a compression of the spectral features
with respect to the receiver noise of the order of 4-5%, or in an overextinate of the ACF continuum
level by the same amount. As the ACF continuum is used in the calibration process, this correction is
important in removing a systematic calibration bias.

If we don’t care for the 2 GHz bandshape, assuming that it is reasonably smooth, we can assume that
the only point where the linear approximation does not apply in the (unknown) 3-bit autocorrelation R8

is R8(0).
The digital total power measured at the TFB input is by definition equal to the zero-lag ACF R8(0).

From that, the zero-lag corrected ACF, R(0) = σ2, can be computed. If we approximate the correction
R(τ) = aR8(τ) for τ 6= 0 and use the known relation (eq. 4) between R8(0) and R(0) for τ = 0, we can
approximate the quantization correction in the frequency domain with a linear relation

S(ν) = aS8(ν) − b (22)

The minus sign has been chosen to have b positive.
Integrating the two sides of this relation, and considering that the spectra are normalized so that the

average power is the zero-lag ACF, one obtains

b = aR8(0) − R(0) (23)

where R8(0) is the measured digital total power and R(0) is obtained inverting eq. 4.
Numeric values for a (red, left scale) and b (green, right scale) are plotted in fig. 3 for input level at

the 3-bit sampler around the nominal level of σ = 1.706 times the threshold spacing.
The above relation is independent of the actual shape of the spectrum outside the measured region,

as long as no lags of the (unmeasured) ACF have a correlation greater than 0.2–0.3. This is not true
in general, so nonlinear errors of less than 1% could be expected in the level and shape of the spectral
baseline. This has been tested with simulations of realistic signals. These assumptions can be tested in
post-processing if a TDM observation is available. In this case, it is always possible to “uncorrect” the
spectrum, and apply the full procedure described in chapter 7.1.

7.4 Fixed correction

If no measure at all is available for the digital total power, the nominal values for a and b can be used in
eq. 22 (for ACF) and 21 (for CCF). For the ALMA quantization scheme and for the optimal input level
we have a = 0.2698 and b = 0.1134. If the fixed correction is used with a signal of different amplitude,
using the wrong value for the factor a introduces a gain error, that is of the order of 3% for a input
level variation of 1 dB at the 3-bit sampler input. Most of this error is removed when the spectrum is
normalized, but a residual error, of the order of 0.5%, cannot be calibrated, due to the presence of the
factor b in the formula 22.

8 Normalization and subsequent processing

All the subsequent processing in the ALMA software assume that the spectra are normalized to a total
average spectral density of unity, for ACF at the sampler input:
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Figure 3: Inverse quantization gain, a (red, left scale) and autocorrelation offset b (green, right scale) as a
function of the sampler input level. Input level is normalized to the optimum value for 3-bit quantization

1

N

N−1
∑

i=0

S(νi) = 1

The hybrid spectrum Sh(ν) must then be divided by the (digital) total power Ri(0) for autocorrelation
spectra of antenna i, and by

√

Ri(0)Rj(0) for cross spectra between antennas i and j. Ri(0) is derived
either from:

• the zero delay ACF of the observed integration, corrected for quantization, in time division mode

• the zero delay ACF of the test TDM observation, when this is available as part of the procedure
described in chapter 7.1

• a digital total power measurement, using the TFB digital total power counters

• the result of the analog total power meter, after appropriate calibration against the digital total
power meter in the TFB

• the nominal value of (1.706)2 = 2.91, if no measurements are available

R(0) refers to the whole 2 GHz band, as the astronomical calibration is performed on this band,
irrespective of the portion observed in the TFB. It should be noted that, while it is always R(0) =< S(ν) >
in time division mode, this is not true in general in frequency division mode, as R(0) refers to the whole
2 GHz bandwidth that in general is not completely observed. Therefore it is no more true, in general,
that the average of a normalized ACF spectrum is unity.

