
FORTH 

An Application-oriented Language 

PROGRAMMER'S     GUIDE 

BY 

E.   D.   Rather.§  C.   H.   Moore 

National  Radio Astronomy Observatory 

$ 

Kitt Peak National  Observarory 

Honeywell   316   Version 



TABLE OF CONTENTS 

Introduction 

1. FORTH Programmer's Guide.   General discussion of FORTH. 

2. The FORTH Dictionary.   How it is organized, and how a 

dictionary entry is constructed. 

3. Stack Manipulation.   How the parameter stack is used; 

stack handling vocabulary and examples. 

4. FORTH Compiler. General rules for making : definitions; 

loops and conditionals. 

5. FORTH Interpreter. How the inner and outer interpreters 

handle words typed at the terminal, load blocks of FORTH 

source, compile and execute definitions. 

6. Nouns.  INTEGERS, CONSTANTS, and more elaborate nouns. 

7. Arithmetic.  Basic single-precision arithmetic;  14-bit 

8^.   The FORTH Assembler.  Assembler conventions;  action of 

the assembler and execution of assembled code;  interpreter 

returns;  stack modification;  macros. 

9.   Block I/O.  Tape and disk I/O, with suggestions for organ¬ 

izing data records. 

10. FORTH Programming.  Suggestions for organizing and testing 

an application vocabulary. 

11. Text Editor.  How to generate new blocks of FORTH source 

on tape or disk, and to modify existing blocks. 

After Word. 

Appendix A.  Basic FORTH vocabulary. 

Appendix B.  Listing of basic FORTH text. 

Appendix C.  Index to memory locations in object program 

and basic FORTH (both octal and decimal). 



INTRODUCTION 

The only way to learn any programming language or 

technique is by using it.  This is especially true of FORTH 

-- since it is inherently interactive, if you will spend an 

hour or two at a FORTH terminal it will instruct you as you 

use it.  If you wish to become a FORTH programmer, or only 

to become familiar with its advantages and disadvantages, 

we recommend that you follow these steps: 

1. Read this book. 

2. Look at the vocabulary lists summarized in Appendix A. 

3. Using these lists, the book and your computer manual, 

study the basic routines in blocks 3 - 10 in Appendix B. 

4. If possible, have a look at an example of a FORTH 

application. 

5. Sit down at a FORTH terminal and solve a few simple 

mathematical problems.  Work out a definition or two, type 

them in and test them. 

This book assumes you have had some programming experience 

Portions of it assume that you are familiar with the assembly 

language for your computer.  If you are not, you will need to 

keep your computer manual at hand ... perhaps you will want to 

study its basic instruction set before attempting to use FORTH. 
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FORTH PROGRAMMER'S GUIDE 

FORTH is a programming technique designed for real-time 

interactive computer applications, particularly for mini¬ 

computers.  In such an environment it offers several advantages 

over more conventional programming languages, such as FORTRAN, 

BASIC, and assembler language.  These advantages are summarized 

in Fig. 1.  The concept of a high-level language which is 

more core-efficient than assembler language, and very nearly 

as fast, may be a bit hard for you to get used to -- perhaps 

you will understand the basis for this claim as you become 

familiar with FORTH's structure. 

The minimum computer configuration for FORTH is shown in 

Fig. 2.  The applications for which FORTH has been used so far 

have included a radio telescope control system and several data 

collection systems.  Computers for which FORTH systems have 

been written include Honeywell DDP-116 and 316, NOVA 800, 

Varian 620i and 620f, and IBM 360-50.  Since all but the 360 

are 16-bit machines, this manual will assume a 16-bit word 

length. 

FORTH is a language.  It is structurally quite different 

from other languages, however.  To begin with, it has no 

separate compiler or assembler -- the routines that generate 

and execute machine instructions are always present in the 

FORTH computer, along with a small, fast interpreter and a 

sort of executive whose characteristics are determined by 

the specific application. 



LANGU'AGE ADVANTAGES DISADVANTAGES 

FORTRAN Familiar 
High-level 
Handles mathematical 
formulae well 

Good output formatting 
(messages) 

Separate compiler 
Separate loader 
Large program 
Slow program 
Cannot control special 
equipment 

Fast program 
Can control special 
equipment 

Separate assembler 
Separate loader 
Monolithic 
Inflexible 
Long listing 
Machine dependent 
Addressing problems 
Debugging aid needed 
Hard to evaluate 
mathematical formulae 
Poor I/O formatting 
Low level 

BASIC Interactive 
Somewhat machine 
independent 

Large program 
Very slow program 
Limited syntax 

FORTH Flexible 
Interactive 
Small program 
Fast program 
High and low level 
Extremely modular 
Somewhat machine 
independent 

Can control special 
equipment 

Define function?, on-line 
Number conversions easy 
(octal, sexagesimal, etc.) 

Includes own assembler 
compiler 
loader 
interpreter 

Unfamiliar 
Poor message formatting 
Somewhat hard to evaluate 
long mathematical 
expressions 

Fig.l  Language Comparisons 
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It seems to have 5 main elements that together comprise 

it.  Take away any one, and you have something that is not 

usefuX.  There is a.  synergistic effect among them that produces 

a remarkably powerful combination.  Many of the characteristics 

and capabilities of FORTH were (and some remain) a surprise to 

me. 

1.  Dictionary 

The key element, if one must choose, is the dictionary.  A 

FORTH program is 90% dictionary.  This, as implied by its name, 

is a collection of words together with their definitions.  We 

are trying to explain a problem to the computer, and do this by 

explaining what each of a number of words mean.  Thus it is a 

Man-to-Computer dictionary. 

A collocticn of words is ccnmcnly called a vccabulary. 

The dictionary defines a vocabulary for the computer.  Perhaps 

several distinct vocabularies.  Indeed, speaking of a FORTH 

program is sloppy, for FORTH is the program.  An application 

coded in FORTH is better called a vocabulary.  You load an 

editing vocabulary to edit text; an observing vocabulary to 

observe; etc.  The vocabulary is just that.  It is not a program 

for it can't stand alone.  It depends upon FORTH to do all the 

work and merely describes what must be done. 

Each defined word has an entry in the dictionary.  FORTH 

provides the mechanism for searching the dictionary, executing 

words, and defining new words.  These operations will be 

described in a moment. 
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2. Stack 

Another important and visible element of FORTH is a push¬ 

down stack for parameters.  Some words represent operations; 

operations find their parameters on the stack. 

In particular, numbers are placed on the stack; constants 

are placed on the stack; the addresses of variables are placed 

on the stack* results are placed on the stack. All this 

happens in a convenient and natural way, and provides an 

indispensible tool for describing algorithms. 

Another largely invisible stack is also important.  It is 

used to store return information for the interpreter. 

3. Code 

Some words are defined by code.  That means that they cause 

a sequence of computer instructions to be executed.  Such a word 

is similar to the name of a subroutine.  However the analogy is 

weak,"for it isn't a subroutine in the technical sense; nor do 

you think of it -- or use it -- as you would a subroutine. 

4. High level definitions 

Some words are defined in terms of other words.  Thus they 

are a sort of abbreviation.  However, again the analogy fails, 

for such definitions are much more powerful than the notion of 

abbreviation conveys.  In fact, perhaps 90% of the words in a 

vocabulary are definitions.  These are computer-independent. 

5. Blocks 

The final element of FORTH are its blocks -- chunks of 

secondary memory 1024 bytes (512 wojds) long.  A block may 
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contain source code -- the text that defines words; or it may 

contain the data that justifies the computer.  Whatever, it 

has been chopped into fixed-length chunks and assigned a 

number -- usually between 0 and 511.  You may load programs 

from blocks, or place data in blocks, as if the blocks were 

core.  FORTH provides the I/O required to access them auto¬ 

matically.  This form of virtual memory provides a very great 

service -- at a very small cost. 

Keyboard Input 

FORTH is a terminal-oriented language.  It demands the 

subtlety of expression that only a keyboard can provide.  A 

FORTH application may well have a vocabulary of several hundred 

words.  Of these, maybe 20 will be of direct interest to the 

The input that FORTH wants is simple: 

words separated by spaces. 

In order to permit changing your mind, and correcting errors, 

it recognizes: 

EOT to mark the end of a message. 

DEL to erase a letter. 

NUL to cancel a message. 

This is as simple a way to communicate as I can devise.  It 

does cause some trouble:  People may forget to type EOT 

fail to space between words, or don't know whether to spell the 

word 

GOODBY, GOODBYE, or GOOD-BYE. 

