
FORTH

An Application-oriented Language

PROGRAMMER'S GUIDE

BY

E. D. Rather.§ C. H. Moore

National Radio Astronomy Observatory

$

Kitt Peak National Observarory

Honeywell 316 Version

TABLE OF CONTENTS

Introduction

1. FORTH Programmer's Guide. General discussion of FORTH.

2. The FORTH Dictionary. How it is organized, and how a

dictionary entry is constructed.

3. Stack Manipulation. How the parameter stack is used;

stack handling vocabulary and examples.

4. FORTH Compiler. General rules for making : definitions;

loops and conditionals.

5. FORTH Interpreter. How the inner and outer interpreters

handle words typed at the terminal, load blocks of FORTH

source, compile and execute definitions.

6. Nouns. INTEGERS, CONSTANTS, and more elaborate nouns.

7. Arithmetic. Basic single-precision arithmetic; 14-bit

8^. The FORTH Assembler. Assembler conventions; action of

the assembler and execution of assembled code; interpreter

returns; stack modification; macros.

9. Block I/O. Tape and disk I/O, with suggestions for organ¬

izing data records.

10. FORTH Programming. Suggestions for organizing and testing

an application vocabulary.

11. Text Editor. How to generate new blocks of FORTH source

on tape or disk, and to modify existing blocks.

After Word.

Appendix A. Basic FORTH vocabulary.

Appendix B. Listing of basic FORTH text.

Appendix C. Index to memory locations in object program

and basic FORTH (both octal and decimal).

INTRODUCTION

The only way to learn any programming language or

technique is by using it. This is especially true of FORTH

-- since it is inherently interactive, if you will spend an

hour or two at a FORTH terminal it will instruct you as you

use it. If you wish to become a FORTH programmer, or only

to become familiar with its advantages and disadvantages,

we recommend that you follow these steps:

1. Read this book.

2. Look at the vocabulary lists summarized in Appendix A.

3. Using these lists, the book and your computer manual,

study the basic routines in blocks 3 - 10 in Appendix B.

4. If possible, have a look at an example of a FORTH

application.

5. Sit down at a FORTH terminal and solve a few simple

mathematical problems. Work out a definition or two, type

them in and test them.

This book assumes you have had some programming experience

Portions of it assume that you are familiar with the assembly

language for your computer. If you are not, you will need to

keep your computer manual at hand ... perhaps you will want to

study its basic instruction set before attempting to use FORTH.

1.1

FORTH PROGRAMMER'S GUIDE

FORTH is a programming technique designed for real-time

interactive computer applications, particularly for mini¬

computers. In such an environment it offers several advantages

over more conventional programming languages, such as FORTRAN,

BASIC, and assembler language. These advantages are summarized

in Fig. 1. The concept of a high-level language which is

more core-efficient than assembler language, and very nearly

as fast, may be a bit hard for you to get used to -- perhaps

you will understand the basis for this claim as you become

familiar with FORTH's structure.

The minimum computer configuration for FORTH is shown in

Fig. 2. The applications for which FORTH has been used so far

have included a radio telescope control system and several data

collection systems. Computers for which FORTH systems have

been written include Honeywell DDP-116 and 316, NOVA 800,

Varian 620i and 620f, and IBM 360-50. Since all but the 360

are 16-bit machines, this manual will assume a 16-bit word

length.

FORTH is a language. It is structurally quite different

from other languages, however. To begin with, it has no

separate compiler or assembler -- the routines that generate

and execute machine instructions are always present in the

FORTH computer, along with a small, fast interpreter and a

sort of executive whose characteristics are determined by

the specific application.

LANGU'AGE ADVANTAGES DISADVANTAGES

FORTRAN Familiar
High-level
Handles mathematical
formulae well

Good output formatting
(messages)

Separate compiler
Separate loader
Large program
Slow program
Cannot control special
equipment

Fast program
Can control special
equipment

Separate assembler
Separate loader
Monolithic
Inflexible
Long listing
Machine dependent
Addressing problems
Debugging aid needed
Hard to evaluate
mathematical formulae
Poor I/O formatting
Low level

BASIC Interactive
Somewhat machine
independent

Large program
Very slow program
Limited syntax

FORTH Flexible
Interactive
Small program
Fast program
High and low level
Extremely modular
Somewhat machine
independent

Can control special
equipment

Define function?, on-line
Number conversions easy
(octal, sexagesimal, etc.)

Includes own assembler
compiler
loader
interpreter

Unfamiliar
Poor message formatting
Somewhat hard to evaluate
long mathematical
expressions

Fig.l Language Comparisons

CPU
CAPPLI CATION)

i

Figure 2

FORTH's minimal computer

CORE

TAPE
UNIT

TERMINAL

T.Z

It seems to have 5 main elements that together comprise

it. Take away any one, and you have something that is not

usefuX. There is a. synergistic effect among them that produces

a remarkably powerful combination. Many of the characteristics

and capabilities of FORTH were (and some remain) a surprise to

me.

1. Dictionary

The key element, if one must choose, is the dictionary. A

FORTH program is 90% dictionary. This, as implied by its name,

is a collection of words together with their definitions. We

are trying to explain a problem to the computer, and do this by

explaining what each of a number of words mean. Thus it is a

Man-to-Computer dictionary.

A collocticn of words is ccnmcnly called a vccabulary.

The dictionary defines a vocabulary for the computer. Perhaps

several distinct vocabularies. Indeed, speaking of a FORTH

program is sloppy, for FORTH is the program. An application

coded in FORTH is better called a vocabulary. You load an

editing vocabulary to edit text; an observing vocabulary to

observe; etc. The vocabulary is just that. It is not a program

for it can't stand alone. It depends upon FORTH to do all the

work and merely describes what must be done.

Each defined word has an entry in the dictionary. FORTH

provides the mechanism for searching the dictionary, executing

words, and defining new words. These operations will be

described in a moment.

1.3

2. Stack

Another important and visible element of FORTH is a push¬

down stack for parameters. Some words represent operations;

operations find their parameters on the stack.

In particular, numbers are placed on the stack; constants

are placed on the stack; the addresses of variables are placed

on the stack* results are placed on the stack. All this

happens in a convenient and natural way, and provides an

indispensible tool for describing algorithms.

Another largely invisible stack is also important. It is

used to store return information for the interpreter.

3. Code

Some words are defined by code. That means that they cause

a sequence of computer instructions to be executed. Such a word

is similar to the name of a subroutine. However the analogy is

weak,"for it isn't a subroutine in the technical sense; nor do

you think of it -- or use it -- as you would a subroutine.

4. High level definitions

Some words are defined in terms of other words. Thus they

are a sort of abbreviation. However, again the analogy fails,

for such definitions are much more powerful than the notion of

abbreviation conveys. In fact, perhaps 90% of the words in a

vocabulary are definitions. These are computer-independent.

5. Blocks

The final element of FORTH are its blocks -- chunks of

secondary memory 1024 bytes (512 wojds) long. A block may

1.4

contain source code -- the text that defines words; or it may

contain the data that justifies the computer. Whatever, it

has been chopped into fixed-length chunks and assigned a

number -- usually between 0 and 511. You may load programs

from blocks, or place data in blocks, as if the blocks were

core. FORTH provides the I/O required to access them auto¬

matically. This form of virtual memory provides a very great

service -- at a very small cost.

