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Abstract 

We have analytically derived sensitivity changes depending as a function of FFT segment overlap 

in conventional FX-architecture correlators. The Atacama Compact Array correlator (ACA 

Correlator) in Atacama Large Millimeter/submillimeter Array (ALMA) is one of the FX-

architecture correlators, which computes 220-point Fast Fourier Transform (FFT) of 4 GSps digital 

data every 250 s while overlapping FFT segments with neighboring segments by 48576 samples 

(= 220-sample – 4 GSps  250 s). The FFT segment overlap was introduced to ensure that the 1 

ms integration duration required by ALMA is a multiple of the FFT operating interval. The overlap 

increases the number of data combinations in the FFT, but it also introduces noise from the overlap 

regions. This indicates that the sensitivity may depend on the overlap. In this memo, we present 

an analytical estimate of the sensitivity changes depending on the overlap of FFT segments and 

verify the estimate with computational simulation. 

1. FFT segment overlap of ACA Correlator 

FX-architecture (see Section 8 of [1]) is one of the spectroscopy methods of astronomical signals, 

and the term “FX” is derived from the computational order of the Fourier transform (F) and 

multiplication (X). In the FX method, the Fourier transform is applied to astronomical signals, 

and the resulting Fourier products are multiplied by themselves for auto-correlation and by others 

for cross-correlation. Conventional FX-architecture correlators offer flexible spectral 

configuration, as they are designed to calculate Fourier products at the highest frequency 

resolution and output the required multiple frequency ranges with the necessary frequency 

resolution by selecting and accumulating the highest frequency resolution spectra. On the other 

hand, it requires more computing and networking resources to achieve the processing of the 

Fourier transform, which requires 𝑁 logଶ 𝑁 complex multipliers for the N-point Fast Fourier 

Transform, and the distribution of Fourier products for auto/cross-correlation. However, the rapid 

growth of digital technology, particularly the development of processing units such as FPGA and 
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GPU along with high-speed Ethernet, has led to the widespread adoption of the FX method for 

correlators and spectrometers in radio astronomy. 

Atacama Large Millimeter/submillimeter Array (ALMA) consists of 12-m Array and Atacama 

Compact Array (ACA). The ACA is composed of Total-Power and 7-m Arrays, which take total 

power and short baseline data for high fidelity imaging in ALMA. ACA Correlator [2] was a FX-

architecture correlator, which was responsible for calculating auto and cross correlation spectra 

of 3-bit 4 GSps digitized receiver signals from ACA. For the compatibility with ALMA Correlator 

[3] for the 12-m Array, the switching base time of 16 ms in the Walsh switching by 90-degree, 

and timing critical command executions every 48 ms, ACA Correlator was required to output 

correlation data with an integration time of 1 ms or 16 ms, depending on the combination of auto 

and cross correlation. Since ACA Correlator employed FX-architecture with FFT segment length 

of 220(=1048576)-sample corresponding to 262.144 s, it overlapped FFT segment with 

neighboring segments by 48576 samples and computed 220-point FFT every 250 s ( ൌ

ሺ1048576 െ 48576ሻ 4 GSps⁄ ) to realize the integration durations of 1 ms and 16 ms. The overlap 

can improve the sensitivity of the correlator by increasing the total number of individual data 

combinations in the FFT. On the other hand, the sensitivity can be reduced due to additional noise 

from the overlap regions. Thus, we have analytically estimated the sensitivity changes depending 

on the overlap of FFT segments within a certain time. The analytical results are presented in 

Section 2 and, for the purpose of confirmation, are compared with computational simulation in 

Section 3. 

2. Analytical estimates of the sensitivity changes depending on FFT segment 

overlap 

We consider the effect of the FFT segment overlap on signal and noise levels in the lag domain 

in a manner analogous way to Section 8.8.5 of [1] and estimate signal-to-noise ratios (SNRs) as 

a function of the overlap. Two simple cases are considered in the estimation. The first is a line 

processing case (hereafter, line observation), where a signal is almost in a spectral channel of the 

FFT such as a very narrow emission line less than the channel resolution. In this case, all of lag 

components contribute to both signal and noise in the lag domain. The second is a continuum 

processing case (hereafter, continuum observation), in which a signal shape is flat in the spectral 

domain, such as continuum emission. Different from the line observation, the correlation function 

is a delta-Dirac function in this case, and only zero-lag components contribute to signal and noise. 

Then, the SNRs of the two cases can be derived by dividing the signal level by the noise level in 

the lag domain. 

The SNRs with and without FFT segment overlap are compared under the condition of same time-

series data lengths, corresponding to same observation durations. The following symbols are 
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defined to represent the data length and the FFT segment overlap. 