But these are just conventions that must be learned. 
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Internally, FORTH represents characters with 7-bit 

ASCII code and even parity.  This is an extremely important 

convention, as it permits effortless compatibility between com¬ 

puters.   If you have a non-ASCII device, the character-conversion 

cost is properly assigned to the device.   Likewise, parity is 

much easier to discard than create;  a non-parity device (teletype) 

should bear the cost of providing it. 

In the chapters to come we will discuss the basic 

elements of FORTH in more detail, and describe the process of 

developing a FORTH vocabulary for your application. 
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THE FORTH DICTIONARY 

The dictionary is a linked list of variable-length entries 

It grows toward high core, and each entry points to the one 

that proceeds it.  The beginning of the last entry is pointed 

to by the variable HEAD.  It identifies the head of the chain 

to be searched.  The end of the last entry -- the next avail¬ 

able word --is pointed to by the variable DP (Dictionary 

Pointer). 

The dictionary is searched by following the chain until 

a match is found, or the bottom reached.  This organization 

permits a word to be redefined, since the latest definition 

will be found first. 

As-Figure 3 shows, the dictionary can be rather naturally 

divided into three parts: 

The object program contains about 30 words from which 

all other words can be defined.  It is difficult, 

and normally unnecessary, to change these words. 

The FORTH vocabulary is compiled when you load FORTH. 

It -is common to all applications, and though you 

may change it as you wish, you probably won't. 

The application vocabulary contains those words peculiar 

to your application.  You will be changing, re¬ 

arranging and adding to this vocabulary continuously. 

From the point of view of the search algorithm, these 

vocabularies are indistinguishable. However, you can dis¬ 

tinguish them -- and other subvocabularies -- by being able to 
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FORTH Dictionary 

A compiled dictionary contains segments of logically related 
definitions, which in turn may be thought of.as divided into 
three major groups. 
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discard them.  For example, you might discard one application 

vocabulary and replace it with another. 

The essential structure of all dictionary entries is the 

same regardless of the type of entry (nouns, verbs, etc.).  The 

first two words contain the count of the number of characters 

and the first, three characters of the word.  Note that although 

this gives you far more flexibility in naming words than a simple 

limit on characters, it does require uniqueness in the first 

three characters of words of the same length.  Note also that 

any characters you can type on your terminal are valid for use 

in words being defined. 

The third word contains the location of the first word 

of the next previous entry.  This is to facilitate searches, 

which start at the "recent" end of the dictionary and work 

back.  This searching order is necessary in order that the 

most recent definition of a word will be the one used.  Also, 

since in a developed application  the user is dealing with 

the highest level of the program, it optimizes search time. 

The high order 2 bits of the link word contain a flag called 

"precedence":  It identifies a few special words, such as com¬ 

piler directives.  It is zero for most words. 

The forth word contains a pointer to the code to be 

executed for the definition.  This code address depends on 

the type of word: 

For a CONSTANT, the pointer refers to code that puts the 

value of the constant (which is in word 5 of the definition) 

on the stack. 
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For an INTEGER, it refers to code that puts the address 

of the value (again, word 5)  on the stack. 

For a : definition, it points to a portion of the inter¬ 

preter, which will begin following a string of addresses be¬ 

ginning in word 5 and continuing until the ; which terminated 

that definition is found. 

For CODE, the pointer is to word 5, which contains the 

beginning of the code, which is simply executed directly. 

Other kinds of entries have code addresses that point to 

the appropriate code. 

The fifth and subsequent words are sometimes called the 

"parameter field", which is of variable length.  CONSTANTS 

and INTEGERS keep their values in word 5, as noted above. 

latter cases, the length of the parameter field is either 

determined by the type of noun, or is kept in one of the early 

words in the field. 

Figure 4 shows a diagram of the dictionary entry format 

for 16-bit computers. Similar diagrams of specific types of 

entries will be found in subsequent chapters. 



STACK MANIPULATION 

An increasing number of computers and desk and pocket 

calculators nowadays base their logic on a parameter stack. 

FORTH has a parameter stack that increases toward low core. 

There is a pointer to the word holding the number currently 

"on top of the stack" called SP. 

To add a word to the stack, the pointer is decremented, 

and the number placed in that word.  To remove a word from 

the stack, the pointer is incremented. 

If you type a number on your terminal, the number will 

be converted to binary and placed on the stack.  Typing . 

(period or decimal point) will cause the binary number on 

top of the stack to be converted to numeric characters 

and printed on the terminal.  Most FORTH words expect one 

or more parameters on the stack (including words in the 

assembler), so you must make sure that they are there, and 

that they are in the proper order. 

Figure 5 shows the result of typing a sequence of words 

Recall that a word is "separated by spaces".  There are no 

special characters in FORTH, so that ? and §#$!<£ and 4th are 

all perfectly good words.  Several of these words deserve 

comment: 

is the replacement operator.  It expects 2 para¬ 

meters on the stack:  an address on top and a num¬ 

ber beneath.  It stores the number at the address. 



FORTH Stack 

Example You type: Action 

(1)   4 5-+ 4        Number 4 converted to binary 
and pushed on the stack. 

5        5 converted and pushed on 
the stack, over the 4, 

+        4 and 5 replaced by 9. 

(2)  17 X = 17       17 on the stack (over the 

X        Address of X (which was 
previously defined as an 
INTEGER) pushed on stack. 

17 stored in X; both 17 

from stack. 

(Remember 9 is still on 
the stack from Ex. 1) 

(3)   X §  * X        Address (X) pushed on 
stack. 

§        Address replaced by con¬ 
tents (17). 

*        9 and 17 replaced with 153. 

153 typed on terminal. 

Figure 5 
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Thus the FORTRAN statement 

X = 17 

in FORTH is 

17 X = 

6   is an operator that fetches a value.  It expects 

an address on the stack; it replaces it with the 

content of that address.  § is an extremely im¬ 

portant operator.  It distinguishes between loading 

and storing a value into a variable; a function 

FORTRAN accomplishes by context --in one particular 

way. 

is an operator that types the number on the stack 

(ana discards it). 

These operators have been assigned single character mnemonics 

because they are used so often.  Although their mnemonic 

value is weak, they are worth learning. 

Similarly, + adds the two numbers on top of the stack, 

replacing them by the sum; - subtracts, etc.  Refer to the 

vocabulary in Appendix A for a fuller list of the operators 

available. 

Several words have been defined in basic FORTH for 

manipulating the stack.  The operation of these words is 

summarized in the table.  A fairly standard set of more com- 



Stack Manipulating Words 

Example 

Explanation Before   Operator  After 

)RTH words (may be used in definitions or in CODE) 

Top Top 

fAP reverses order of top 2 entries 1 2 SWAP 2  1 

UP reproduces top entry 1 DUP 1  1 

OP discards top entry 1 2 DROP 1 
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plicated stack operators is available in some developed appli¬ 

cations, for such things as double precision numbers, fetching 

numbers several levels down in the stack, etc. 

The order of parameters on the stack is governed by 

several fairly well-defined conventions: 

1) Numbers are always pushed onto the top of the stack 

or popped off the top.  Thus, if you type 12 3 the 

top is the right-most (or most recent) number.  If 

you print these, the result will be 

.3  .2  .1 

2) A "store" operation (= or !) operates from left to 

right (or entry 2 into entry 1), i.e., 

3  SEC = 

stores 3 in SEC. 

3) Double precision numbers are always placed on the 

stack with the high order part on top and the low 

order part beneath. 

4) Multiple-parameter arithmetic operators use an order 

such that if the operator were moved from a suffix 

position to an infix position the operands would be 

in their customary position.  Thus: 

A B -  is equivalent to A - B 

A B C */  is equivalent to (A * B) / C 
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5)  An operation will destroy all its input parameters 

and leave only its results (if any) on the stack. 

It will, of course, destroy no more than its own 

parameters.  Thus 

12 3+ will leave  1 5 

All routines developed for an application should adhere 

to these conventions. 

The stack is located in high memory and extends toward 

low memory.  Unused core is defined as the area between the 

high end of the dictionary and the top of the stack.  The 

size of the stack is limited only by this amount. 

FORTH checks for stack underflow and overflow (since over 

flow can occur only when memory is full; it normally is not of 

concern).  If either occurs, the error message is 

[operator]    ? 

where the operator that failed to find or place a needed para¬ 

meter on the stack is given. 

The stack is by far the best place to use for temporary 

storage, since stack accesses are faster and specific core 

allocation is not required -- the dictionary entry for a one- 

word number costs an extra four words of overhead.  In parti¬ 

cular, the stack is an excellent place for saving the contents 

of a variable which must be changed temporarily.  It will take 

a while to become comfortable using the stack, but when you do 

you will be impressed by its convenience and economy. 
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FORTH COMPILER. 