Keyboard Input

FORTH is a terminal-oriented language. It demands the

subtlety of expression that only a keyboard can provide. A

FORTH application may well have a vocabulary of several hundred

words. Of these, maybe 20 will be of direct interest to the

The input that FORTH wants is simple:

words separated by spaces.

In order to permit changing your mind, and correcting errors,

it recognizes:

EOT to mark the end of a message.

DEL to erase a letter.

NUL to cancel a message.

This is as simple a way to communicate as I can devise. It

does cause some trouble: People may forget to type EOT

fail to space between words, or don't know whether to spell the

word

GOODBY, GOODBYE, or GOOD-BYE.

But these are just conventions that must be learned.

1.5

Internally, FORTH represents characters with 7-bit

ASCII code and even parity. This is an extremely important

convention, as it permits effortless compatibility between com¬

puters. If you have a non-ASCII device, the character-conversion

cost is properly assigned to the device. Likewise, parity is

much easier to discard than create; a non-parity device (teletype)

should bear the cost of providing it.

In the chapters to come we will discuss the basic

elements of FORTH in more detail, and describe the process of

developing a FORTH vocabulary for your application.

2.1

THE FORTH DICTIONARY

The dictionary is a linked list of variable-length entries

It grows toward high core, and each entry points to the one

that proceeds it. The beginning of the last entry is pointed

to by the variable HEAD. It identifies the head of the chain

to be searched. The end of the last entry -- the next avail¬

able word --is pointed to by the variable DP (Dictionary

Pointer).

The dictionary is searched by following the chain until

a match is found, or the bottom reached. This organization

permits a word to be redefined, since the latest definition

will be found first.

As-Figure 3 shows, the dictionary can be rather naturally

divided into three parts:

The object program contains about 30 words from which

all other words can be defined. It is difficult,

and normally unnecessary, to change these words.

The FORTH vocabulary is compiled when you load FORTH.

It -is common to all applications, and though you

may change it as you wish, you probably won't.

The application vocabulary contains those words peculiar

to your application. You will be changing, re¬

arranging and adding to this vocabulary continuously.

From the point of view of the search algorithm, these

vocabularies are indistinguishable. However, you can dis¬

tinguish them -- and other subvocabularies -- by being able to

Avai\abk

HEAD

OBJECT FORTH APPLICATION

Figure 3

FORTH Dictionary

A compiled dictionary contains segments of logically related
definitions, which in turn may be thought of.as divided into
three major groups.

2.2

discard them. For example, you might discard one application

vocabulary and replace it with another.

The essential structure of all dictionary entries is the

same regardless of the type of entry (nouns, verbs, etc.). The

first two words contain the count of the number of characters

and the first, three characters of the word. Note that although

this gives you far more flexibility in naming words than a simple

limit on characters, it does require uniqueness in the first

three characters of words of the same length. Note also that

any characters you can type on your terminal are valid for use

in words being defined.

The third word contains the location of the first word

of the next previous entry. This is to facilitate searches,

which start at the "recent" end of the dictionary and work

back. This searching order is necessary in order that the

most recent definition of a word will be the one used. Also,

since in a developed application the user is dealing with

the highest level of the program, it optimizes search time.

The high order 2 bits of the link word contain a flag called

"precedence": It identifies a few special words, such as com¬

piler directives. It is zero for most words.

The forth word contains a pointer to the code to be

executed for the definition. This code address depends on

the type of word:

For a CONSTANT, the pointer refers to code that puts the

value of the constant (which is in word 5 of the definition)

on the stack.

„A
/!

■■•..--JW

PRECEDENCE LINK

71
fif'-'^.-^v

Jf

Figure 4

16-Bit Dictionary Entry Format

2.3

For an INTEGER, it refers to code that puts the address

of the value (again, word 5) on the stack.

For a : definition, it points to a portion of the inter¬

preter, which will begin following a string of addresses be¬

ginning in word 5 and continuing until the ; which terminated

that definition is found.

For CODE, the pointer is to word 5, which contains the

beginning of the code, which is simply executed directly.

Other kinds of entries have code addresses that point to

the appropriate code.

The fifth and subsequent words are sometimes called the

"parameter field", which is of variable length. CONSTANTS

and INTEGERS keep their values in word 5, as noted above.

latter cases, the length of the parameter field is either

determined by the type of noun, or is kept in one of the early

words in the field.

Figure 4 shows a diagram of the dictionary entry format

for 16-bit computers. Similar diagrams of specific types of

entries will be found in subsequent chapters.

STACK MANIPULATION

An increasing number of computers and desk and pocket

calculators nowadays base their logic on a parameter stack.

FORTH has a parameter stack that increases toward low core.

There is a pointer to the word holding the number currently

"on top of the stack" called SP.

To add a word to the stack, the pointer is decremented,

and the number placed in that word. To remove a word from

the stack, the pointer is incremented.

If you type a number on your terminal, the number will

be converted to binary and placed on the stack. Typing .

(period or decimal point) will cause the binary number on

top of the stack to be converted to numeric characters

and printed on the terminal. Most FORTH words expect one

or more parameters on the stack (including words in the

assembler), so you must make sure that they are there, and

that they are in the proper order.

Figure 5 shows the result of typing a sequence of words

Recall that a word is "separated by spaces". There are no

special characters in FORTH, so that ? and §#$!<£ and 4th are

all perfectly good words. Several of these words deserve

comment:

is the replacement operator. It expects 2 para¬

meters on the stack: an address on top and a num¬

ber beneath. It stores the number at the address.

FORTH Stack

Example You type: Action

(1) 4 5-+ 4 Number 4 converted to binary
and pushed on the stack.

5 5 converted and pushed on
the stack, over the 4,

+ 4 and 5 replaced by 9.

(2) 17 X = 17 17 on the stack (over the

X Address of X (which was
previously defined as an
INTEGER) pushed on stack.

17 stored in X; both 17

from stack.

(Remember 9 is still on
the stack from Ex. 1)

(3) X § * X Address (X) pushed on
stack.

§ Address replaced by con¬
tents (17).

* 9 and 17 replaced with 153.

153 typed on terminal.

Figure 5

3.2

Thus the FORTRAN statement

X = 17

in FORTH is

17 X =

6 is an operator that fetches a value. It expects

an address on the stack; it replaces it with the

content of that address. § is an extremely im¬

portant operator. It distinguishes between loading

and storing a value into a variable; a function

FORTRAN accomplishes by context --in one particular

way.

is an operator that types the number on the stack

(ana discards it).

These operators have been assigned single character mnemonics

because they are used so often. Although their mnemonic

value is weak, they are worth learning.

Similarly, + adds the two numbers on top of the stack,

replacing them by the sum; - subtracts, etc. Refer to the

vocabulary in Appendix A for a fuller list of the operators

available.