 

𝑛ிி் : Number of FFT points
𝑁 : Number of FFT segments without FFT segment overlap
𝑓 : FFT segment overlap factor ሺ0 ൑ 𝑓 ൏ 1ሻ

 

 

The FFT segment length is defined as “1” for the purpose of simplicity, and the total data length 

is denoted as “1N” as shown in Figure 1. The FFT segment overlap factor f specifies the overlap 

fraction of two FFT segments, where f=0 corresponds to no overlap of neighboring FFT segments, 

and f=0.5 indicates that a half of a segment overlaps with a neighboring segment. The FFT 

segment overlap factor f and the number of FFT segments at FFT segment overlap factor f are 

defined as follows: 

 

𝑓 ≝
𝑛

𝑛ிி்
 

where n is the number of overlapped samples between two neighboring FFT 

segments 

(1)

 𝑁௙ ≝
𝑁 െ 𝑓
1 െ 𝑓

 (2)

 

1

f1 f

f

...

... N FFT segments

Nf FFT segments

 

Figure 1. Number of FFT segments at a certain time length. 

Total data length is N FFT segments. This corresponds to Nf FFT segments at the FFT 

segment overlap factor f. 

 

Signal and noise levels of a FFT segment are denoted as s and , respectively. 

𝑠 : Signal level of a FFT segment
𝜎 : Noise level of a FFT segment  
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Then, SNR is represented as below in the case of N FFT segments without FFT segment overlap. 

 SNR ൌ
𝑁 ∙ 𝑠

√𝑁𝜎
ൌ √𝑁

𝑠
 σ 

 (3)

 

[Signal level] 

The total signal level simply depends on the actual number of FFT segments. It is calculated by 

multiplying the signal level of a single FFT segment with the actual number of FFT segments as 

shown below. This applies to all overlap factors. 

 𝑁௙𝑠 (4)

2.1. Number of simultaneous overlaps = 2 (0<f1/2) 

First, we consider the case that the number of simultaneous overlaps is 2, corresponding to 

0<f1/2 as shown in Figure 2. 

1

1f

1

1

0

f

f

additional noise variance
2(f 2 ) for line, 2(f ) for cont

signal level = s, noise level = 

Lag

f

N FFT segments

Nf FFT segments

...

...

1

# of samples

f

 

Figure 2. Number of simultaneous overlaps = 2. 

Neighboring FFT segments are overlapped by the overlap factor f. The overlap regions of 

FFT segments are hatched in grey. In the lag domain, the overlap region corresponds to the 

hatched area in the lower triangle. 

 

Here, we estimate only noise level because signal level is already calculated as denoted in Eq. (4). 
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[Noise level] 

Noise in FFT segment overlap regions is added twice, suggesting that the noise components in 

these regions are not independent and behave like signals. For the line observation, each of the 

overlap regions, which are hatched in Figure 2, contains 𝑓ଶ  data, corresponding to a noise 

variance of 𝑓ଶ𝜎ଶ in the lag domain. Since there are ൫𝑁௙ െ 1൯ overlap regions, the total noise 

variance is additionally increased by 2൫𝑁௙ െ 1൯𝑓ଶ𝜎ଶ . On the other hand, in the case of the 

continuum observation, there are 𝑓 data corresponding to the noise variance of 𝑓𝜎ଶ because 

only data at zero-lag contributes to it. The total noise variance is increased by 2൫𝑁௙ െ 1൯𝑓𝜎ଶ. 

These values are additionally added to 𝑁௙𝜎ଶ, which comes from the total number of samples. 

Hence, the noise levels for the line and continuum observations are represented by Eq. (5) and Eq. 

(6), respectively. 

 𝜎line ൌ ට𝑁௙ ൅ 2൫𝑁௙ െ 1൯𝑓ଶ  ∙ 𝜎 (5)

 𝜎cont ൌ ට𝑁௙ ൅ 2൫𝑁௙ െ 1൯𝑓  ∙ 𝜎 (6)

 

[Signal-to-noise ratio] 

The SNR is simply represented by the division of the signal level Eq. (4) with the noise level Eq. 

(5) or Eq. (6).  

SNR in the line observation 

 
SNRline ൌ

𝑁௙

ට𝑁௙ ൅ 2൫𝑁௙ െ 1൯𝑓ଶ

∙
𝑠
𝜎

 
(7)

SNR in the continuum observation 

 
SNRcont ൌ

𝑁௙

ට𝑁௙ ൅ 2൫𝑁௙ െ 1൯𝑓
∙

𝑠
𝜎

 
(8)

2.2. Number of simultaneous overlaps = 3 (1/2<f2/3) 

Next, we consider the case that the number of simultaneous overlaps is 3, corresponding to 

1/2<f2/3 as shown in Figure 3. 