The resulting ACF and CCF spectra are at this point consistent with the spectra acfSpecantI(freq)
and ccfSpecantI,antJ(freq) defined in equations (7) and (8) in Scott[11].
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9 Summary

Summarizing the data processing, it is composed of the following steps:

1. Normalization of the raw lags L(τ) to obtain the uncorrected :

R4(τ) = Nm(L(τ) − Vs)/Vs

where Vs = NmVs16msNpNd is the correlator bias, Nm = 9 for 2 bit quantization and 225 for 3 and
4 bit quantizations, Np is the number of correlator planes co-added, Vs16ms = 17539.65625 is the
bias for a single correlator dump, and Nd is the number of dumps in an integration cycle.

2. Total power measurement: for each autocorrelation, R4(0) is used to derive σ for each antenna and
each sub-channel

3. 2 (or 4) bit quantization correction: a table of R4 vs. ρ is calculated using the values of σ of the
two antennas computed in step 2. The table may be computed once for repeated integrations with
the same physical conditions. The table is computed using relation 8for ρ < 0.2 and relation 5 for
ρ > 0.2. For ρ < 0 symmetry is exploited.

4. R(τ) is computed form R4(τ) using either eq. 8 or spline interpolation.

5. R(τ) is Fourier transformed to S(ν), using half channel shift and with the normalization convention
that 〈S(ν)〉 = R(0)

6. Bandshape is corrected using the procedure described in chapter 5

7. Sub-channels are stitched together, copying them on a larger composite (hybrid) spectrum, Sh
8 (ν)

8. The spectrum is corrected using either the algorithm of chapter 7.1, or the linear relation Sh(ν) =
aSh

8 (ν) − b. a is given by equation 21. b is zero for CCF, and b = R(0)− aR8(0) for ACF. R8(0) is
measured using the digital total power de tector in the TFB.

9. Each ACF is normalized by dividing it by R(0). The CCF between antennas i and j are normalized
by dividing them by

√

Ri(0)Rj(0). The resulting spectra are consistent with quantities acfSpecantI

and ccfSpecantI,antJ defined in equations (7) and (8) in [11].

Steps 6–9 are taken only for frequency division mode. For time division mode, step cw910 immediately
follows step 5.

The quantities R(0) (not the uncorrected R4(0), that depend on the quantization scheme adopted)
are stored with the data.

All the subsequent processing follows the procedures in [11], from equations (9) on.

A FFT routine for modified frequency sampling

From [2], Appendix A
Many routines have been proposed in the literature to efficiently Fourier transform a real sequence.

Given a sequence g(τ), of length 2N , it is possible to obtain its spectrum in N + 1 frequency points
νj = j∆ν, j = 0 . . .N , using a discrete Fourier transform of length N . A similar approach can be used to
obtain the spectrum at the N points νj = (j + 1/2)∆ν, j = 0 . . . (N − 1).

We will follow the algorithm described in Numerical Recipes[10], with the appropriate modifications.
Let the real function to be transform be:

gk = g(k∆τ) k = −N . . . (N − 1) (24)

In our specific case, gk is the cross correlation product, computed for negative and positive lags. Due
to the cyclic nature of the DFT, it is assumed that gN = g−N , that is not true. The effects of this
misassumption are not considered here.
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We follow the convention of denoting the Fourier transform of a function with the corresponding
uppercase letter. In this appendix, however, we always use the modified Fourier transform computed on
the set of points νj as specified above.

We want to compute the function Gj :

Gj = G ((j + 1/2)∆ν) j = 0 . . . (N − 1)

We have ∆ν = 1/(2N∆τ). The function Gj is hermitian, G−j−1 = G∗

j . Using the function expi(x) =
exp(2πix), we have

Gj =

N−1
∑

k=−N

gk expi

(

k(j + 1/2)

2N

)

=

N−1
∑

k=−N

[

gk expi

(

k

4N

)]

expi

(

jk

2N

)

(25)

Now let h2k = g2k + ig2k+1, that is, we pack two successive samples as the real and imaginary part of
a complex sample. In this way we obtain a complex sequence of length N (instead of 2N). Transforming
this sequence we obtain the function:

Hj =

N/2−1
∑

k=−N/2

g2k expi

(

k

2N

)

expi

(

jk

N

)

+i

N/2−1
∑

k=−N/2

g2k+1 expi

(

k

2N

)

expi

(

jk

N

)

= H1
j + H2

j

The first member is hermitian, since it is the Fourier transform of a real function, while the second is
anti-hermitian, due to the coefficient i:

H1
j = H∗1

N−j−1 H2
j = −H∗2

N−j−1

Using these properties, one can separate the two parts, and combine them to recover Gj :

Gj =
1

2

[

(

Hj + H∗

N−j−1

)

− i expi

(

2j + 1

4N

)

(

Hj − H∗

N−j−1

)

]

(26)

Using existing routines for DFT, the algorithm to be used to transform the real sequence gk of length
2N is therefore:

1. Group consecutive real samples as the real and imaginary part of complex samples, obtaining a
complex sequence hk of length N

2. Multiply the sequence hk by the complex factor expi(k/2N)

3. Apply a standard DFT algorithm, obtaining the function Hj

4. Use relation 26 to obtain Gj

A computer routine to implement this algorithm is listed below. It is heavily based on the correspond-
ing Numerical Recipes routine, and written in C++ (to use complex data type). The routine four1()

performs a complex FFT in place.

// Real input (two sided, size 2n),

// complex output (size n)

// Modified version, with N output points equally spaced

// across bandwidth. s1[i] represents frequency (2i+1)/2N

// If sign==-1, s1 is input and s is output
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void realft1(double s[], int n, complex s1[], int sign)

{

double theta=M_PI/(double)n, c1=0.5,c2, wtemp;

complex h1,h2,w,wp;

const complex i(0.,1.);

int i1,i2,j,n2=n/2;

wtemp=sin(0.5*theta);

wp=complex<double>(-2.0*wtemp*wtemp, sin(theta)); // exp(2*pi*i/2n) - 1

w=complex(1.0, 0.0);

if (sign == 1) {

c2 = -0.5;

for(j=i1=0; j<n2; ++j) {

s1[j]=complex(s[i1], s[i1+1])*w*0.5; // phase slope to shift

i1+=2; w+=w*wp; // 1/2 channel

}

w=-w;

for(j=n2; j<n; ++j) { // the same for neg. times

s1[j]=complex(s[i1], s[i1+1])*w*0.5;

i1+=2; w+=w*wp;

}

four1(s1,n,1);

} else {

c2=0.5;

theta = -theta;

wp=conj(wp);

}

w=exp(complex(0., 0.5*theta));

for (i1=0; i1<n/2; ++i1) {

i2=n-1-i1;

h1=c1*(s1[i1]+conj(s1[i2]));

h2=c2*i*w*(s1[i1]-conj(s1[i2]));

s1[i1]=h1+h2;

s1[i2]=conj(h1-h2);

w+=w*wp;

}

if (sign == -1) {

four1(s1,n,-1);

w=2.0;

for (j=i1=0; j<n2; ++j) { // Correct phase offset

s1[j] *= w;

s[i1++]=real(s1[j]); s[i1++]=imag(s1[j]);

w+=w*wp;

}

w=-w; // The same for neg. times

for (j=n2; j<n; ++j) {

s1[j] *= w;

s[i1++]=real(s1[j]); s[i1++]=imag(s1[j]);

w+=w*wp;

}

}

}
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B Calculation of the correction table from the filter tap coeffi-

cients

The correction table used for bandshape correction (chapter 5) depends on the spectral response of each
individual spectral point, i.e. on the output of each spectral point to a tone at a particular frequency at
the TFB input. For semplicity, we neglected the effect due to the frequency conversion in the mixer, and
considered just the response of the two stage filter, the decimation process, and the Fourier transform.

The overall scale factor of the signal processed by the tunable filter depends on details in the hardware
implementation, as the number of bits retained after each processing stage. These are discussed in detail
in [4].