Several words have been defined in basic FORTH for

manipulating the stack. The operation of these words is

summarized in the table. A fairly standard set of more com-

Stack Manipulating Words

Example

Explanation Before Operator After

)RTH words (may be used in definitions or in CODE)

Top Top

fAP reverses order of top 2 entries 1 2 SWAP 2 1

UP reproduces top entry 1 DUP 1 1

OP discards top entry 1 2 DROP 1

3.3

plicated stack operators is available in some developed appli¬

cations, for such things as double precision numbers, fetching

numbers several levels down in the stack, etc.

The order of parameters on the stack is governed by

several fairly well-defined conventions:

1) Numbers are always pushed onto the top of the stack

or popped off the top. Thus, if you type 12 3 the

top is the right-most (or most recent) number. If

you print these, the result will be

.3 .2 .1

2) A "store" operation (= or !) operates from left to

right (or entry 2 into entry 1), i.e.,

3 SEC =

stores 3 in SEC.

3) Double precision numbers are always placed on the

stack with the high order part on top and the low

order part beneath.

4) Multiple-parameter arithmetic operators use an order

such that if the operator were moved from a suffix

position to an infix position the operands would be

in their customary position. Thus:

A B - is equivalent to A - B

A B C */ is equivalent to (A * B) / C

3.4

5) An operation will destroy all its input parameters

and leave only its results (if any) on the stack.

It will, of course, destroy no more than its own

parameters. Thus

12 3+ will leave 1 5

All routines developed for an application should adhere

to these conventions.

The stack is located in high memory and extends toward

low memory. Unused core is defined as the area between the

high end of the dictionary and the top of the stack. The

size of the stack is limited only by this amount.

FORTH checks for stack underflow and overflow (since over

flow can occur only when memory is full; it normally is not of

concern). If either occurs, the error message is

[operator] ?

where the operator that failed to find or place a needed para¬

meter on the stack is given.

The stack is by far the best place to use for temporary

storage, since stack accesses are faster and specific core

allocation is not required -- the dictionary entry for a one-

word number costs an extra four words of overhead. In parti¬

cular, the stack is an excellent place for saving the contents

of a variable which must be changed temporarily. It will take

a while to become comfortable using the stack, but when you do

you will be impressed by its convenience and economy.

4.1

FORTH COMPILER.

The FORTH Compiler is very small and simple -- it is not

in any sense comparable to, say, a FORTRAN compiler. But it

does make the task of writing inter-related routines extremely

convenient and straightforward, and allows as much control over

logical flow as one needs even for very complex applications.

The basic form of a definition is

: word other words ;

Many examples are available -- just look through the basic pro¬

gram listing. The syntax is as simple as possible. The first

word following the colon is the word being defined. There is

no punctuation except for the : and ; ... words are separated

by spaces. Literals may be used anywhere, as long as they are

in a recognized form. (See "numbers").

The cardinal rule that must be followed is this: YOU MAY

NOT USE ANY WORD THAT HAS NOT BEEN PREVIOUSLY DEFINED. Remem¬

ber, this is a 1-pass compiler. The same rule applies to the

assembler. This means that forward references (except in case

of the IF ... ELSE ... THEN construction, which we!ll get to

shortly) are not allowed. This may require you to modify your

programming style, but it is not a serious inconvenience.

The action of the interpreter in compiling definitions is

discussed under "Interpreter". After the basic four word

standard dictionary entry heading come a string of addresses

of the words that form the content of the definition. These

may be addresses of code entries or other : definitions --it

?M<AMTER
F!FI D

Figure 6

Dictionary entry for : DECIMAL 12 BASE

(Stores 12r, in the variable BASE)

doesn't matter. Somewhere at the top of the chain, of course,

is code which will be executed. Literals require two words:

the first being the address of LITERAL, a short routine that

pushes the contents of the second on the stack. You should

bear this in mind, and define as a CONSTANT any literal that

you find yourself using often.

1 CONSTANT 1

has already been defined for you -- use of "1" in a definition

adds only 1 word (the address of the 5-word definition 1) in¬

stead of two. Figure 6 shows the dictionary entry for a simple

definition.

Since FORTH encourages extreme modularity, your control

of logical flow will mainly be through appropriate management

of previously defined words in a definition. In addition,

FORTH supplies words for forming loops and f.rc - trar.ch oo-di

tionals.

LOOPS: Loops are constructed using the FORTRAN-ish word

DO (which expects two loop parameters on the stack and two

ending words: LOOP (which increments the loop counter by 1)

and +LOOP (which increments it by the [signed] amount on the

stack). The two DO parameters are the limit (upper or lower)

of the loop beneath and the initial value of the counter on

top of the stack. Both LOOP and +LOOP compile a conditional

return to the location of the DO. When the counter is in¬

creasing, the loop terminates when the limit is reached.

When the counter is decreasing, the loop terminates when the

limit is passed.

The loop parameters are not kept on the stack during the

loop. The limit, in fact, is not accessible during the loop.

The counter may be accessed using the word I, which places

the value of the counter on the stack. Remember that I is a

verb! Do not use it as a variable. The counter may not be

changed except by the LOOPs. In nested loops, I provides the

counter for the innermost loop.

Here are some examples; try to figure out how each works,

referring to the vocabulary in Appendix A for unfamiliar words

You may find it helpful at first to keep track of what's on

the stack on a piece of scratch paper.

(1) : SUM 0 101 1 DO I + LOOP ;

adds the numbers from 1 to 100 and leaves the

result (5 500) on the stack.

(2) : SQUARES 0 SWAP 1 + 1 DO I DUP * +

LOOP ; 6 SQUARES

adds the squares of numbers from 1 to 6.

(3) : PRINT 0 DO I 1 + . LOOP ;

10 PRINT

types the integers from 1 to 10.

(4) : PRINT DUP 0 DO CR DUP I 10 + MIN

0 DO I . LOOP 10 +LOOP DROP ;

103 PRINT

prints the numbers from 0 to 102, 10 per line.

(5) A non-trivial example of a loop is the Euclidean

algorithm for the greatest common divisor of two

integers:

4.4

For a>b, a~qb+r

If d divides a and b it must also divide r

Then GCD (a,b) = GCD (b,r)

The process terminates with r = 0

Suppose a and b on the stack:

: GCD 1 0 DO SWAP OVER MOD

DUP 0= +LOOP DROP ;

The loop parameters are kept on the return stack, which

also contains return addresses for the interpreter. DO and

LOOP must be in the same definition. Likewise, I may only be

used in that definition (since entering another definition

modifies the return stack). Within these restrictions, keeping

these numbers on the return stack does not interfere with the

interpreter's use of it, and the parameter stack is not

cluttered by their presence. It is recommended that you study

the way DO, LOOP and +L00P are coded for your computer, because

you may wish to code additional related words for your appli¬

cation. Three which are now available on the 316 are:

*L00P - multiplies the loop counter by a specified

amount (similar to +L00P)

£J push the counters for second and third outer

loops on the stack (similar to I) - useful

for matrix operations.

These are not implemented in basic FORTH because of their

specialized usefulness.