 



NAOJ-ALMA-ENG-0017-A 

2025-07-28 

 

6 
 

1

1

1

0 f
Lag

# of samples

1f 1f

2f1

additional noise variance #2
2(2f1)2  for line, 2(2f1)  for cont

2f1

f

...

...

signal level = s, noise level = 

N FFT segments

Nf FFT segments

additional noise variance #1
2(f 2 ) for line, 2(f ) for cont

01

f

2f1

 
Figure 3. Number of simultaneous overlaps = 3. 

Up to three FFT segments simultaneously overlap. The overlap regions are hatched in grey 

and red in the time and lag domains as well as Figure 2. 

 

[Noise level] 

Additional noise (denoted as additional noise variance #1 in Figure 3) from overlap regions of 

two FFT segments is calculated in the same way as described in Section 2.1. The noise variances 

are 2൫𝑁௙ െ 1൯𝑓ଶ𝜎ଶ and  2൫𝑁௙ െ 1൯𝑓𝜎ଶ for the line and continuum observations, respectively. 

In addition, there are ൫𝑁௙ െ 2൯ overlap regions of three FFT segments. The additional overlap 

introduces more noise variances (denoted as additional noise variance #2 in Figure 3) by 

2൫𝑁௙ െ 2൯ሺ2𝑓 െ 1ሻଶ𝜎ଶ for the line observation and 2൫𝑁௙ െ 2൯ሺ2𝑓 െ 1ሻ𝜎ଶ for the continuum 

observation. Hence, the noise levels for the line and continuum observations are represented by 

Eq. (9) and Eq. (10), respectively. 

 𝜎line ൌ ට𝑁௙ ൅ 2൫𝑁௙ െ 1൯𝑓ଶ ൅ 2൫𝑁௙ െ 2൯ሺ2𝑓 െ 1ሻଶ ∙ 𝜎 (9)

 𝜎cont ൌ ට𝑁௙ ൅ 2൫𝑁௙ െ 1൯𝑓 ൅ 2൫𝑁௙ െ 2൯ሺ2𝑓 െ 1ሻ ∙ 𝜎 (10)

 

[Signal-to-noise ratio] 
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The SNR is obtained by dividing the signal level Eq. (4) with the noise level Eq. (9) or Eq. (10) 

as well as Section 2.1. 

SNR in the line observation 

 
SNRline ൌ

𝑁௙

ට𝑁௙ ൅ 2൫𝑁௙ െ 1൯𝑓ଶ ൅ 2൫𝑁௙ െ 2൯ሺ2𝑓 െ 1ሻଶ

∙
𝑠
𝜎

 
(11)

SNR in the continuum observation 

 
SNRcont ൌ

𝑁௙

ට𝑁௙ ൅ 2൫𝑁௙ െ 1൯𝑓 ൅ 2൫𝑁௙ െ 2൯ሺ2𝑓 െ 1ሻ
∙

𝑠
𝜎

 
(12)

2.3. Number of simultaneous overlaps = 4 (2/3<f3/4) 

Similarly, we consider the case that the number of simultaneous overlaps is 4, corresponding to 

2/3<f3/4 as shown in Figure 4. 

1

1

1

0 f

additional noise variance #1
2(f 2 ) for line, 2(f ) for cont

Lag

3f2

additional noise variance #2
2(2f1)2  for line, 2(2f1)  for cont

2f1

3f2

f

...

additional noise variance #3
2(3f)2  for line,
    2(3f)  for cont

3f2

signal level = s, noise power = 

N FFT segments

1f 1f

# of samples

01

Nf FFT segments

...1f

f

2f1

 
Figure 4. Number of simultaneous overlaps = 4. 
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Up to four FFT segments overlap. The overlap regions are hatched in grey, red, and green as 

well as Figure 2. 

 

[Noise level] 

Additional noise is calculated in the same way as described in Section 2.1 and Section 2.2. In this 

case, there are ൫𝑁௙ െ 3൯ regions, where four FFT segments are overlapped as shown in Figure 

4, in addition to two-segment and three-segment overlap regions. The four-segment overlap 

regions add noise variances (denoted as additional noise variance #3 in Figure 4) of 

2൫𝑁௙ െ 3൯ሺ3𝑓 െ 2ሻଶ𝜎ଶ   and 2൫𝑁௙ െ 3൯ሺ3𝑓 െ 2ሻ𝜎ଶ  in the line and continuum observations, 

respectively. Hence, the noise levels for the line and continuum observations are represented by 

Eq. (13) and Eq. (14), respectively. 