The FORTH Compiler is very small and simple -- it is not 

in any sense comparable to, say, a FORTRAN compiler.  But it 

does make the task of writing inter-related routines extremely 

convenient and straightforward, and allows as much control over 

logical flow as one needs even for very complex applications. 

The basic form of a definition is 

:  word other words  ; 

Many examples are available -- just look through the basic pro¬ 

gram listing.  The syntax is as simple as possible.  The first 

word following the colon is the word being defined.  There is 

no punctuation except for the : and ; ... words are separated 

by spaces.  Literals may be used anywhere, as long as they are 

in a recognized form.  (See "numbers"). 

The cardinal rule that must be followed is this: YOU MAY 

NOT USE ANY WORD THAT HAS NOT BEEN PREVIOUSLY DEFINED. Remem¬ 

ber, this is a 1-pass compiler. The same rule applies to the 

assembler. This means that forward references (except in case 

of the IF ... ELSE ... THEN construction, which we!ll get to 

shortly) are not allowed. This may require you to modify your 

programming style, but it is not a serious inconvenience. 

The action of the interpreter in compiling definitions is 

discussed under "Interpreter".  After the basic four word 

standard dictionary entry heading come a string of addresses 

of the words that form the content of the definition.  These 

may be addresses of code entries or other : definitions --it 
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Dictionary entry for : DECIMAL 12 BASE 

(Stores 12r,   in the variable BASE) 



doesn't matter.  Somewhere at the top of the chain, of course, 

is code which will be executed.  Literals require two words: 

the first being the address of LITERAL, a short routine that 

pushes the contents of the second on the stack.  You should 

bear this in mind, and define as a CONSTANT any literal that 

you find yourself using often. 

1  CONSTANT  1 

has already been defined for you -- use of "1" in a definition 

adds only 1 word (the address of the 5-word definition 1) in¬ 

stead of two.  Figure 6 shows the dictionary entry for a simple 

definition. 

Since FORTH encourages extreme modularity, your control 

of logical flow will mainly be through appropriate management 

of previously defined words in a definition.  In addition, 

FORTH supplies words for forming loops and f.rc - trar.ch oo-di 

tionals. 

LOOPS:  Loops are constructed using the FORTRAN-ish word 

DO (which expects two loop parameters on the stack and two 

ending words:  LOOP  (which increments the loop counter by 1) 

and +LOOP (which increments it by the [signed] amount on the 

stack).  The two DO parameters are the limit (upper or lower) 

of the loop beneath and the initial value of the counter on 

top of the stack.  Both LOOP and +LOOP compile a conditional 

return to the location of the DO.  When the counter is in¬ 

creasing, the loop terminates when the limit is reached. 

When the counter is decreasing, the loop terminates when the 

limit is passed. 



The loop parameters are not kept on the stack during the 

loop.  The limit, in fact, is not accessible during the loop. 

The counter may be accessed using the word I, which places 

the value of the counter on the stack.  Remember that I is a 

verb!  Do not use it as a variable.  The counter may not be 

changed except by the LOOPs.  In nested loops, I provides the 

counter for the innermost loop. 

Here are some examples; try to figure out how each works, 

referring to the vocabulary in Appendix A for unfamiliar words 

You may find it helpful at first to keep track of what's on 

the stack on a piece of scratch paper. 

(1) :  SUM  0  101  1  DO  I  +  LOOP  ; 

adds the numbers from 1 to 100 and leaves the 

result (5 500) on the stack. 

(2) :  SQUARES  0  SWAP  1  +  1  DO  I  DUP  *  + 

LOOP  ;  6 SQUARES 

adds the squares of numbers from 1 to 6. 

(3) :  PRINT  0  DO  I  1  +  .   LOOP  ; 

10 PRINT 

types the integers from 1 to 10. 

(4) :  PRINT DUP  0  DO  CR DUP  I  10  + MIN 

0  DO  I  .  LOOP  10  +LOOP  DROP  ; 

103 PRINT 

prints the numbers from 0 to 102, 10 per line. 

(5) A non-trivial example of a loop is the Euclidean 

algorithm for the greatest common divisor of two 

integers: 
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For a>b, a~qb+r 

If d divides a and b it must also divide r 

Then GCD (a,b) = GCD (b,r) 

The process terminates with r = 0 

Suppose a and b on the stack: 

:  GCD  1  0  DO  SWAP  OVER MOD 

DUP  0=   +LOOP  DROP  ; 

The loop parameters are kept on the return stack, which 

also contains return addresses for the interpreter.  DO and 

LOOP must be in the same definition.  Likewise, I may only be 

used in that definition (since entering another definition 

modifies the return stack).  Within these restrictions, keeping 

these numbers on the return stack does not interfere with the 

interpreter's use of it, and the parameter stack is not 

cluttered by their presence.  It is recommended that you study 

the way DO, LOOP and +L00P are coded for your computer, because 

you may wish to code additional related words for your appli¬ 

cation.  Three which are now available on the 316  are: 

*L00P - multiplies the loop counter by a specified 

amount (similar to +L00P) 

£J push the counters for second and third outer 

loops on the stack (similar to I) - useful 

for matrix operations. 

These are not implemented in basic FORTH because of their 

specialized usefulness. 



4.5 

CONDITIONALS:  FORTH offers a convenient one --or two -- 

branch IF.  Its use is given in this example: 

0  INTEGER S       99  CONSTANT  LIMIT 

:  SLIM S  §  LIMIT  >  IF  100 ELSE 

S  6  1  +  THEN  S  =  ; 

This takes an integer S, which is initialized to 0 but whose 

value may change in use, and compares it to the constant limit 

of 99.  If the limit is exceeded, S will be set to 100; other¬ 

wise, it will be incremented by 1.  The word IF compiles a 

conditional forward jump dependent on the top of the stack being 

zero (false).  The destination of the jump is not known at the 

time the jump is compiled, but the address of the jump desti¬ 

nation is left on the stack.  When ELSE is compiled, its lo- 

VCl-l._l_v.ll.   J-»^   •^ O »,   Ci-^>   Cixw   v^.v~_>v-."-.n.<_«.v.-^^i..».   •«^—   — *    -^   j   „...£.    j   ___ _ _   _ '_  

ditional forward jump is compiled -- its destination to be 

similarly supplied by THEN.  THEN terminates the conditional, 

as it compiles no jump.  The ELSE clause may be omitted en¬ 

tirely.  Note:  Every IF must be followed by a THEN. 

Remember that the IF will jump to ELSE or THEN if the 

top of the stack contains zero (false).  Therefore, the IF 

inherently contains an "equal to zero" test.  Remember also 

that IF will destroy its parameter (the condition), like all 

FORTH words.  You thus may want to include a DUP in your 

definition: 

X 6  DUP  IF    ("If X is zero,  ") 

Several words have been defined to perform other tests for IF: 

0<  Replaces a number by 1 if the number was negative, 
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0 if zero or positive. 

<   Replaces two numbers by 1 if the lower is less than 

the top number. 

>   Opposite of <. 

Memory usage and timing: 

The length of a : definition is very easy to determine. 

The colon and word generate the dictionary entry, which gives 

an overhead of four words.  Thereafter, add one word for every 

defined word in the definition, including the semi-colon, and 

two for every literal.  Timing is more a function of the 

execution time of each word in the definition than their num¬ 

ber -- only you can estimate that "J*-- but you must add the 

interpreter cycle overhead for each word, which is 12/is 

on the 316.   Tf you are trying to decide whether to define a 

word separately or include its functions in other definitions, 

you can assume that you break even in memory space if you will 

use the defined word two - five times*, and will save (length - 

1) words for every subsequent usage.  The cost in time will 

be 1 interpreter cycle per usage -- not very much for what 

can be an extremely great saving in core. 

tTypical times for simple operators such as +, -, stack operations, 
@, =, etc.  are around 22 s\is. 

*  Total length: 5   6   7   ^8 
Uses to break even:   5   4   3    2 
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FORTH INTERPRETER 

Everything FORTH does is controlled by its interpreter, 

and everything you will do using FORTH is therefore also con¬ 

trolled by the interpreter.  The interpreter itself is quite 

small.  But it controls several routines that are invisible 

to the user that do quite a lot for you, including number con¬ 

versions, dictionary searches, generating dictionary entries, 

managing the stack, etc.  Some of these functions are very 

intricate.  Many of them do not have to be understood by a 

user or applications programmer, and I will not attempt to 

explain these in detail here.  If you are interested, however, 

please inquire.  In this chapter I will explain what the in¬ 

terpreter does for you, and how you will use it. 