4.5

CONDITIONALS: FORTH offers a convenient one --or two --

branch IF. Its use is given in this example:

0 INTEGER S 99 CONSTANT LIMIT

: SLIM S § LIMIT > IF 100 ELSE

S 6 1 + THEN S = ;

This takes an integer S, which is initialized to 0 but whose

value may change in use, and compares it to the constant limit

of 99. If the limit is exceeded, S will be set to 100; other¬

wise, it will be incremented by 1. The word IF compiles a

conditional forward jump dependent on the top of the stack being

zero (false). The destination of the jump is not known at the

time the jump is compiled, but the address of the jump desti¬

nation is left on the stack. When ELSE is compiled, its lo-

VCl-l._l_v.ll. J-»^ •^ O », Ci-^> Cixw v^.v~_>v-."-.n.<_«.v.-^^i..». •«^— — * -^ j „...£. j ___ _ _ _ '_

ditional forward jump is compiled -- its destination to be

similarly supplied by THEN. THEN terminates the conditional,

as it compiles no jump. The ELSE clause may be omitted en¬

tirely. Note: Every IF must be followed by a THEN.

Remember that the IF will jump to ELSE or THEN if the

top of the stack contains zero (false). Therefore, the IF

inherently contains an "equal to zero" test. Remember also

that IF will destroy its parameter (the condition), like all

FORTH words. You thus may want to include a DUP in your

definition:

X 6 DUP IF ("If X is zero, ")

Several words have been defined to perform other tests for IF:

0< Replaces a number by 1 if the number was negative,

4.6

0 if zero or positive.

< Replaces two numbers by 1 if the lower is less than

the top number.

> Opposite of <.

Memory usage and timing:

The length of a : definition is very easy to determine.

The colon and word generate the dictionary entry, which gives

an overhead of four words. Thereafter, add one word for every

defined word in the definition, including the semi-colon, and

two for every literal. Timing is more a function of the

execution time of each word in the definition than their num¬

ber -- only you can estimate that "J*-- but you must add the

interpreter cycle overhead for each word, which is 12/is

on the 316. Tf you are trying to decide whether to define a

word separately or include its functions in other definitions,

you can assume that you break even in memory space if you will

use the defined word two - five times*, and will save (length -

1) words for every subsequent usage. The cost in time will

be 1 interpreter cycle per usage -- not very much for what

can be an extremely great saving in core.

tTypical times for simple operators such as +, -, stack operations,
@, =, etc. are around 22 s\is.

* Total length: 5 6 7 ^8
Uses to break even: 5 4 3 2

5.1

FORTH INTERPRETER

Everything FORTH does is controlled by its interpreter,

and everything you will do using FORTH is therefore also con¬

trolled by the interpreter. The interpreter itself is quite

small. But it controls several routines that are invisible

to the user that do quite a lot for you, including number con¬

versions, dictionary searches, generating dictionary entries,

managing the stack, etc. Some of these functions are very

intricate. Many of them do not have to be understood by a

user or applications programmer, and I will not attempt to

explain these in detail here. If you are interested, however,

please inquire. In this chapter I will explain what the in¬

terpreter does for you, and how you will use it.

I- TnteT'DT*711Tnc & d-vi-no- of w^rds t'vr^k0d at ■'"he •»-«-**«"£-»~2. . . —-—'.—z—zi ? I *—* 1 : * r. .',"

Your main communication with FORTH is through a terminal. You

type one or more words and they are interpreted and obeyed.

If you have requested something to be typed out, it will be;

if you have asked that something be done which requires no

typing, FORTH will reply OK when it has done it. If you send

a null message, in fact, FORTH will cheerfully reply OK.

The operations that have been performed are the following:

1) A word is taken from the terminal line buffer. (Remember,

a word is a character string bound by spaces).

2) a. If it is a word which can be found in the dictionary,

the code for that word is executed,

b. If it is a number, it is converted to binary and

pushed on the stack.

c. ix ncitner of the above is possible, the word

is sent back to the user with a ?

3) Following successful completion of 2a or 2b, the in¬

terpreter continues on to the next word, if any. At

the end of the string of words, it says OK.

Therefore, you may string together a number of commands.

But - if at any time you ask that something be typed back to

you, or if the string is aborted (2c), the line buffer is de¬

stroyed, and interpreting ceases.

II. Interpreting source blocks. If you type a load command,

like

3 LOAD

the interpreter operates in a slightly different mode, since in

the process of executing the word LOAD it must interpret words

in a block read from disk or tape, rather than the terminal

line buffer. It keeps track of what block it is taking its in¬

structions from; the terminal, for this purpose, is "block 0".

The only differences in interpreter behavior between operating

on "block 0" and any other block are (1) that only "block 0"

gets an-OK on completion; (2) ..interpreting in other blocks ceases

when ;S is encountered. Note that, just as "block 0" is

loading a block, that block may load other blocks.

III. Compiling definitions. If the interpreter encounters a

command, it will be executed. Defining words (such as : CODE,

CONSTANT, etc.) are commands whose execution causes the inter¬

preter to behave in a special way. The generation of CODE

entries and nouns is discussed elsewhere in this manual ("Assembler"

and "Nouns"). A colon not only generates the beginning of a

dictionary entry for the word immediately following the colon.

it also sets a flag for the interpreter. Thereafter, the

words in the definition will not be executed -- their addresses

will be placed in the dictionary entry being compiled. This

flag will be reset by the ; .

IV. Executing definitions. The code address for : definitions

points to a routine which at executing time sets the compile/

execute flag (called STATE) to "execute", sets the instruction

counter (IC) to the parameter field of that definition, and

jumps to NEXT. NEXT is the most fundamental routine of the

interpreter -- the basic loop that goes on to the next word,

controlled by IC. When a : definition is being executed, the

interpreter is going down the addresses supplied in the defini¬

tion, and going off to execute whatever is at those addresses. Of

course, these addresses might point to other : definitions, and

so on, so the code for : saves the current IC on a special push-

down stack called the -'rerurn srack." The code for ; therefore

resets IC from the top of the return stack before returning to

NEXT. Of course, at the top of any of these chains of pointers

is a CODE definition, and all CODE definitions also end with a

jump to NEXT (often after passing through stack manipulating

routines).

It is clear, then, that the greatest overhead in running

FORTH is in this interpreter loop, and great pains have been

taken to code it as tightly as possible.

NOUNS

A most important aspect of FORTH is its ability to define

new words. New definitions and code are devised continously.

Likewise, new constants or variables are created. However,

a more challenging and significant kind of creativity is in¬

volved in the definition of new kinds of words. Not defini¬

tions or constants or any other kind of common word, these

can share the attributes of both nouns and verbs. But since

they are mostly used as nouns, I shall refer to them as such.

A new kind of word may be defined by writing a definition

that includes the verb CONSTANT. CONSTANT takes a value on

the stack, reads the next word from the input string and con¬

structs a dictionary entry for it initialized to the value on

the stack. When used in a definition, that definition must

be terminated by the word ;CODE (instead of ";"). ;CODE

completes the dictionary entry by beginning a code string

which follows immediately, and changes the code address of the

word to point to this code string. In a real sense, ;CODE

combines the functions of the separate words ";" and CODE.