 𝜎line ൌ ට𝑁௙ ൅ 2൫𝑁௙ െ 1൯𝑓ଶ ൅ 2൫𝑁௙ െ 2൯ሺ2𝑓 െ 1ሻଶ ൅ 2൫𝑁௙ െ 3൯ሺ3𝑓 െ 2ሻଶ  ∙ 𝜎 (13)

 𝜎cont ൌ ට𝑁௙ ൅ 2൫𝑁௙ െ 1൯𝑓 ൅ 2൫𝑁௙ െ 2൯ሺ2𝑓 െ 1ሻ ൅ 2൫𝑁௙ െ 3൯ሺ3𝑓 െ 2ሻ  ∙ 𝜎 (14)

 

[Signal-to-noise ratio] 

The SNR is obtained by dividing the signal level Eq. (4) with the noise level Eq. (13) or Eq. (14). 

SNR in the line observation 

 

SNRline 

ൌ
𝑁௙

ට𝑁௙ ൅ 2൫𝑁௙ െ 1൯𝑓ଶ ൅ 2൫𝑁௙ െ 2൯ሺ2𝑓 െ 1ሻଶ ൅ 2൫𝑁௙ െ 3൯ሺ3𝑓 െ 2ሻଶ 
∙

𝑠
𝜎

 (15)

SNR in the continuum observation 

 

SNRcont 

ൌ
𝑁௙

ට𝑁௙ ൅ 2൫𝑁௙ െ 1൯𝑓 ൅ 2൫𝑁௙ െ 2൯ሺ2𝑓 െ 1ሻ ൅ 2൫𝑁௙ െ 3൯ሺ3𝑓 െ 2ሻ
∙

𝑠
𝜎

 (16)

2.4. Number of simultaneous overlaps = F 

Finally, we consider the general case that the number of simultaneous overlaps is F. 

 

[Noise level] 

From the analysis of the cases of F=2, 3, and 4, it is evident that an additional term is included in 

the noise variance when F increased from p to p+1. 
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Additional noise variance in the line observation 

 ൛2൫𝑁௙ െ 𝑝൯ሼ𝑝ሺ𝑓 െ 1ሻ ൅ 1ሽଶൟ𝜎ଶ (17)

Additional noise variance in the continuum observation 

 ቄ2൫𝑁௙ െ 𝑝൯ሼ𝑝ሺ𝑓 െ 1ሻ ൅ 1ሽቅ 𝜎ଶ (18)

Then, the noise level is represented as follows: 

Noise level in the line observation 

 𝜎line ൌ ට𝑁௙ ൅ 2൫𝑁௙ െ 1൯𝑓ଶ ൅ 2൫𝑁௙ െ 2൯ሺ2𝑓 െ 1ሻଶ ൅ 2൫𝑁௙ െ 3൯ሺ3𝑓 െ 2ሻଶ ൅ ⋯ ∙ 𝜎 

 ൌ ඩ𝑁௙ ൅ ෍ 2൫𝑁௙ െ 𝑝൯ሼ𝑝ሺ𝑓 െ 1ሻ ൅ 1ሽଶ

ிିଵ

௣ୀଵ

∙ 𝜎 

 ൌ ඩെ𝑁௙ ൅ ෍ 2൫𝑁௙ െ 𝑝൯ሼ𝑝ሺ𝑓 െ 1ሻ ൅ 1ሽଶ

ிିଵ

௣ୀ଴

∙ 𝜎 (19)

Noise variance in the continuum observation 

 𝜎cont ൌ ට𝑁௙ ൅ 2൫𝑁௙ െ 1൯𝑓 ൅ 2൫𝑁௙ െ 2൯ሺ2𝑓 െ 1ሻ ൅ 2൫𝑁௙ െ 3൯ሺ3𝑓 െ 2ሻ ൅ ⋯ ∙ 𝜎 

 ൌ ඩ𝑁௙ ൅ ෍ 2൫𝑁௙ െ 𝑝൯ሼ𝑝ሺ𝑓 െ 1ሻ ൅ 1ሽ
ிିଵ

௣ୀଵ

∙ 𝜎 

 ൌ ඩെ𝑁௙ ൅ ෍ 2൫𝑁௙ െ 𝑝൯ሼ𝑝ሺ𝑓 െ 1ሻ ൅ 1ሽ
ிିଵ

௣ୀ଴

∙ 𝜎 (20)

 

[Signal-to-noise ratio] 

Finally, the SNR in the general case is represented as follows: 

SNR in the line observation 

 
SNRline ൌ

𝑁௙

ටെ𝑁௙ ൅ ∑ 2൫𝑁௙ െ 𝑝൯ሼ𝑝ሺ𝑓 െ 1ሻ ൅ 1ሽଶிିଵ
௣ୀ଴

∙
𝑠
𝜎

 
(21)