I-  TnteT'DT*711Tnc &   d-vi-no- of w^rds t'vr^k0d at ■'"he •»-«-**«"£-»~2. . . —-—'.—z—zi     ? I *—* 1  : *   r. .',"  

Your main communication with FORTH is through a terminal.  You 

type one or more words and they are interpreted and obeyed. 

If you have requested something to be typed out, it will be; 

if you have asked that something be done which requires no 

typing, FORTH will reply OK when it has done it.  If you send 

a null message, in fact, FORTH will cheerfully reply OK. 

The operations that have been performed are the following: 

1) A word is taken from the terminal line buffer.  (Remember, 

a word is a character string bound by spaces). 

2) a.  If it is a word which can be found in the dictionary, 

the code for that word is executed, 

b.  If it is a number, it is converted to binary and 

pushed on the stack. 



c.  ix ncitner of the above is possible, the word 

is sent back to the user with a ? 

3) Following successful completion of 2a or 2b, the in¬ 

terpreter continues on to the next word, if any.  At 

the end of the string of words, it says OK. 

Therefore, you may string together a number of commands. 

But - if at any time you ask that something be typed back to 

you, or if the string is aborted (2c), the line buffer is de¬ 

stroyed, and interpreting ceases. 

II. Interpreting source blocks.  If you type a load command, 

like 

3   LOAD 

the interpreter operates in a slightly different mode, since in 

the process of executing the word LOAD it must interpret words 

in a block read from disk or tape, rather than the terminal 

line buffer.  It keeps track of what block it is taking its in¬ 

structions from;  the terminal, for this purpose, is "block 0". 

The only differences in interpreter behavior between operating 

on "block 0" and any other block are (1) that only "block 0" 

gets an-OK on completion; (2) ..interpreting in other blocks ceases 

when ;S is encountered.  Note that, just as "block 0" is 

loading a block, that block may load other blocks. 

III. Compiling definitions.  If the interpreter encounters a 

command, it will be executed.  Defining words (such as : CODE, 

CONSTANT, etc.) are commands whose execution causes the inter¬ 

preter to behave in a special way.  The generation of CODE 

entries and nouns is discussed elsewhere in this manual ("Assembler" 

and "Nouns").  A colon not only generates the beginning of a 

dictionary entry for the word immediately following the colon. 



it also sets a flag for the interpreter.  Thereafter, the 

words in the definition will not be executed -- their addresses 

will be placed in the dictionary entry being compiled.  This 

flag will be reset by the ; . 

IV.  Executing definitions.  The code address for : definitions 

points to a routine which at executing time sets the compile/ 

execute flag (called STATE) to "execute", sets the instruction 

counter (IC) to the parameter field of that definition, and 

jumps to NEXT.  NEXT is the most fundamental routine of the 

interpreter -- the basic loop that goes on to the next word, 

controlled by IC.  When a : definition is being executed, the 

interpreter is going down the addresses supplied in the defini¬ 

tion, and going off to execute whatever is at those addresses.  Of 

course, these addresses might point to other : definitions, and 

so on, so the code for : saves the current IC on a special push- 

down stack called the -'rerurn srack."  The code for ; therefore 

resets IC from the top of the return stack before returning to 

NEXT.  Of course, at the top of any of these chains of pointers 

is a CODE definition, and all CODE definitions also end with a 

jump to NEXT (often after passing through stack manipulating 

routines). 

It is clear, then, that the greatest overhead in running 

FORTH is in this interpreter loop, and great pains have been 

taken to code it as tightly as possible. 



NOUNS 

A most important aspect of FORTH is its ability to define 

new words.  New definitions and code are devised continously. 

Likewise, new constants or variables are created.  However, 

a more challenging and significant kind of creativity is in¬ 

volved in the definition of new kinds of words.  Not defini¬ 

tions or constants or any other kind of common word, these 

can share the attributes of both nouns and verbs.  But since 

they are mostly used as nouns, I shall refer to them as such. 

A new kind of word may be defined by writing a definition 

that includes the verb CONSTANT.  CONSTANT takes a value on 

the stack, reads the next word from the input string and con¬ 

structs a dictionary entry for it initialized to the value on 

the stack.  When used in a definition, that definition must 

be terminated by the word  ;CODE (instead of ";").  ;CODE 

completes the dictionary entry by beginning a code string 

which follows immediately, and changes the code address of the 

word to point to this code string.  In a real sense, ;CODE 

combines the functions of the separate words ";" and CODE. 

For example, the definition of INTEGER for the 316- is 

:  INTEGER  CONSTANT  ;CODE 0 LDA^ ONE  3  + ADDj PUSH 

Given that definition, the phrase 

0  INTEGER M 

then acts as follows:  The word 

INTEGER - executes the definition, wherein 
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CONSTANT - reads the word M and constructs a dictionary 

entry for it, with the exception of the code 

address for M.  The value of the parameter 

field is initialized to the value on the stack, 

in this case 0. 

;C0DE     completes the entry for M by supplying the 

code address -- the word immediately following 

;CODE.  V/hen ;C0DE is compiled, there is no 

code there -- nor any guarantee there ever 

will be.  You must put some there. 

0 LDA     generates the first instruction that will be 

executed for M (or any other integer).  When 

a code definition is entered, the B register 

contains the address of the first word of the 

definitions.  TBA transfers the address of 

the first word in the dictionary entry for M 

from B to A. 

ONE  3 + ADD, 

PUSH 

increments that address to the location where 

the value of M is stored. 

jumps to code that puts that address onto 

the stack. 

Every time an INTEGER is defined the definition is exe¬ 

cuted. 

Every time an INTEGER is referenced the code is executed, 

The definition of what INTEGER does is the same on all 

FORTH computers; the code of course varies with the computer. 

1   ONE begins an array of useful integer values.   ONE  3  +  is 4 
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INTEGER is only one kind of noun.  Other kinds of nouns 

can be easily imagined:    REAL, COMPLEX, VECTOR.  Most nouns 

share the property that they place an address onto the stack. 

But I would like to suggest some more elaborate nouns. 

Consider first the distinction between INTEGERS and CON¬ 

STANTS.  Referencing a CONSTANT places its value onto the 

stack; referencing an INTEGER places its address here.  However, 

auxiliary verbs permit using either in an equivalent way: 

Given 

7  CONSTANT A   7  INTEGER M 

If I say M @  or A 

I get the same result, 7 placed onto the stack.  Similarly, 

if I say 

M or  '  A 

I get the same result -- the address of a location that con¬ 

tains 7 (the verb ' provides the address of the parameter 

field of a word. The difference between 

CONSTANT and INTEGER is one of usage -- CONSTANT automatically 

provides the verb @. 

This suggests that we might provide a noun that automati¬ 

cally provides the verb =, another verb often associated with 

INTEGER.  It can be a very effective construct. 

I will discuss in a moment a noun that provides an auto¬ 

matic subscript.  Often you want to use a noun as a switch, and 

an efficient, convenient way of changing it is helpful.  So 
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I defined a kind of noun modifier called SET:   Given a switch 

called FLAG, defined  0   INTEGER  FLAG 

0   FLAG   SET   AZ      1   FLAG   SET   EL 

SET constructs a dictionary entry which will behave in the 

following way:   Whenever I reference AZ, the constant 0 is stored 

into FLAG.   Similarly, I can name any value of FLAG, or any 

other variable, and establish that value by typing the name. 

Of course, there are other ways of accomplishing this same effect: 

AZ   0   FLAG  =   ; 

is completely equivalent to the above.   But it is considerably 

less efficient, both in space and time (15 us vs_ 92 us).   A 

noun modifier such as SET simply extends the basic philosophy 

of FORTH:  to define those words that are convenient to describe 

your problem. 

A more elaborate noun is one I call VECTOR.   Referencing 

a VECTOR places an address onto the stack:  the address of the 

first work in the vector plus the contents of a noun, (), which 

is a general subscript.   The definition of VECTOR on the 316 

would be very similar to that for INTEGER: 

0   INTEGER   () 

:   VECTOR  CODE   ;CODE   ()   LDA,   1   ALS, 

ONE   3   +   ADD 

The word CODE is used in this instance to set up the dictionary entry 

instead of CONSTANT because CONSTANT requires an initial value 

and CODE does not.   Thus the value of the vector is not initialized 

by the definition.   It is simpler to initialize the VECTOR 

explicitly to the proper length: 

VECTOR  X  0   ,   0 

In conjunction with SET this leads to some pleasant notation. 

1- The operator "," enters a number on top of the stack into 
the dictionary. 