For example, the definition of INTEGER for the 316- is

: INTEGER CONSTANT ;CODE 0 LDA^ ONE 3 + ADDj PUSH

Given that definition, the phrase

0 INTEGER M

then acts as follows: The word

INTEGER - executes the definition, wherein

z:
LINK

»crmTTT3c|^

4£&
t i

t^**^Tf—T^''^-'-**J',Vinri'rfi—I—r r-rn-ri \m M'I II "I T"* n i ■ ■ ■*
/m^tr*-'*??

r r^/^ owro STACK

Figure 7.

Dictionary entry for

17 CONSTANT NUMBER

6.-2

CONSTANT - reads the word M and constructs a dictionary

entry for it, with the exception of the code

address for M. The value of the parameter

field is initialized to the value on the stack,

in this case 0.

;C0DE completes the entry for M by supplying the

code address -- the word immediately following

;CODE. V/hen ;C0DE is compiled, there is no

code there -- nor any guarantee there ever

will be. You must put some there.

0 LDA generates the first instruction that will be

executed for M (or any other integer). When

a code definition is entered, the B register

contains the address of the first word of the

definitions. TBA transfers the address of

the first word in the dictionary entry for M

from B to A.

ONE 3 + ADD,

PUSH

increments that address to the location where

the value of M is stored.

jumps to code that puts that address onto

the stack.

Every time an INTEGER is defined the definition is exe¬

cuted.

Every time an INTEGER is referenced the code is executed,

The definition of what INTEGER does is the same on all

FORTH computers; the code of course varies with the computer.

1 ONE begins an array of useful integer values. ONE 3 + is 4

6.3

INTEGER is only one kind of noun. Other kinds of nouns

can be easily imagined: REAL, COMPLEX, VECTOR. Most nouns

share the property that they place an address onto the stack.

But I would like to suggest some more elaborate nouns.

Consider first the distinction between INTEGERS and CON¬

STANTS. Referencing a CONSTANT places its value onto the

stack; referencing an INTEGER places its address here. However,

auxiliary verbs permit using either in an equivalent way:

Given

7 CONSTANT A 7 INTEGER M

If I say M @ or A

I get the same result, 7 placed onto the stack. Similarly,

if I say

M or ' A

I get the same result -- the address of a location that con¬

tains 7 (the verb ' provides the address of the parameter

field of a word. The difference between

CONSTANT and INTEGER is one of usage -- CONSTANT automatically

provides the verb @.

This suggests that we might provide a noun that automati¬

cally provides the verb =, another verb often associated with

INTEGER. It can be a very effective construct.

I will discuss in a moment a noun that provides an auto¬

matic subscript. Often you want to use a noun as a switch, and

an efficient, convenient way of changing it is helpful. So

6.4

I defined a kind of noun modifier called SET: Given a switch

called FLAG, defined 0 INTEGER FLAG

0 FLAG SET AZ 1 FLAG SET EL

SET constructs a dictionary entry which will behave in the

following way: Whenever I reference AZ, the constant 0 is stored

into FLAG. Similarly, I can name any value of FLAG, or any

other variable, and establish that value by typing the name.

Of course, there are other ways of accomplishing this same effect:

AZ 0 FLAG = ;

is completely equivalent to the above. But it is considerably

less efficient, both in space and time (15 us vs_ 92 us). A

noun modifier such as SET simply extends the basic philosophy

of FORTH: to define those words that are convenient to describe

your problem.

A more elaborate noun is one I call VECTOR. Referencing

a VECTOR places an address onto the stack: the address of the

first work in the vector plus the contents of a noun, (), which

is a general subscript. The definition of VECTOR on the 316

would be very similar to that for INTEGER:

0 INTEGER ()

: VECTOR CODE ;CODE () LDA, 1 ALS,

ONE 3 + ADD

The word CODE is used in this instance to set up the dictionary entry

instead of CONSTANT because CONSTANT requires an initial value

and CODE does not. Thus the value of the vector is not initialized

by the definition. It is simpler to initialize the VECTOR

explicitly to the proper length:

VECTOR X 0 , 0

In conjunction with SET this leads to some pleasant notation.

1- The operator "," enters a number on top of the stack into
the dictionary.

If I define 0.5

0 () SET LAT 1 () SET LONG 2 () SET BEARING

VECTOR SIN 0,0,0, VECTOR COS 0 , 0 , 0 ,

and store values in the arrays SIN and COS, I can reference the

respective values by saying

LAT SIN BEARING COS LONG COS

in a natural manner.

An even more intricate noun is invaluable for evaluating

expressions involving constants. I call it POLY (after polyno¬

mial) and will give an example to show its use:

4 POLY PRIME 2,3,5,7,

POLY acts like CONSTANT in that it provides a value rather

than an address. The first time I say PRIME I get 2 on the

stack; the next time 3; then 5; then 7; then 2 again. Each

reference to PRIME gets me the next value in closed circle.

The number 4 above advises of the size of the circle. Another

word is used to keep track of the present position.

A more practical example might be evaluating a polynomial:

5 POLY K --,--,...

If I say

KX*K + X*K+X*K+X*K +

(or the equivalent in a loop) I have referenced K exactly 5

times, extracted the values I wanted in the proper sequence,

and reset K in anticipation of my next evaluation. All with¬

out explicit subscripts or any other notational baggage.

6.6

A noun analogous to POLY that provides addresses instead

of values I call ARRAY. It is extremely useful for storing and

retrieving values into an array in sequence. Yet another kind

of noun that is useful is one which provides an array auto¬

matically subscripted by I, which fetches a current loop index.

I hope that I've shown that different kinds of words can

be usefully defined. Basic FORTH provides only CONSTANT and

INTEGER, but standard definitions of most of the nouns dis¬

cussed here are available. If you encounter more than one

instance of a particular kind of noun, or use such a word fre¬

quently, it can pay off in convenience, efficiency and elegance

to name and characterize those properties that make it unique.

7.1

ARITHMETIC

It is routine to implement the ordinary arithmetic

operations in FORTH. The problem is to decide which will

be useful and exactly how they should act. Keep in mind

that these operations are much too elementary to be of value

in themselves; but they form essential building blocks for

later definitions.

A characteristic of elementary operations is that there

are usually machine instructions that perform them. To embed

such an instruction in code so as to make it accessible adds

significantly overhead, easily 5 times the instruction execu¬

tion time. But keep in mind that our purpose is to make these

instructions readily executable on arguments conveniently

found on the stack. The value of accessibility versus efficien¬

cy is strongly in favor of the former, since we are viewing

the computer from the other side of a keyboard. You can al¬

ways construct code for an inner loop where efficiency is a

problem. Furthermore, the use of definitions results in very

significant savings in core.

Certain operations are absolutely essential, as can be

verified by their frequency of use:

Op. Example Description

leaves A+B on the stack.

leaves A-B on the stack.

leaves A*B on the stack.

Example

A B +

A B -

7.2

/ A B /

A MINUS

leaves A/B. on the stack,

leaves -A on the stack.

(Notice that the order of the operands for - and / [non-

commutative operations in general] is such that if the operator

were moved from a suffix position to an infix position [A B -

to A - B] the operands are in their customary positions. Such

a mnemonic aid is essential to help recall the order of argu¬

ments.)

Op.