SNR in the continuum observation 

 
SNRcont ൌ

𝑁௙

ටെ𝑁௙ ൅ ∑ 2൫𝑁௙ െ 𝑝൯ሼ𝑝ሺ𝑓 െ 1ሻ ൅ 1ሽிିଵ
௣ୀ଴

∙
𝑠
𝜎

 
(22)



NAOJ-ALMA-ENG-0017-A 

2025-07-28 

 

10 
 

2.5. Sensitivity changes 

Figure 5 shows SNR plots represented by Eq. (21) and Eq. (22). In the line observation, the SNR 

simply increases with the FFT segment overlap factor f. This can be explained by increased 

number of individual combinations of data in FFT processing. On the other hand, in the continuum 

observation, the SNR is 1.0 when 1 𝑓⁄  is 𝑛 ሺ𝑛 ൅ 1ሻ⁄   ሺ𝑛 ൌ 0, 1, 2, … ሻ, otherwise it is lower than 

1.0. This SNR behavior in the continuum observation can be attributed to overlap ways of FFT 

segments. 

In the case that is 1 𝑓⁄ ് 𝑛 ሺ𝑛 ൅ 1ሻ⁄   ሺ𝑛 ൌ 0, 1, 2, … ሻ, FFT segments are overlapped with other 

segments with gaps. For example, at f=0.046, a segment overlaps with two neighboring segments 

at both 4.6% edges of the segment, and its remaining range never overlaps with the other segments. 

This unequal overlap results in unequal weights within FFT segments, which increase noise level. 

Furthermore, the overlap of FFT segments does not increase the number of independent zero-lag 

components. Consequently, the SNR is lower than 1.0 at 1 𝑓⁄ ് 𝑛 ሺ𝑛 ൅ 1ሻ⁄   ሺ𝑛 ൌ 0, 1, 2, … ሻ . 

For example, in the case of 0<f<1/2, Eq. (8) is expressed as below: 

SNRcont ൌ
√𝑁

ඥሺ1 െ 𝑓ሻሺ1 ൅ 2𝑓ሻ
∙

𝑠
𝜎

  ሺ𝑁 ≫ 1ሻ 

The denominator is 1 at f, . It is larger than 1 at f, and there is the maximum sensitivity 

loss occurs at f. 

In the case that is 1 𝑓⁄ ൌ 𝑛 ሺ𝑛 ൅ 1ሻ⁄   ሺ𝑛 ൌ 0, 1, 2, … ሻ, FFT segments overlap with each other 

without the presence of the gaps, and there is no difference in the number of overlaps within a 

given segment. Consequently, signal and noise components are equally accumulated in-phase by 

the overlaps. As a result, the SNRs remain at 1.0 in the case of 1 𝑓⁄ ൌ 𝑛 ሺ𝑛 ൅ 1ሻ⁄   ሺ𝑛 ൌ

0, 1, 2, … ሻ. 
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Figure 5. Sensitivity changes with the FFT segment overlap factor f. 

The upper and lower plots show the sensitivity changes for the line and continuum 

observations, respectively, depending on the FFT segment overlap factor f. The vertical 

dashed lines indicate f=1/2, 2/3, 3/4, 4/5, and 5/6, where the overlap number increases by +1. 

3. Computational simulation 

In the previous section, we have derived the two equations, Eq. (21) and Eq. (22), representing 

SNRs depending on the FFT segment overlap factor in the line and continuum observations. 

Figure 5 plots the SNR changes that correspond to sensitivity changes with the overlap factor. In 

this section, we estimate the sensitivity changes using the Monte Carlo method to verify Eq. (21), 
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Eq. (22), and Figure 5. 

Our calculation steps are as follows: 

Step 1. Two independent time-series data sets with Gaussian noise are generated computationally, 

each of which has a mean of 0.0 and a standard deviation of 0.8. Another time-series data set 

is added to them for three different cases, which are (a) line observation of a sin wave, (b) 

line observation of correlated Gaussian noise with a narrow-line spectrum, and (c) 

continuum observation of correlated Gaussian noise with a flat spectrum. 

The same FFT segment length of 1048576 (= 220) is adopted as that used by ACA Correlator, 

and the total data length of 419430400 corresponds to 400 FFT segments without FFT 

segment overlap. To ensure 𝑁௙ in Eq. (2) becomes an integer, the data length is slightly 

adjusted for each overlap factor. There are slight differences of less than 0.1 % in data lengths 

among the different overlap factors, but they are negligible in the estimate of the SNRs. 

Step 2. The time-series data are divided by the FFT segment length with segment overlap specified 

by the overlap factor. Then, auto- and cross-power spectra are calculated for each FFT 

segment and averaged over all segments. The cross-power spectra are normalized by the 

corresponding auto-power spectra to convert them to correlation coefficients. Additionally, 

spectral channel averaging by 1024-channel is applied in the continuum observation. 