If I define 0.5 

0 () SET LAT      1 () SET LONG      2 () SET BEARING 

VECTOR SIN  0,0,0,  VECTOR  COS  0  ,  0  ,  0  , 

and store values in the arrays SIN and COS, I can reference the 

respective values by saying 

LAT SIN    BEARING  COS    LONG  COS 

in a natural manner. 

An even more intricate noun is invaluable for evaluating 

expressions involving constants.  I call it POLY (after polyno¬ 

mial) and will give an example to show its use: 

4 POLY  PRIME  2,3,5,7, 

POLY acts like CONSTANT in that it provides a value rather 

than an address.  The first time I say PRIME I get 2 on the 

stack; the next time 3; then 5; then 7; then 2 again.  Each 

reference to PRIME gets me the next value in closed circle. 

The number 4 above advises of the size of the circle.  Another 

word is used to keep track of the present position. 

A more practical example might be evaluating a polynomial: 

5 POLY  K  --,--,... 

If I say 

KX*K + X*K+X*K+X*K + 

(or the equivalent in a loop) I have referenced K exactly 5 

times, extracted the values I wanted in the proper sequence, 

and reset K in anticipation of my next evaluation.  All with¬ 

out explicit subscripts or any other notational baggage. 
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A noun analogous to POLY that provides addresses instead 

of values I call ARRAY.  It is extremely useful for storing and 

retrieving values into an array in sequence.  Yet another kind 

of noun that is useful is one which provides an array auto¬ 

matically subscripted by I, which fetches a current loop index. 

I hope that I've shown that different kinds of words can 

be usefully defined.  Basic FORTH provides only CONSTANT and 

INTEGER, but standard definitions of most of the nouns dis¬ 

cussed here are available.  If you encounter more than one 

instance of a particular kind of noun, or use such a word fre¬ 

quently, it can pay off in convenience, efficiency and elegance 

to name and characterize those properties that make it unique. 
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ARITHMETIC 

It is routine to implement the ordinary arithmetic 

operations in FORTH.  The problem is to decide which will 

be useful and exactly how they should act.  Keep in mind 

that these operations are much too elementary to be of value 

in themselves; but they form essential building blocks for 

later definitions. 

A characteristic of elementary operations is that there 

are usually machine instructions that perform them.  To embed 

such an instruction in code so as to make it accessible adds 

significantly overhead, easily 5 times the instruction execu¬ 

tion time.  But keep in mind that our purpose is to make these 

instructions readily executable on arguments conveniently 

found on the stack.  The value of accessibility versus efficien¬ 

cy is strongly in favor of the former, since we are viewing 

the computer from the other side of a keyboard.  You can al¬ 

ways construct code for an inner loop where efficiency is a 

problem.  Furthermore, the use of definitions results in very 

significant savings in core. 

Certain operations are absolutely essential, as can be 

verified by their frequency of use: 

Op.     Example Description 

leaves A+B on the stack. 

leaves A-B on the stack. 

leaves A*B on the stack. 

Example 

A B  + 

A B   - 
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/ A B / 

A MINUS 

leaves A/B. on the stack, 

leaves -A on the stack. 

(Notice that the order of the operands for - and / [non- 

commutative operations in general] is such that if the operator 

were moved from a suffix position to an infix position [A B - 

to A - B] the operands are in their customary positions.  Such 

a mnemonic aid is essential to help recall the order of argu¬ 

ments. ) 

Op. 

MAX 

MIN 

ABS 

/MOD 

MOD 

Example 

A B MAX 

A B MIN 

A ABS 

A B /MOD 

A B MOD 

SIGN   A B SIGN 

Description 

leaves the greater of A and B 
on the stack. 

leaves the lesser of A and B 
on the stack. 

Replaces a number on the stack 
by its absolute value. 

T} n ■">• 1 1 -»".> C:   "?• ^-1 fv       m \ /-> •!• * r< . i -f   .-' '•'•■        *■/-•%-•   - /* 
ixv L- «_A a. .11 O   i-jlv  \,it-l\_»i^a.Vxu.U  V_»ii   ov^u^  ^-»J_ 

the stack and remainder be¬ 
neath after division. 

Leaves the remainder after di¬ 
vision on the stack. 

Give A the sign of B; if B is 
0, replace A with 0. 

Many other operations could be added.  Some of these can 

be defined in terms of those above.  If that is awkward or 

inefficient, code can be written for them.  Remember that we 

are dealing with 16-bit 2's-complement numbers.  This provides 

integers from -32768 to 32767.  Another number format that is 

useful is 14-bit fractions.  It can provide numbers from -2.0000 

to 1.9999.  The above operations work for such numbers, with 

the exception of *   and /. 
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*,  product of 2 arguments, one of which is a fraction 

(shift left 1). 

/,   quotient expressed as a fraction (dividend shifted 

right 1). 

These are useful operations.  You must watch out for the size 

of arguments .in division (quotient 2).  The product works for 

fraction*integer or fraction*fraction.  The quotient works 

for fraction/fraction or integer/fraction or integer/integer. 

Fraction/integer should use the integer divide. 

The notation is a compromise.  A better convention would 

be *. and /. where the point symbolizes the decimal in the 

fraction.  However, that is used by the double-precision opera¬ 

tions in most applications.  I compromised by replacing the 

point by a comma, recalling European custom, although the 

comma is badly over-worked.  You are free to redefine them, of 

course.  If you use them a lot (and don't need the integer 

operations) consider: 

••//,; 

Two trinary operations are valuable if you do any extensive 

arithmetic: 

*/  ABC */   leaves (A*B) /C on the stack 

+*   A B C +*  leaves A + (B*C) on the stack 

+*is completely equivalent to * followed by +, but the com¬ 

bination occurs so frequently that the added efficiency of 

combining them is welcome.  */ is a natural combination since 

the double-precision product in the A and B registers is per- 
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fectly positioned for the divide.  In general, you get better 

precision by the combination than by separating the operations. 

As an example of the value of the */ operator, the 

following definitions might be used to implement fixed-point 

decimal arithmetic (4 decimal places) as opposed to the fixed- 

point binary arithmetic discussed above. 

: *     1.0000 */ ;    :  / 1.0000  SWAP  */  ; 

The numbers in this case are integers with an assumed decimal 

point 4 places from the right, and can represent fractions be¬ 

tween -3.2768 and 3.2767 with no decimal-binary conversion 

error.  Such arithmetic is perfectly reasonable, the extra 

cost of the scaling being completely negligible.  However, it 

doesn't generalize to double-precison very well. 

Numbers. 

As previously noted,  numbers typed at the terminal or 

encountered in a block being loaded are converted to binary (from 

base BASE, usually 8 or 10) and pushed on the stack. 

This is done by a single routine called NUMBER.  NUMBER 

follows the following conventions: 

1. Positive numbers are unsigned, negative numbers have 

a leading minus sign. 

2. Legal digits are 0 through BASE - 1. 

3. Single precision integers may run from -32768 to 32767. 

4. A decimal point encountered anywhere in the number 

causes the number to be converted as an un-normalized double- 

precision (31-bit) integer, in standard Honeywell double-precision 
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format, and pushed on the stack with the most significant 

part on top.  The variable D in this case will contain the 

number of digits found to the right of the decimal point. 

5.  A colon encountered anywhere in the number will 

cause the rest of the number to be converted as a sexagesimal 

number.  Thus, 30:00 will be converted as 1800. 

Remember that a word will be looked up in the dictionary 

first, and NUMBER will attempt to convert  it only if the 

dictionary search fails.  This enables the user to define 

commonly used literals (such as 0 and 1) as CONSTANTS, thus 

saving space in definitions.  As a side benefit, you may 

define any kind of word with a "numeric" name ... for example, 

a precession routine might define 1950.0 to be a verb which 

precesses 1950 coordinates to current nositions. 
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THE FORTH ASSEMBLER 

FORTH can assemble machine-language definitions of words. 

Among the many examples in the basic vocabulary are the arith¬ 

metic operations. 

+ - * / MOD MAX MIN 

The assembler is not intended for conventional programs. 

Additional words would be needed for that -- as in the BOOT¬ 

STRAP vocabulary for recompiling FORTH. 

Words defined by the assembler are CODE entries.  They 

have a standard dictionary entry with the address field point¬ 

ing to the next word (the parameter field). 

The instruction mnemonics are operations - they compile 

the instruction and address (if any).  As usual in FORTH, 

operands (addresses) precede operations (instructions).  De¬ 

pending on computer, several kinds of instructions and address¬ 

ing are possible: 

CPU instructions have no address.  They assemble a 1- 

word instruction 

MR instructions have a memoTf address.  The address 

may have to be adjusted before the instruction code is 

added and the address must be in page o or the current page 

I/O instructions have a device address. 