MAX

MIN

ABS

/MOD

MOD

Example

A B MAX

A B MIN

A ABS

A B /MOD

A B MOD

SIGN A B SIGN

Description

leaves the greater of A and B
on the stack.

leaves the lesser of A and B
on the stack.

Replaces a number on the stack
by its absolute value.

T} n ■">• 1 1 -»".> C: "?• ^-1 fv m \ /-> •!• * r< . i -f .-' '•'•■ *■/-•%-• - /*
ixv L- «_A a. .11 O i-jlv \,it-l_»i^a.Vxu.U V_»ii ov^u^ ^-»J_

the stack and remainder be¬
neath after division.

Leaves the remainder after di¬
vision on the stack.

Give A the sign of B; if B is
0, replace A with 0.

Many other operations could be added. Some of these can

be defined in terms of those above. If that is awkward or

inefficient, code can be written for them. Remember that we

are dealing with 16-bit 2's-complement numbers. This provides

integers from -32768 to 32767. Another number format that is

useful is 14-bit fractions. It can provide numbers from -2.0000

to 1.9999. The above operations work for such numbers, with

the exception of * and /.

7.S

*, product of 2 arguments, one of which is a fraction

(shift left 1).

/, quotient expressed as a fraction (dividend shifted

right 1).

These are useful operations. You must watch out for the size

of arguments .in division (quotient 2). The product works for

fraction*integer or fraction*fraction. The quotient works

for fraction/fraction or integer/fraction or integer/integer.

Fraction/integer should use the integer divide.

The notation is a compromise. A better convention would

be *. and /. where the point symbolizes the decimal in the

fraction. However, that is used by the double-precision opera¬

tions in most applications. I compromised by replacing the

point by a comma, recalling European custom, although the

comma is badly over-worked. You are free to redefine them, of

course. If you use them a lot (and don't need the integer

operations) consider:

••//,;

Two trinary operations are valuable if you do any extensive

arithmetic:

*/ ABC */ leaves (A*B) /C on the stack

+* A B C +* leaves A + (B*C) on the stack

+*is completely equivalent to * followed by +, but the com¬

bination occurs so frequently that the added efficiency of

combining them is welcome. */ is a natural combination since

the double-precision product in the A and B registers is per-

7.4

fectly positioned for the divide. In general, you get better

precision by the combination than by separating the operations.

As an example of the value of the */ operator, the

following definitions might be used to implement fixed-point

decimal arithmetic (4 decimal places) as opposed to the fixed-

point binary arithmetic discussed above.

: * 1.0000 */ ; : / 1.0000 SWAP */ ;

The numbers in this case are integers with an assumed decimal

point 4 places from the right, and can represent fractions be¬

tween -3.2768 and 3.2767 with no decimal-binary conversion

error. Such arithmetic is perfectly reasonable, the extra

cost of the scaling being completely negligible. However, it

doesn't generalize to double-precison very well.

Numbers.

As previously noted, numbers typed at the terminal or

encountered in a block being loaded are converted to binary (from

base BASE, usually 8 or 10) and pushed on the stack.

This is done by a single routine called NUMBER. NUMBER

follows the following conventions:

1. Positive numbers are unsigned, negative numbers have

a leading minus sign.

2. Legal digits are 0 through BASE - 1.

3. Single precision integers may run from -32768 to 32767.

4. A decimal point encountered anywhere in the number

causes the number to be converted as an un-normalized double-

precision (31-bit) integer, in standard Honeywell double-precision

7.5

format, and pushed on the stack with the most significant

part on top. The variable D in this case will contain the

number of digits found to the right of the decimal point.

5. A colon encountered anywhere in the number will

cause the rest of the number to be converted as a sexagesimal

number. Thus, 30:00 will be converted as 1800.

Remember that a word will be looked up in the dictionary

first, and NUMBER will attempt to convert it only if the

dictionary search fails. This enables the user to define

commonly used literals (such as 0 and 1) as CONSTANTS, thus

saving space in definitions. As a side benefit, you may

define any kind of word with a "numeric" name ... for example,

a precession routine might define 1950.0 to be a verb which

precesses 1950 coordinates to current nositions.

8,1

THE FORTH ASSEMBLER

FORTH can assemble machine-language definitions of words.

Among the many examples in the basic vocabulary are the arith¬

metic operations.

+ - * / MOD MAX MIN

The assembler is not intended for conventional programs.

Additional words would be needed for that -- as in the BOOT¬

STRAP vocabulary for recompiling FORTH.

Words defined by the assembler are CODE entries. They

have a standard dictionary entry with the address field point¬

ing to the next word (the parameter field).

The instruction mnemonics are operations - they compile

the instruction and address (if any). As usual in FORTH,

operands (addresses) precede operations (instructions). De¬

pending on computer, several kinds of instructions and address¬

ing are possible:

CPU instructions have no address. They assemble a 1-

word instruction

MR instructions have a memoTf address. The address

may have to be adjusted before the instruction code is

added and the address must be in page o or the current page

I/O instructions have a device address.

S instructions are shift instructions, and allow insertion of

the length of the shift.

5. I

In definitions (beginning with :) the placing of parameters

on the stack and retrieving them from it is automatic -- only

such words as SWAP, DUP and OVER are normally used. CODE,

however, requires that parameters be handled explicitly, using

S) and the returns that push or pop the stack (see "Assembler").

It is necessary, when you are using CODE, to separate in your

mind the way you are using the stack at assembly time and at

execution time. The words in a CODE entry are executed at

assembly time to create machine instructions which are placed

in the dictionary to be executed themselves later. Thus,

HERE 2 - LDA,

at assembly time places the current dictionary location on

the stack (HERE) and decrements it by 2. This number is then

the parameter for LDA, which assembles a machine instruction

which is tne equivalent of

LDA *-2

in conventional assembler notation. Similarly, such words as

SWAP and DUP are executed at assembly time in CODE, and com¬

piled into the dictionary in definitions.

These mnemonics are used to indicate various relative

addresses:

1) index register

0) indirect address

8.3

S) Stack pointer (indirect through SP)

What effect these words have depends on the instruction.

On some they set the address; on ethers they set the

indirect or indexed bits.

For example:

CODE + S) LDA, SP IRS, S) ADD, PUT

will add the top two numbers on the stack and leave the sum

on the stack replacing the two numbers. The action of the

assembler in constructing a CODE entry is given in Figure 8.

The resulting entry is given in Figure 9.

RETURN: Code must end with a jump to the interpreter

(NEXT). Several addresses are available which modify the stack

before returning to NEXT: these are summarized in Figure 10.

All of these words except NEXT contain code for checking

stack underflow or overflow. Therefore, you should always

end CODE definitions which modify the stack with one of

these words. Examples of all of these are in the basic voca¬

bulary. A computer with single-word jump (such as the 316)

includes the jump code with these words.

STACK: Most parameters come to code entires via the stack.

On the 316, the pointer to the top of the stack is in the

variable SP. Since the top is most often referenced, the word

S) refers to it directly:

S) addresses the top of the stack j^SP o)J

For more complicated references, you may wish to put SP in loc.O

(for indexing).