Step 3. The signal and noise levels are estimated from the normalized cross-power spectra. 

Step 4. 100 spectra are calculated for each overlap factor of each case, and signal and noise levels 

derived from them are averaged to estimate a SNR. 

3.1. Line observation of a sine wave 

Figure 6 shows an example of cross-power spectra of a sine wave. A sine wave with an amplitude 

of 1.0 and a frequency of a quarter of FFT-point was adopted for use at Step 1 of the calculation 

steps. 

Table 1 presents the overlap factor f, number of overlaps, total number of samples, SNR, and SNR 

normalized by the SNR without FFT segment overlap (f=0). You can see that the normalized 

SNRs are well consistent with each other between the simulation and analytical results. This 

consistency is also evident in Figure 7, which plots the normalized SNRs of the simulation results 

on the normalized SNRs calculated from Eq. (21). 
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Figure 6. Cross-power spectra of a sine wave. 

(Upper) Amplitude and phase plots of a cross-power spectrum of the sine waves at the FFT 

segment overlap factor f=0. (Lower) Zoomed-in views of the sine spectrum of the upper 

plots. The spectral center is located at 262144-channel. A signal level is the peak amplitude, 

and a noise level is a standard deviation in the two ranges of [0 – 262127] and [262160 – 

524287] channels. 

 

Table 1. Comparison of the normalized SNRs between simulation and analytical 

results in the line observation toward a sin wave 

Overlap 

factor 

“f” 

# of 

overlaps 

# of 

FFT segments 

(total samples *1) 

[100] 

SNR

[102]

SNR[f]/SNR[f=0] 

Simulation
Analysis 

Eq. (21) 

0.000 1 400 (419430400) 4.313 1.000 1.000 
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0.046 2 419 (419048576) 4.405 1.021 1.022 

0.125 2 457 (419430400) 4.540 1.053 1.053 

0.250 2 533 (419430400) 4.695 1.089 1.089 

0.375 2 639 (419168256) 4.818 1.117 1.117 

0.450 2 726 (419168401) 4.905 1.137 1.137 

0.500 2 799 (419430400) 4.980 1.155 1.155 

0.560 3 907 (419053420) 5.050 1.171 1.171 

0.625 3 1065 (419430400) 5.101 1.183 1.183 

0.667 3 1197 (419081672) 5.139 1.191 1.192 

0.710 4 1376 (419169576) 5.174 1.200 1.200 

0.750 4 1597 (419430400) 5.201 1.206 1.206 

0.770 5 1735 (419242558) 5.213 1.209 1.209 

0.875 8 3193 (419430400) 5.261 1.220 1.220 

0.990 100 39900 (419429490) 5.281 1.224 1.224 

*1 The number of samples is slightly different depending on the FFT segment overlap factor. 

Since the differences are less than 0.1 %, the normalized SNRs listed in the table are little 

affected by them. 

 

 
Figure 7. Normalized SNRs of the simulation plotted on the line of normalized 

SNRs calculated from Eq. (21) in the line observation of a sine wave. 

The red boxes indicate the simulation results, and the solid line is the analytical result. The 

vertical dashed lines indicate f=1/2, 2/3, 3/4, 4/5, and 5/6, where the number of the overlap 

increases by +1. 
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3.2. Line observation of correlated Gaussian noise with a narrow-line spectrum 

Figure 8 shows an example of a cross-power spectrum of correlated Gaussian noise with a narrow 

spectrum. The narrow-line spectrum is generated by filtering Gaussian noise with a mean of 0.0 

and a standard deviation of 0.8 using a FIR bandpass filter and is used at Step 1 of the calculation 

steps. 

Table 2 lists comparison results between simulation and analytical results in the line as well as 

Table 1. The normalized SNRs are consistent between the two results as also shown in Figure 9. 

 

 

 

Figure 8. Cross-power spectra of correlated Gaussian noise with a narrow 

spectrum. 

(Upper) Amplitude and phase plots of the correlated Gaussian noise with a narrow spectrum 

at the FFT segment overlap factor f=0. (Lower) Zoomed-in views of the narrow spectrum of 

the upper plots. The spectral center is located at 297199-channel, and its FWHM is 22-

channel indicated by two dashed vertical lines. The amplitudes within the FWHM range are 
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averaged to estimate a signal level, and a noise level is a standard deviation in the two ranges 

of [0 – 296959] and [297472 – 524287] channels. 