The filter spectral response depends on:

• the filter tap coefficients used in the two FIR filters

• the number of lags in the correlator

• the tapering function used in the FFT routine

The sensitivity of the response to the adopted tapering function is modest, but not negligible. The
error involved in choosing a different one is of the order of a few % in amplitude, increasing near the
sub-channel edges.

For an ideal, non decimated, spectrometer, the response of the spectral point with nominal frequency
ν0 would be just the product of the individual responses, that can be obtained by Fourier transform the
tap coefficients of the filters and the tapering function. The response of the filters must be squared, as
they act on the electric field representation. The transform of the tapering function, T (ν) must not be
squared, as it is applied on power data, and must be centered on ν0.

The decimation process, and the fact that the Fourier transform is computed on discrete lags spaced
∆τ = 1/2B, introduces two effects:

• Signals at frequency ν + 2kB and ν are aliased at frequency ν. Those referring to the reversed
bands have coniugate phase.

• The discrete Fourier transform is cyclic, with period 2B. This causes also the tapering function to
be aliased. In particular, the a channel at frequency ν0 can be described by a direct component,
T (ν−ν0), and a reversed one, T (ν−2B+ν0). The response to the real part of the Fourier transform
is given by the sum of the two parts, while the response to the imaginary part is given by their
difference.

The two effects combine together in producing a direct and reverse responses, given by:

A+(ν, ν0) = F (ν − B/2)

∞
∑

k=−∞

T (ν − ν0 + 2kB) (27)

A−(ν, ν0) = F (ν − B/2)
∞
∑

k=−∞

T (ν + ν0 + 2kB) (28)

where A+ has direct phase, and A− coniugated phase. The total response to the real and imaginary
component of the signal are given by

Ar(ν, ν0) = A+(ν, ν0) + A−(ν, ν0) (29)

Ai(ν, ν0) = A+(ν, ν0) − A−(ν, ν0) (30)

The individal tapering response, T (ν), is computed on the discrete representation of the sampling
function, evaluated for τ = n∆τ . T is identically zero for |ν| > B, and its cyclic nature (with period 2B)
is represented by the infinite sum: only one term of the sum is nonzero for any given frequency ν. If it
has to be computed analytically, instead that using a discrete Fourier transform, it is defined for any ν,
and the sum must be carried on explicitly.
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The filter response F (ν) can be computed by direct FFT of the filter tap coefficients of the two filters
in the TFB. The two responses must be multiplied together, considering that, due to down-sampling, the
frequency scale for the first filter must be 32 times that for the second filter, and the response for this
latter must be repeated 32 times to fill the whole 2 GHz band. The filter response has to be shifted by
B/2 due to the processing in the TFB: there the complex signal is filtered by a filter of band B/2, and
converted to real by upconverting it by B/2. Both F (ν) and T (ν) are real, and even, so they can be
computed only for ν ≥ 0.

For practical purposes, F (ν) is zero for |ν| > B, even considering a very large transition band. In the
TFB it is suppressed by 50 dB or more, so it gives a negligible contribution to the overall signal, even if
in principle it is not exactly zero. This means that the two sums in 27 and 28 can be performed only for
k = [−1, 0, +1] and k = [0, 1] respectively.

For increased resolution, the FFT can be computed with a much larger frequency grid. Interpolation
of F (ν) and T (ν) can be performed by zero-padding the corresponding functions in the time domain.
The ratio of the frequency grid to the spectral point spacing is denoted as ( oversampling factor), and is
in the range 4–16.

Integrating these quantities, and assuming that the tapering response has been normalized in order to
have unitary integral, the response of the spectral point centered on ν0, and its first moment (frequency
offset) are given by:

a(ν0) =

∫ 3B/2

−B/2

A(ν, nu0)dν (31)

m(ν0) =
1

a±

∫ 3B/2

−B/2

(ν − ν0)A(ν, ν0))dν (32)

Both quantites must be computed separately for the real and imaginary parts of the signal, using Ar

and Ai respectively.
To prevent rounding errors accumulation due to the large number of computations involved, it is

essential to compute the above integrals using double precision quantities. The resulting response can be
rounded and stored at single precision, if this is sufficient for the calibration accuracy.