S instructions are shift instructions, and allow insertion of 

the length of the shift. 
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In definitions (beginning with :) the placing of parameters 

on the stack and retrieving them from it is automatic -- only 

such words as SWAP, DUP and OVER are normally used.  CODE, 

however, requires that parameters be handled explicitly, using 

S) and the returns that push or pop the stack (see "Assembler"). 

It is necessary, when you are using CODE, to separate in your 

mind the way you are using the stack at assembly time and at 

execution time.  The words in a CODE entry are executed at 

assembly time to create machine instructions which are placed 

in the dictionary to be executed themselves later.  Thus, 

HERE  2 - LDA, 

at assembly time places the current dictionary location on 

the stack (HERE) and decrements it by 2.  This number is then 

the parameter for LDA, which assembles a machine instruction 

which is tne equivalent of 

LDA  *-2 

in conventional assembler notation.  Similarly, such words as 

SWAP and DUP are executed at assembly time in CODE, and com¬ 

piled into the dictionary in definitions. 

These mnemonics are used to indicate various relative 

addresses: 

1)   index register 

0)   indirect address 
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S)    Stack pointer  (indirect through SP) 

What effect these words have depends on the instruction. 

On some they set the address;  on ethers they set the 

indirect or indexed bits. 

For example: 

CODE  +  S)  LDA,  SP  IRS,  S)  ADD,  PUT 

will add the top two numbers on the stack and leave the sum 

on the stack replacing the two numbers.   The action of the 

assembler in constructing a CODE entry is given in Figure 8. 

The resulting entry is given in Figure 9. 

RETURN:  Code must end with a jump to the interpreter 

(NEXT).   Several addresses are available which modify the stack 

before returning to NEXT:  these are summarized in Figure 10. 

All of these words except NEXT contain code for checking 

stack underflow or overflow.   Therefore, you should always 

end CODE definitions which modify the stack with one of 

these words.   Examples of all of these are in the basic voca¬ 

bulary.   A computer with single-word jump (such as the 316) 

includes the jump code with these words. 

STACK:   Most parameters come to code entires via the stack. 

On the 316, the pointer to the top of the stack is in the 

variable SP.   Since the top is most often referenced, the word 

S) refers to it directly: 

S)   addresses the top of the stack j^SP  o)J 

For more complicated references, you may wish to put SP in loc.O 

(for indexing). 
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Figure  9 

Dictionary entry for 

CODE  +  S.)  LDA,  SP  IRS,  S)  ADD,  PUT 



Example 

Word Explanation Before Operator After 

terpreter returns (terminate CODE entries-contents of A shown as A(n)) 

Top Top 

T replace top of stack with A A(2) 1 PUT 2 

tfSH push A onto top of stack A(2) 1 PUSH 1   2 

P discard top of stack 2 1 POP 2 

INARY POP followed by PUT A(3) 2 1 BINARY 3 

P. discard top 2 words from stack 2 1 POP, 

Figure 10 

Assembler return locations which modify 

the stack and return to NEXT 
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For example: 

S)  LDA, 

will load the top of the stack;  and 

SP  LDX,  2  1)  STA, 

will replace the third parameter. 

Parameters may be taken directly from core. 

For example: 

M  LDA, 

will load the value of M.   Often parameters may be picked up 

without being named.   So long as their address is on the stack, 

it doesn't matter how it got there: 

HERE  55  , 

will assemble the constant 55 and leave its address on the 

stack.   The instruction 

LDA, 

coming later will encounter its address -- and assemble an 

instruction to load it. 

INSTRUCTIONS: 

The basic instruction set of each computer is defined 

with the manufacturer's mnemonics -- when possible.   Remember 

that the count and first three letters must be unique. 

ADD becomes ADD, 

A comma is appended to improve the readability of several 

instructions on the same line of text, and to distinguish FORTH 

assembler mnemonics from the manufacturer's simiiar mnemonics. 

The most common instructions are defined and you may add 

any others you find useful.   See your FORTH listing or 

assembler vocabulary for details. 



8.5 

MACROS: 

Many instructions are useful, though not implemented on 

a particular computer.   (Macro) definitions will implement 

them with several instructions (check what they are;  some 

use registers!): 

ADM, add to memory 

INR, decrement memory 

Other definitions provide forward jumps: 

IF, begin true condition code 

ELSE, begin false condition code 

THEN, end ccndilional cede 

IF, and ELSE, leave the address of a jump instruction 

on the stack;  THEN, provides the jump address. 

IF, may take a condition code as parameter;  or follows 

a skip instruction  depending on computer. 

Example: 

SZE,  IF, [code for Oj   ELSE,  [code for not o]   THEN, 

or 

SZE,  IF, [code for Oj   THEN, 

Some definitions provide loops: 

BEGIN,     begin loop 

END,       end loop 
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BEGIN,  puts an address on the stack;  END,  assembles a 

conditional jump back to that address - again either condition 

code or skip preceding. 

There are no labels in FORTH. You could define them but 

their function is performed by CODE names, IF, THEN, BEGIN, 

and END,. 

All these macros are defined in the basic FORTH vocabulary 

for your computer.   Examples of their use are there as well.   A 

bit of study should make clear how they work, and of course you're free 

to define any others you wish. 

It should be clear by now what the relative trade-offs in time 

and core efficiency are between  CODE  and  :  definitions of verbs. 

CODE will be almost exactly comparable to conventional assembler 

code, with some advantage due to the handy convention of the stack, 

which saves the time and complexity involved in parameter passing - 

but  :  definitions are very much more compact, being only a string 

of addresses of previously defined words.   The combination of CODE 

and  :  definitions means that the overall programs will be extremely 

compact, as even short code strings will rarely be repeated. 

Suppose, for example, you have a 4-word code string that seems 

to perform a useful function.   It may at first glance seem ridiculous 

to double its length by making a dictionary entry out of it, but 

since every subsequent reference to it takes one word, it will 

take very few uses to recover the cost, and from then on you will 

save three words for every usage.   Clearly, the saving will be 

greater for longer strings, but you should always perform only 

a single logical operation in one CODE definition. 
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BLOCK I/O 

Tape and disk I/O is handled by FORTH in standard blocks 

of 512 words.  This fixed block size applies both to FORTH 

source text and to data taken by FORTH programs.  This appar¬ 

ent inflexibility may appear strange to programmers accustomed 

to designing specialized data formats, but in fact causes the 

entire problem of I/O to disappear behind one standard block 

handler.  In addition, it eliminates many of the headaches 

concerned with tape handling:  searching, maintaining order, 

compatability with other computers, etc.  The block size chosen 

is a convenient,, modest size.  FORTH applications exist with 

as many as ten data records in a block, and with several blocks 

xOrmmg a daua recoru.. 

Magnetic tape records have a 513th word at the end, 

giving a logical block number.  The FORTH instruction READ-MAP 

causes records to be read from tape until a file mark is 

reached.  The logical block numbers read are used to construct 

a map in core showing the tape record position for the most 

recent version of each-block.  This map is 512 words long, ex¬ 

pecting one tape file to contain no more than 512 blocks, or 

262,144  words.  Multiple files may be written.  Thus, the 

tape can be handled as a random access device, in that any 

block may be fetched directly, with no need for searching. 

To facilitate this, the current tape record position is kept 

at all times.  Blocks may be in any order on the tape, and 

updated versions of each block may be written at the end of 

the tape. 
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Standard FORTH programs have two 513-word block buffers 

in core.  This number may be increased if the need justifies 

the amount of core used, for example in an application re¬ 

quiring data records several blocks long.  The 513th word con¬ 

tains the logical block number, which will be complemented if 

the block is updated.  If a block is requested (by the in¬ 

struction 

n BLOCK 

where n is the logical block number) the block handler will 

check the two core buffers to see if the requested block is 

present.  If not, it will fetch the block from disk, if it is 

there, or tape (according to the tape map).  If the block is 

not available, an empty core buffer will be provided.  If a 

core buffer must be over-written, the block handler will use 

the one least recently referenced.  If the block to be over¬ 

written has been updated, the updated block will be automati¬ 

cally written on tape or disk before the requested block is 

read.  Finally, BLOCK will push the address of the first word 

of the requested block on the stack.  A flow chart of this 

process is given in Figure 11. 

The only requirement for fitting data records into this 

scheme is that data record numbers (or "scan numbers") be a 

fixed function of block number.  Then a word can be defined 

that will use BLOCK to fetch the block(s) containing scans 

requested by scan number. 