 

Table 2. Comparison of the normalized SNRs between simulation and analytical 

results in the line observation toward correlated Gaussian noise with a narrow 

spectrum 

Overlap 

factor 

“f” 

# of 

overlaps 

# of 

FFT segments 

(total samples *1) 

[100] 

SNR

[102]

SNR[f]/SNR[f=0] 

Simulation
Analysis 

Eq. (21) 

0.000 1 400 (419430400) 1.854 1.000 1.000 

0.046 2 419 (419048576) 1.892 1.021 1.022 

0.125 2 457 (419430400) 1.951 1.052 1.053 

0.250 2 533 (419430400) 2.018 1.088 1.089 

0.375 2 639 (419168256) 2.070 1.116 1.117 

0.450 2 726 (419168401) 2.108 1.137 1.137 

0.500 2 799 (419430400) 2.139 1.154 1.155 

0.560 3 907 (419053420) 2.170 1.170 1.171 

0.625 3 1065 (419430400) 2.192 1.182 1.183 

0.667 3 1197 (419081672) 2.208 1.191 1.192 

0.710 4 1376 (419169576) 2.224 1.199 1.200 

0.750 4 1597 (419430400) 2.235 1.205 1.206 

0.770 5 1735 (419242558) 2.240 1.208 1.209 

0.875 8 3193 (419430400) 2.260 1.219 1.220 

0.990 100 39900 (419429490) 2.269 1.224 1.224 

*1 The number of samples are slightly different depending on the FFT segment overlap 

factor as well as Table 1. 
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Figure 9. Normalized SNRs of the simulation plotted on the line of normalized 

SNRs calculated from Eq. (21) in the line observation of correlated Gaussian noise 

with a narrow spectrum. 

The red boxes indicate the simulation results, and the solid line is the analytical result. The 

vertical dashed lines are same as those in Figure 7. 

3.3. Continuum observation of correlated Gaussian noise with a flat spectrum 

Figure 10 shows an example of a cross-power spectrum of correlated Gaussian noise with a flat 

spectrum. At Step 1 in the calculation steps, additional time-series data set of Gaussian noise with 

a mean of 0.0 and a standard deviation of 0.8 is used to generate correlated Gaussian noise with 

a flat spectrum, whose correlation coefficient is 0.5. 

Table 3 lists comparison results between simulation and analytical results in the continuum as 

well as Table 1. The normalized SNRs are consistent between the two results as shown in Figure 

11, which plots the normalized SNRs of the simulation results on the normalized SNRs calculated 

from Eq. (22). 
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Figure 10. Cross-power spectrum of correlated Gaussian noise with a flat 

spectrum. 

Amplitude and phase plots of the cross-power spectrum normalized by its corresponding 

auto-power spectra at the FFT segment overlap factor f=0. Signal and noise levels are 

estimated from mean and standard deviation of spectral amplitudes, respectively. 

 

Table 3. Comparison of the normalized SNRs between simulation and analytical 

results in the continuum observation. 

Overlap 

factor 

“f” 

# of 

overlaps 

# of 

FFT segments 

(total samples *1) 

[100] 

SNR

[103]

SNR[f]/SNR[f=0] 

Simulation
Analysis 

Eq. (22) 

0.000 1 400 (419430400) 6.076 1.000 1.000 

0.046 2 419 (419048576) 5.947 0.979 0.980 

0.125 2 457 (419430400) 5.814 0.957 0.956 

0.250 2 533 (419430400) 5.724 0.942 0.943 

0.375 2 639 (419168256) 5.813 0.957 0.956 

0.450 2 726 (419168401) 5.949 0.979 0.978 

0.500 2 799 (419430400) 6.075 1.000 1.000 

0.560 3 907 (419053420) 5.960 0.981 0.981 

0.625 3 1065 (419430400) 5.978 0.984 0.985 

0.667 3 1197 (419081672) 6.072 0.999 1.000 

0.710 4 1376 (419169576) 6.017 0.990 0.990 

0.750 4 1597 (419430400) 6.074 1.000 1.000 

0.770 5 1735 (419242558) 6.036 0.993 0.994 
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0.875 8 3193 (419430400) 6.074 1.000 1.000 

0.990 100 39900 (419429490) 6.074 1.000 1.000 

*1 The number of samples are slightly different depending on the FFT segment overlap 

factor as well as Table 1. 

 

 
Figure 11. Normalized SNRs of the simulation plotted on the line of normalized 

SNRs calculated from Eq. (22) in the continuum observation of correlated 

Gaussian noise with a flat spectrum. 

The red boxes indicate the simulation results, and the solid line is the analytical result. The 

vertical dashed lines indicate f=1/2, 2/3, 3/4, 4/5, and 5/6, where the number of the overlaps 

increases by +1. 