►d > co 1—4 CO
o v^^ ^d TJ

>

CO

o

o
w

+

CO

>

CO

CO

CO

>

H
Q

CO

rt W t, O
O rt tT" O

ss o o ^
tn K'^H-
X J-4

>-3 C7*H CD
* vj CD in

r+ >-* P
^ P
<D O *-,»

CD C
W 3

o

CD O

*d 3

o o
H-) CD

H
>

O p

tr4 H
CD

OQ
O
CD

r+ O

CD rt

y
CD

n CD
pf to

O
n >cJ
o •

^d o
H' O
J-1 Pa
CD CD
W

Hi
H O
CD H

C >

a.

r+
O

O
Hi

CO

3
CD

P>
0 W
3
rt- P
CD CJ1

Pa O
• <

CD

3
O
r+
CD

r+

P
rt

CO

P
w

o*
CD
CD
3

O
O
3

I-1

CD
C/i

W
r+
H
C
O
rt
H*
O

rt
O

H«

O
H
CD
3
CD

rt

CO

>

H
CD
(A
Ui

O
Hh

CO
^d

o

w
rt
P
o

P
3 o
p 3
X w o
*• rt to

P
POO

<- ~ .
P
3 o o
o o o
o 3 P*
tn »tj CD

H»
tJ t-» Hi
^ CD O
• 01 ^

o a

I-1

ft p

H- P.
3 0)

P* 3
H- C
O 3
rt cr
H- CD
O H

Hi t-1

O CD
H P

<
CD

CO W

P

o
H

•-xp,

3 O

H'
H rt
CD ^r
O'CD
rt

. to
rt- rt
J^ P
H O
o ??
C

0q Si
& H«

rt
CO ^

CJ*
H*
rt
03

>
O
>-}
j_j

o

a

n-
o

>
CO
CO
td
S
to

K

G
H

f:
3
in

rt
O

a

o y >
HiC Pa

3 eu
. CD H

H CD
b-*

O P
3 rt

0
03
rt
P
O rt
?? O \—/

CO
rt ^d
O

/—v

O rt
o o
3>d
rt
CD

r+
to

O

Pa
03

rt >
O

CD
O H*
Hi P

rt

^<
CD CD

03 rt
rt O
P
O CO
X4 ^

rt
p*
CD

>
O
>-i

o

i—t

Gl

W
X w
o
a

o
2;

~7~

7"

+

NK

ADDRES

LDA

JMP (PUT)

^
r^?^

Figure 9

Dictionary entry for

CODE + S.) LDA, SP IRS, S) ADD, PUT

Example

Word Explanation Before Operator After

terpreter returns (terminate CODE entries-contents of A shown as A(n))

Top Top

T replace top of stack with A A(2) 1 PUT 2

tfSH push A onto top of stack A(2) 1 PUSH 1 2

P discard top of stack 2 1 POP 2

INARY POP followed by PUT A(3) 2 1 BINARY 3

P. discard top 2 words from stack 2 1 POP,

Figure 10

Assembler return locations which modify

the stack and return to NEXT

8.4

For example:

S) LDA,

will load the top of the stack; and

SP LDX, 2 1) STA,

will replace the third parameter.

Parameters may be taken directly from core.

For example:

M LDA,

will load the value of M. Often parameters may be picked up

without being named. So long as their address is on the stack,

it doesn't matter how it got there:

HERE 55 ,

will assemble the constant 55 and leave its address on the

stack. The instruction

LDA,

coming later will encounter its address -- and assemble an

instruction to load it.

INSTRUCTIONS:

The basic instruction set of each computer is defined

with the manufacturer's mnemonics -- when possible. Remember

that the count and first three letters must be unique.

ADD becomes ADD,

A comma is appended to improve the readability of several

instructions on the same line of text, and to distinguish FORTH

assembler mnemonics from the manufacturer's simiiar mnemonics.

The most common instructions are defined and you may add

any others you find useful. See your FORTH listing or

assembler vocabulary for details.

8.5

MACROS:

Many instructions are useful, though not implemented on

a particular computer. (Macro) definitions will implement

them with several instructions (check what they are; some

use registers!):

ADM, add to memory

INR, decrement memory

Other definitions provide forward jumps:

IF, begin true condition code

ELSE, begin false condition code

THEN, end ccndilional cede

IF, and ELSE, leave the address of a jump instruction

on the stack; THEN, provides the jump address.

IF, may take a condition code as parameter; or follows

a skip instruction depending on computer.

Example:

SZE, IF, [code for Oj ELSE, [code for not o] THEN,

or

SZE, IF, [code for Oj THEN,

Some definitions provide loops:

BEGIN, begin loop

END, end loop

8.6

BEGIN, puts an address on the stack; END, assembles a

conditional jump back to that address - again either condition

code or skip preceding.

There are no labels in FORTH. You could define them but

their function is performed by CODE names, IF, THEN, BEGIN,

and END,.

All these macros are defined in the basic FORTH vocabulary

for your computer. Examples of their use are there as well. A

bit of study should make clear how they work, and of course you're free

to define any others you wish.

It should be clear by now what the relative trade-offs in time

and core efficiency are between CODE and : definitions of verbs.

CODE will be almost exactly comparable to conventional assembler

code, with some advantage due to the handy convention of the stack,

which saves the time and complexity involved in parameter passing -

but : definitions are very much more compact, being only a string

of addresses of previously defined words. The combination of CODE

and : definitions means that the overall programs will be extremely

compact, as even short code strings will rarely be repeated.

Suppose, for example, you have a 4-word code string that seems

to perform a useful function. It may at first glance seem ridiculous

to double its length by making a dictionary entry out of it, but

since every subsequent reference to it takes one word, it will

take very few uses to recover the cost, and from then on you will

save three words for every usage. Clearly, the saving will be

greater for longer strings, but you should always perform only

a single logical operation in one CODE definition.

9.1

BLOCK I/O

Tape and disk I/O is handled by FORTH in standard blocks

of 512 words. This fixed block size applies both to FORTH

source text and to data taken by FORTH programs. This appar¬

ent inflexibility may appear strange to programmers accustomed

to designing specialized data formats, but in fact causes the

entire problem of I/O to disappear behind one standard block

handler. In addition, it eliminates many of the headaches

concerned with tape handling: searching, maintaining order,

compatability with other computers, etc. The block size chosen

is a convenient,, modest size. FORTH applications exist with

as many as ten data records in a block, and with several blocks

xOrmmg a daua recoru..

Magnetic tape records have a 513th word at the end,

giving a logical block number. The FORTH instruction READ-MAP

causes records to be read from tape until a file mark is

reached. The logical block numbers read are used to construct

a map in core showing the tape record position for the most

recent version of each-block. This map is 512 words long, ex¬

pecting one tape file to contain no more than 512 blocks, or

262,144 words. Multiple files may be written. Thus, the

tape can be handled as a random access device, in that any

block may be fetched directly, with no need for searching.

To facilitate this, the current tape record position is kept

at all times. Blocks may be in any order on the tape, and

updated versions of each block may be written at the end of

the tape.