Here is an example in which data records are smaller 



Enter with block no. on stack 

US 

NO 

Determine which 
core buffer to use 

m 

FLUSH block to tape 

Check tape map for 
requested block 

YES Ml 

Read block Empty core buffer 

Put block address 
  on stack 

Return to NEXT 

Figure 11 

Block handler for tape system 



9.3 

than blocks.  Two CONSTANTS have been defined:  LR is the data 

record length in words, and R/B is the number of records per 

block. 

:  ADDRESS  R/B  /MOD  511 MIN  BLOCK 

SWAP  LR *     +  ; 

ADDRESS replaces a scan number on the stack by the address of 

the first word in the scan, having fetched the scan as necessary 

By convention,  blocks 1-99 are allocated to program 

source text.  Logical blocks 1 and 2 always contain the only 

portion of the program which is previously compiled.  These 

1024 words are read directly by the key-in loader, and con¬ 

tain the basic interpreter and I/O handlers for the terminal 

and tape or disk, plus character conversion routines and the 

dictionary building and searching routines.  These routines 

are very rarely changed, and for all practical purposes 

may be regarded as the "given" or fixed portion of your appli¬ 

cation. 

The remainder is kept in source form on the tape.  Source 

blocks contain 16 lines of 64 characters each (again, 512 

words plus block number).  These blocks are rarely full.  It 

is to the programmer's advantage to keep logically related 

routines in the same block or nearby blocks, and to allow for 

future modifications it is handy to keep a few blank lines in 

each block.  There is essentially no cost for this convenience, 

since loading is very fast and fairly independent of the number 

of blocks being loaded (it depends on the amount of program 



R/B (Scan number on the stack.)  Pushes on the 

stack the number of scans per block. 

/MOD Divides the scan number by R/B, leaving the 

block number on top of the stack and the re¬ 

mainder (which record in the block) beneath. 

511 511 pushed on the stack. 

MIN Leaves on the stack the lesser of 511 and the 

computed block number (if you are going to allow 

more than 512 blocks using multiple files, a 

/MOD here will get the file position). 

BLOCK Replaces the block number on the stack by 

the address of the first word of the block. 

SWAP Exchanges the block address with the record 

number. 

LR Pushes on the stack the number of words per 

record. 

* Replaces LR and record number with the offset 

in v/ords from the beginning of the block. 

+ Replaces the block address and the offset with 

the record address. 

Figure I2 

:  ADDRESS  R/B  /MOD  511  MIN  BLOCK  SWAP  LR  *  + 
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being loaded.)  This method of keeping the program source con¬ 

veniently available is one of the main features that makes 

FORTH so flexible.  During program development and testing, 

specified source blocks may be edited (using FORTPI's built-in 

editor) and, if desired, reloaded quickly and easily.  When 

a FORTH program is running in production, the fact that there 

is no complete object program on a mass storage device is no 

inconvenience, as the program doesn't need to be reloaded often, 

and it is a process taking only a matter of seconds even for 

fairly elaborate programs.  The basic FORTH package that comes 

for your computer includes the compiled object program (blocks 

1 and 2) and about a dozen blocks of source including the 

assembler, compiler and text editor.  A diagram showing this 

basic program is shewn in  Figure 13. In addition, yen will 

get the source blocks from which the object program was com¬ 

piled, and a set of vocabulary lists for all of the above. 



BASIC 
WORDS 

TERMfMAL 
I/O 

BLOCK 
I/O 

D COMPILER 

ASSEMBLER 

ARiTHMEXiC 

OBJECT      FORTH 

IK 

BLOCK 
BUFFER 

SLOCK 
BUFFER 

JL / O 
*:««« FAP 

Figure   13 

Core layout of basic FORTH.  The object program and FORTH 

occupy roughly the first 20-1-S v/ords of memory,  The tape 

map and block buffers are in high memory.  The stack extends 

down from the bottom of the block buffers toward the dictionary 

The space between the ^top1' of the stack and the top of the 
dictionary is unused core. 
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FORTH PROGRAMMING 

Since FORTH is interactive, you will spend much more time 

at your terminal and less at your desk than with non-interactive 

techniques.  You will generally want to write down some notes 

about the problem you are about to solve, perhaps, and a few 

lines of program.  If it is a big problem, you will want to 

outline your proposed program in some detail.  Then you sit 

down at a FORTH terminal and type.  Your procedure will be to 

enter a definition or two, test them to your satisfaction, and 

then combine them to form more powerful definitions, until 

the problem is satisfactorily described.  The definitions may 

then be edited into a block or more of source program which 

will be kept permanently on disk (or tape), load the new blocks, 

and re-Lesr. 

To facilitate testing (and also to allow overlays), the 

verb REMEMBER is used to mark a place in the dictionary.  At 

some future time, typing the name of the remembered entry will 

cause all of the dictionary generated since that entry to be 

discarded (or "forgotten").  Thus, when you begin typing 

provisional definitions, it is advisable to type something like 

REMEMBER   TEST 

Later, when you are ready to begin editing, or if you feel 

the dictionary is becoming too cluttered, you may type 

TEST 

and everything in the dictionary beyond (and including) TEST'S 

remembered location will go away.  Recall that a word may be 
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re-defined as often as you like -- the most recent entry will 

be the one used thereafter -- but the obsolete entries re¬ 

main, taking up space. 

REMEMBER is also useful for marking sub-vocabularies to 

be overlaid by other sub-vocabularies.  You may, for example, 

have a telescope control vocabulary, interrupt' handler and 

multiprogrammer that you want to be available all the time, 

but several observing vocabularies that are mutually exclusive. 

In the common vocabulary you will want to give a name to the 

first block of each: 

43  CONSTANT SPECTROMETER  60  CONSTANT COUNTER 

72  CONSTANT IMAGE-TUBE    84  CONSTANT GRATING 

and a null definition: 

:  OVERLAY  ; 

Each of these blocks will load the other blocks that are in¬ 

cluded in the sub-vocabulary.  The beginning of each block 

will contain 

OVERLAY   REMEMBER   OVERLAY 

The first OVERLAY will discard any of the other sub-vocabularies 

that might be loaded (the null definition of OVERLAY takes 

care of the case when none is loaded).  Then REMEMBER  OVER¬ 

LAY marks the beginning of this sub-vocabulary so that it 

might be discarded later on.  In use, one can change observing 

vocabularies easily by typing 

SPECTROMETER   LOAD 
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or 

IMAGE-TUBE   LOAD 

without having to worry about discarding an incompatible set 

of routines. 

If you look at the listing of the text editor (EDIT, block 

13) you will see that it starts off, 

DISCARD   REMEMBER  DISCARD 

:  DISCARD   FLUSH   DISCARD  ; 

By convention, DISCARD is used at the beginning of all major 

vocabularies (the portion that is loaded just after basic 

FORTH).  The editor, therefore, intends to discard this vocabu¬ 

lary.  But when the time comes to discard the editor, more 

will happen:  the word FLUSH will write on tape any blocks in 

memory that have been updated and not yet flushed before the 

editor vocabulary is discarded.  (Remember that when a word 

appears to refer to itself it is not recursive -- the second 

definition of DISCARD redefines DISCARD, including in the 

definition a reference to the previous definition of DISCARD.) 

When you type a definition, or use an untested definition, 

or load a newly edited block, you may get a diagnostic.  Diag¬ 

nostics are very simple: 

word  ? 

This means either that "word" is undefined, or that it ex¬ 

pects a parameter on the stack and finds none (stack under¬ 

flow) .  You may determine which easily by typing   word 
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If the diagnostic is repeated, the word is undefined.  If a 

number (the location of the word) appears, the word must have 

been expecting a parameter.  If you have typed a string of 

words, you may normally assume that it has been obeyed as 

far as the word causing the diagnostic. 

When you are testing a new definition it is a good idea 

to type . after executing it until there are no numbers left 

on the stack except those you expect to be there. A defini¬ 

tion that accidentally leaves numbers on the stack can cause 

subtle and unpredictable things to happen in entirely unre¬ 

lated parts of the program! Remember the rule that all words 

should destroy their parameters and leave only explicit results 
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TEXT EDITOR 

Although you may type in definitions at any time, they 

will be lost if you reload the program.  Moreover, the source 

is lost fo'rever -- you cannot recall it to refresh your memo¬ 

ry!  The text-editor allows you to save definitions perma¬ 

nently on disk or tape. 

You may list a block (16 lines of 64 characters each) at 

any time, by giving its number and LIST: 

13 LIST 

Blocks that have names may be requested by name; 

EDIT LIST 

To load the text editor, have basic FORTH running and type 

EDIT LOAD 

This will usually not only load the editor but also discard 

any part of the application that may be loaded, although on 

some systems EDIT can co-exist with a portion of the applica¬ 

tion.  The editing commands are: 

14 BLK =      Specifies that block 14 is about to be 

edited.  It will be fetched from disk 

or tape if necessary. 