4. Summary 

We have analytically derived the equations representing the impact of FFT segment overlap on 

the sensitivity of FX-architecture correlators. The results indicate that an increase in the FFT 

segment overlap factor f leads to sensitivity improvement in the line observation. This is due to 

the increase in the number of independent combinations of time-series data as the overlap factor 

increases. In contrast, the sensitivity in the continuum observation remains 1.0 at 1 𝑓⁄ ൌ

𝑛 ሺ𝑛 ൅ 1ሻ⁄   ሺ𝑛 ൌ 0, 1, 2, … ሻ , otherwise it decreases. The continuum observation simply 

accumulates spectra in time and frequency, therefore, the FFT segment overlap does not increase 

the amount of information, and on the contrary, the overlap can increase noise due to unequally 

overlapped segments. We have also compared the analytical results with the simulation results 

calculated using the Monte Carlo method. The analytical and simulation results agree well with 
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each other, confirming that the equations represent the sensitivity changes depending on the FFT 

segment overlap. 

 

We would like to acknowledge the reviewer for constructive comments and suggestions which 

improve our paper. We are grateful to Satoru Iguchi for his constructive comments. 
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Appendix A Sensitivity comparison between FX and XF correlators 

We have compared sensitivity with spectral channel averaging between FX and XF correlators. 

In the comparison, SNRs of a FX correlator with FFT segment overlap factor f=0.990 are 

substituted for those of a XF correlator. It can be reasonably assumed that the data density of the 

FX correlator in the lag domain is approximately equivalent to that of a XF correlator, given that 

each FFT segment is well overlapped with neighboring FFT segments 100 times at f=0.990. 

 

 
Figure 12. Sensitivity comparison between FX and XF correlators depending on 

spectral channel averaging and FFT segment overlap without gaps. 

Red and orange boxes show the relative SNRs of the XF correlator (the FX correlator with 

f=0.990) and the FX correlator (f=0.500) against the FX correlator (f=0.000) indicated by a 

blue line, respectively, at each number of averaged channels. 

 

Figure 12 shows the relative SNRs between the FX and XF correlators as a function of the number 

of averaged channels, where correlated Gaussian noise with a flat spectrum is used to estimate 

the SNRs of each correlator. The plot for f=0.990 corresponding to the XF correlator is consistent 

with Figure 6 in ALMA Memo 350 [4] and approaches 1.0 as the number of averaged channels 

increases. The plot for f=0.500 is more closely aligned with the f=0.990 plot than the f=0.000 plot 

and approaches 1.0 at a larger number of averaged channels as well. These results indicate that 

the spectral channel averaging as well as the FFT segment overlap can improve the sensitivity of 

the FX correlator, approaching that of the XF correlator. For example, 2-channel averaging can 

increase the sensitivity by about 7% ሺ1 1.22⁄ → 1 1.14⁄ ሻ compared to non-channel averaging. 

On the other hand, the sensitivity improvement is about 15% using FFT segment overlap from 
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f=0.000 to f=0.500. The improvement by the spectral channel averaging can be explained by the 

fact that the channel averaging in the spectral domain is equivalent to multiplication of a sinc 

function in the lag domain. Since the sinc function narrows with an increasing number of averaged 

channels, the SNR is dominated by lag zero values, which are nearly equivalent to SNR in the 

continuum observation. 

 

 
Figure 13. Sensitivity comparison between FX and XF correlators depending on 

spectral channel averaging and FFT segment overlap with gaps. 

Boxes with different colors show the relative SNRs of the FX correlator with 

different overlap factors f=0.046, 0.125, 0.250, 0.450, and 0.770 against the FX 

correlator (f=0.000) indicated by a blue line at each number of averaged channels. 

 

In Figure 13, we additionally show the relative SNRs of the FX correlator with some of the overlap 

factors, where the normalized SNRs are less than 1.0 in Figure 11, as a function of the number of 

averaged channels. Figure 13 shows that the sensitivity can improve with the spectral channel 

averaging and/or FFT segment overlap as well as Figure 12, however, it also shows that wide 

channel averaging like the continuum observation can reduce the sensitivity as predicted from the 

discussion about the continuum observation in Section 2.5. 

 

Figure 14 summarizes the behaviors shown in Figure 12 and Figure 13. It plots the relative SNRs 

of the FX correlator with a segment overlap factor against the XF correlator at each number of 

averaged channels. The relative SNRs distribute between the red and blue lines corresponding to 

the line and continuum observations and basically approach to 1.0 at wider spectral channel 
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averaging and/or larger FFT segment overlap. 

 

 
Figure 14. Relative sensitivity of the FX correlator against the XF correlator. 

Lines and boxes show the relative SNRs of the FX correlator against the XF correlator (the 

FX correlator with f=0.990). Red and blue lines are the analytically derived relative SNRs 

for the line and continuum observations, respectively. Boxes in different colors indicate 

relative SNRs with different numbers of average channels (chAv=1, 2, 4, 16, 64, and 1024). 

 

 