B.1 Program implementation

A program has been written to numerically compute these quantities, given the filter tap coefficients,
number of correlator lags, and tapering function.

The program runs from command line and accepts the follwoing parameters:

• Total decimation factor after the second filter (32 or 64), corresponding to a final bandwidth of 62.5
and 31.25 MHz, respectively. The decimation between the first and the second filter is hardcoded
as 32

• Number of lags in the correlation function (single sided, i.e.r positive lags only)

• Oversampling factor, i.e. the number of frequency points in each correlator resolution element used
to compute the integrals.

• Tapering function, identified by a numeric code. Codes are listed in table 2

• File names for file containing filter tap coefficients, resp. for the TFB first and second stage filters

The program produces a file name filt <nl> <dd> <taper>.cal, where np is the number of lags,
dd is the decimation, and the tapering is identified by a 5 letter acronym, listed in table 2. The file
format is binary, with the first 3 words representing 32 bit integers, respectively for the decimation
factor, the number of channels and the tapering code. Following words, in groups of np 32 bit floating
point quantities each, specify the parameters ar, ai, mr and mi for each spectral point.
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The oversampling factor determines the numerical accuracy of the integrals. It has been determined
empirically, by increasing it until the results stop changing. For single precision results, a factor of 8 is
adequate for all and 4 is sufficient for np greater than 256.

The tapering functions implemented in ALMA are summarized in table 2. They correspond to the
tapering functions defined in chapter 4.

Code Acronym Tapering function
0 welch Welch
1 bartl Bartlett
2 black Blackmann
3 bl ha Blackmann-Harris
4 hanni Hanning
5 hammi Hamming
6 unifo Uniform

Table 2: Tapering functions, and associated numeric codes and acronyms
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C.2 Glossary

channel The frequency interval chosen by one IF processor

sub-channel The frequency interval chosen by each FIR filter in the tunable filterboard

Correlation function The time averaged product of two signals xi and xj : Rij =< xix
∗

j >. The
signals may be continuous, or quantized to a limited number of levels

Correlation coefficientρ: The correlation product normalized by the RMS amplitude of the two
signals xi and xj : ρ =< xix

∗

j > /σiσj By definition, ρ = 1 for the zero-lag autocorrelation function

Correlation raw lags L(τ): The raw counts provided by the correlator

Quantization correction The function that translates the quantized correlation product to the cor-
relation product (or correlation coefficient) of the two original unquantized signals.
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C.3 Acronyms

ACF Autocorrelation function

CCF Cross-correlation function

CF Correlation function (either ACF or CCF)

FDM Frequency division mode

LTA Long term accumulator

STA Short term accumulator (inside correlator chip)

TDM Time division mode

TFB Tunable filterbank

C.4 Mathematical symbols and definitions

The following symbols are used in the text (in order of use):
L(τ) Raw correlation lags
Vs Bias in L(τ)
tint Integration time in milliseconds
tdump Time between correlator chip dumps, in milliseconds
Np Number of co-added planes
Nc = tint/tdump Number of correlator dump cycles
R4(τ) Correlation function (either ACF or CCF) quantized to 4 levels
R(τ) Correlation function corrected for quantization
ρ(τ) = R(τ)/σ1σ2 Correlation coefficient
σ RMS of unquantized signal expressed in units of the quantization step.
σ4 RMS of 2-bit, 4-level quantized signal
l = 1/σ Quantization step in units of the RMS signal
P (x1, x2, ρ) Normal bivariate distribution
L(l1, l2, ρ) =

∫

∞

l1

∫

∞

l2
P (x1, x2, ρ) dx1dx2 Cumulative bivariate distribution

S(ν) Power spectrum. Is the FT of R(τ), with 〈S(ν)〉 = R(0)
For the Tunable Filterbank:
Si(ν) Power spectrum of sub-channel i, corrected for bandshape and gain
Sh

8 (ν) Hybrid spectrum, quantized to 8 bit
Sh(ν) Hybrid spectrum, after quantization correction
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