7  T Type line 7 (place in line buffer). 

" text "      Place 'text1 in line buffer.* 

^Quotation marks are tlie standard delimiting characters for 
the text editor.  For cases in which you need to use quotes 
in a line of text, two other sets of delimiters have been 
defined:  parentheses and #. 
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7  R Replace line 7 with contents of line 

buffer. 

13  I Insert buffer after line 13 (discard 

line 16). 

13  D. Discard line 13 (place in line buffer) . 

Line 16 will be reproduced and other 

lines will move up as needed. 

If you are about to edit a previously undefined block, 

type 

n  EMPTY 

where n is the logical block number.  Thereafter, when you 

type n BLK = you will have a fresh block to work on.  This 

block is filled with undefined characters.  You edit in new 

j.ines oy replacing lines wirh xexr.  For example: 

"  THIS IS A NEW LINE    1  R 

Begin with "quote space" -- the end of the line is defined by 

the last quote.  The rest of the line will be filled with 

blanks.  When you finish typing in lines of text, you should 

fill any unused lines with spaces.  A blank line is defined by 

at least two spaces within quotes: 

11  "  13  R   14  R  15  R  16  R 

Notice that you may string together R's in this case, becaus 

the spaces remain in the line buffer. 

To move a line, you may delete it (D places a line in the 

line buffer) and then use R or I.  For example: 
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23 BLK =   8 D   24 BLK =   1 R 

deletes line 8 of block 23 and replaces line 1 of block 24 

with it. 

Remember that the line numbers are current, ordinal 

numbers.   I and D will renumber the remaining lines in that 

block. 

The last word of program in a block must be 

;s 

This marks the logical end-of-block, and when the block is 

loaded, loading will cease for that block when it is encountered 

It may appear anywhere in the block, though --  anything in the 

block after the ;S will be ignored.   You may want to put 

remarks there. 



AFTER WORD 

If you have read this book carefully, you already under 

stand how FORTH actually works better -(unless you are very 

exceptional) than you understand the FORTRAN compiler you 

are accustomed to using.  Although you may find FORTH's 

conventions strange or awkward for a while,  you will find 

very soon that you can accomplish more wi.th your mini¬ 

computer, in a shorter time, using less core, than if you 

use a conventional assembler. 

We hope that this manual (and a little practice at a 

terminal) will be sufficient to get you well under way 

toward describing your application with a FORTH vocabulary. 

We will greatly appreciate any suggestions you have for 

improving this book. 

As your application develops, you may make substantial 

use of vocabularies developed for other applications, or 

even other computers (FORTH definitions are fairly computer 

independent).  These include double-precision math, trig 

functions, interrupt handlers, multiprogrammers, drivers 

for standard pieces of equipment and many other useful 

routines.  Your inquiries are welcome. 
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APPENDIX A 

Basic  FORTH Vocabulary 

ABS 

BASE 

BLOCK 

CONSTANT 

CONVERT 

COUNT 

CR 

DECIMAL 

DELIM 

Replaces a signed 16-bit integer on the stack 

with its absolute value. 

The base for converting numbers to binary.  May 

be set to 10 by DECIMAL or 8 by OCTAL, or to 

any other value. 

Takes a block number on the stack and replaces 

it by the address of the beginning of the block 

in core, having fetched the block from tape or 

disk if necessary. 

Defines a named 16-bit constant.  A reference to 

a CONSTANT causes its value to be pushed on the 

stack. 

Takes an unsigned 31-bit integer on the stack, 

whose signed value is in N, and converts it for 

printing by TYPE.  Leaves the character count - 1 

on the stack and the character address of the 

number's character string beneath. 

Takes the address of a dictionary entry on the 

stack and replaces it by the character count 

in its name (obtained from the left half of 

the first word of the entry), with the character 

address below, for TYPE. 

Sends a carriage return and line feed to the 

terminal. 

Sets BASE to 10;  numbers converted on input 

and output will be decimal. 

'ihe delimiting character that, defines the end 

of a word.  Normally a blank, it is sometimes 

temporarily changed to " of ) for special 

purposes. 
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DO 

DP 

DROP 

DUP 

ELSE 

EOT 

ERASE-CORE 

FLUSH 

FORTH 

HERE 

I 

IF 

Begin a loop.  Takes an initial counter value 

on the stack and a limit beneath. 

The address of the pointer to the next avail¬ 

able word in the dictionary. 

Discard the top number on the stack. 

Duplicate the number on top of the stack. 

End the true part of a conditional phrase and 

begin the false part.  Compiles a jump forward 

to a THEN (for the true part) and sets the 

address of the forward jump in IF for the false 

part. 

End of input message.  On a TTY, sent by the 

RETURN key. 

Mark both core buffers empty. 

Width of a numeric field for printing.  Num¬ 

bers will be right-adjusted in the field. 

Write any blocks that have been changed from 

core onto disk or tape. 

Removes all of the dictionary beyond the end 

of the object program. 

Push the contents of DP on the stack. 

Push the value of the current loop counter on 

the stack.  Must be used inside a loop. 

Begin a phrase to be executed only if the top 

of the stack is true (non-zero).  Destroys this 

stack value.  Compiles a conditional forward 

jump to an ELSE, or to THEN if the ELSE clause 

is omitted. 
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INTEGER 

LOOP 

+ LOOP 

MAX 

MIN 

MINUS 

MUD 

OVER 

READ-MAP 

REMEMBER 

REWIND 

Define a named 16-bit variable.  A reference 

to an INTEGER causes its address to be pushed 

on the stack. 

End a loop.  The loop counter will be advanced 

by 1, and the loop will be terminated if the 

value is equal to the limit. 

End a loop, incrementing the loop counter by 

the signed amount on the stack.  The loop will 

terminate if the counter value exceeds the 

limit. 

Compare two numbers on the stack, destroying 

the lesser. 

Compare two numbers on the stack, destroying 

the greater. 

Change the sign of the number on the stack. 

Divide the second numoer on the stacK oy tne 

top number, leaving the remainder on the stack. 

Push a copy of the second number on the stack 

on top of the stack. 

Read to the end of file on a tape, constructing 

in memory a map showing what blocks are in which 

record positions on the tape. 

Mark the beginning of a vocabulary, giving it 

a name.  A subsequent reference to that name 

will cause the vocabulary to be removed from 

that point on. 

Rewind tape. 
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SWAP 

THEN 

TYPE 

UPDATE 

WHERE 

WORD 

:I 

; CODE 

;s 

Exchange the top two numbers on the stack. 

End a conditional phrase.  At compile time, 

sets its address as the destination of the jump 

in ELSE, or IF if ELSE is not used. 

Move a character string into the line buffer, 

to be sent to the terminal. 

Mark the block most recently referenced as 

changed.  A subsequent FLUSH, or the need to 

re-use that block buffer, will cause the up¬ 

dated block to be written on tape or disk. 

Print first three characters of the most re¬ 

cently defined word. 

Read the next word (until reaching the character 

specified by DELIM) from the input string, 

leaving it starting at DP with the character 

count in the high order half of the first word. 

Type the number on top of the stack. 

Begin compiling a definition. 

Begin compiling a compiler directive. 

End a definition. 

End a definition and begin a code string to 

be associated with it. 

End the part of a source block to be inter¬ 

preted. 

Put the number on the stack into the dictionary 

and advance DP. 
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1 Push on the stack the address of the parameter 

field of the following word. 

+ Add two numoers on the stack leaving the sum. 

Subtract the number on top of the stack from 

the number beneath, leaving the remainder. 

+- Add the second number on the stack into the 

memory location whose address is on top of 

the stack. 

@ Replace an address on the stack with the con¬ 

tents of that address. 

= Store the second number on the stack in the 

memory location whose address is on top of 

the stack. 

? Fetch and print the contents of the address 

on the 3tack. 

I Equivalent to = (defined for consistency with 

other FORTH systems). 

* Multiply the two numbers on the stack, leaving 

the product. 

/ Divide the second number on the stack by the 

top number, leaving the quotient. 

/MOD Divide as in / and MOD leaving the quotient 

on top of the stack and the remainder beneath. 

*/ Multiply the second and third numbers on the 

stack and divide by the number on top.  The 

intermediate product is 32 bits. 
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0< Replaces the number on top of the stack by a 

1 if it is negative, or 0 if it is zero or 

positive. 

0= Replaces the number on top of the stack by a 1 

if it is zero or 1 otherwise. 

< Compares the two numbers on the stack.  Leaves 

a 1 if the second is less than the top (both 

numbers destroyed). 

> Opposite of <. 