9.2

Standard FORTH programs have two 513-word block buffers

in core. This number may be increased if the need justifies

the amount of core used, for example in an application re¬

quiring data records several blocks long. The 513th word con¬

tains the logical block number, which will be complemented if

the block is updated. If a block is requested (by the in¬

struction

n BLOCK

where n is the logical block number) the block handler will

check the two core buffers to see if the requested block is

present. If not, it will fetch the block from disk, if it is

there, or tape (according to the tape map). If the block is

not available, an empty core buffer will be provided. If a

core buffer must be over-written, the block handler will use

the one least recently referenced. If the block to be over¬

written has been updated, the updated block will be automati¬

cally written on tape or disk before the requested block is

read. Finally, BLOCK will push the address of the first word

of the requested block on the stack. A flow chart of this

process is given in Figure 11.

The only requirement for fitting data records into this

scheme is that data record numbers (or "scan numbers") be a

fixed function of block number. Then a word can be defined

that will use BLOCK to fetch the block(s) containing scans

requested by scan number.

Here is an example in which data records are smaller

Enter with block no. on stack

US

NO

Determine which
core buffer to use

m

FLUSH block to tape

Check tape map for
requested block

YES Ml

Read block Empty core buffer

Put block address
 on stack

Return to NEXT

Figure 11

Block handler for tape system

9.3

than blocks. Two CONSTANTS have been defined: LR is the data

record length in words, and R/B is the number of records per

block.

: ADDRESS R/B /MOD 511 MIN BLOCK

SWAP LR * + ;

ADDRESS replaces a scan number on the stack by the address of

the first word in the scan, having fetched the scan as necessary

By convention, blocks 1-99 are allocated to program

source text. Logical blocks 1 and 2 always contain the only

portion of the program which is previously compiled. These

1024 words are read directly by the key-in loader, and con¬

tain the basic interpreter and I/O handlers for the terminal

and tape or disk, plus character conversion routines and the

dictionary building and searching routines. These routines

are very rarely changed, and for all practical purposes

may be regarded as the "given" or fixed portion of your appli¬

cation.

The remainder is kept in source form on the tape. Source

blocks contain 16 lines of 64 characters each (again, 512

words plus block number). These blocks are rarely full. It

is to the programmer's advantage to keep logically related

routines in the same block or nearby blocks, and to allow for

future modifications it is handy to keep a few blank lines in

each block. There is essentially no cost for this convenience,

since loading is very fast and fairly independent of the number

of blocks being loaded (it depends on the amount of program

R/B (Scan number on the stack.) Pushes on the

stack the number of scans per block.

/MOD Divides the scan number by R/B, leaving the

block number on top of the stack and the re¬

mainder (which record in the block) beneath.

511 511 pushed on the stack.

MIN Leaves on the stack the lesser of 511 and the

computed block number (if you are going to allow

more than 512 blocks using multiple files, a

/MOD here will get the file position).

BLOCK Replaces the block number on the stack by

the address of the first word of the block.

SWAP Exchanges the block address with the record

number.

LR Pushes on the stack the number of words per

record.

* Replaces LR and record number with the offset

in v/ords from the beginning of the block.

+ Replaces the block address and the offset with

the record address.

Figure I2

: ADDRESS R/B /MOD 511 MIN BLOCK SWAP LR * +

9.4

being loaded.) This method of keeping the program source con¬

veniently available is one of the main features that makes

FORTH so flexible. During program development and testing,

specified source blocks may be edited (using FORTPI's built-in

editor) and, if desired, reloaded quickly and easily. When

a FORTH program is running in production, the fact that there

is no complete object program on a mass storage device is no

inconvenience, as the program doesn't need to be reloaded often,

and it is a process taking only a matter of seconds even for

fairly elaborate programs. The basic FORTH package that comes

for your computer includes the compiled object program (blocks

1 and 2) and about a dozen blocks of source including the

assembler, compiler and text editor. A diagram showing this

basic program is shewn in Figure 13. In addition, yen will

get the source blocks from which the object program was com¬

piled, and a set of vocabulary lists for all of the above.

BASIC
WORDS

TERMfMAL
I/O

BLOCK
I/O

D COMPILER

ASSEMBLER

ARiTHMEXiC

OBJECT FORTH

IK

BLOCK
BUFFER

SLOCK
BUFFER

JL / O
*:««« FAP

Figure 13

Core layout of basic FORTH. The object program and FORTH

occupy roughly the first 20-1-S v/ords of memory, The tape

map and block buffers are in high memory. The stack extends

down from the bottom of the block buffers toward the dictionary

The space between the ^top1' of the stack and the top of the
dictionary is unused core.

10.1

FORTH PROGRAMMING

Since FORTH is interactive, you will spend much more time

at your terminal and less at your desk than with non-interactive

techniques. You will generally want to write down some notes

about the problem you are about to solve, perhaps, and a few

lines of program. If it is a big problem, you will want to

outline your proposed program in some detail. Then you sit

down at a FORTH terminal and type. Your procedure will be to

enter a definition or two, test them to your satisfaction, and

then combine them to form more powerful definitions, until

the problem is satisfactorily described. The definitions may

then be edited into a block or more of source program which

will be kept permanently on disk (or tape), load the new blocks,

and re-Lesr.

To facilitate testing (and also to allow overlays), the

verb REMEMBER is used to mark a place in the dictionary. At

some future time, typing the name of the remembered entry will

cause all of the dictionary generated since that entry to be

discarded (or "forgotten"). Thus, when you begin typing

provisional definitions, it is advisable to type something like

REMEMBER TEST

Later, when you are ready to begin editing, or if you feel

the dictionary is becoming too cluttered, you may type

TEST

and everything in the dictionary beyond (and including) TEST'S

remembered location will go away. Recall that a word may be

10. 2

re-defined as often as you like -- the most recent entry will

be the one used thereafter -- but the obsolete entries re¬

main, taking up space.

REMEMBER is also useful for marking sub-vocabularies to

be overlaid by other sub-vocabularies. You may, for example,

have a telescope control vocabulary, interrupt' handler and

multiprogrammer that you want to be available all the time,

but several observing vocabularies that are mutually exclusive.

In the common vocabulary you will want to give a name to the

first block of each:

43 CONSTANT SPECTROMETER 60 CONSTANT COUNTER

72 CONSTANT IMAGE-TUBE 84 CONSTANT GRATING

and a null definition:

: OVERLAY ;

Each of these blocks will load the other blocks that are in¬

cluded in the sub-vocabulary. The beginning of each block

will contain

OVERLAY REMEMBER OVERLAY

The first OVERLAY will discard any of the other sub-vocabularies

that might be loaded (the null definition of OVERLAY takes

care of the case when none is loaded). Then REMEMBER OVER¬

LAY marks the beginning of this sub-vocabulary so that it

might be discarded later on. In use, one can change observing

vocabularies easily by typing

SPECTROMETER LOAD

10. 3

or

IMAGE-TUBE LOAD

without having to worry about discarding an incompatible set

of routines.

If you look at the listing of the text editor (EDIT, block

13) you will see that it starts off,

DISCARD REMEMBER DISCARD

: DISCARD FLUSH DISCARD ;

By convention, DISCARD is used at the beginning of all major

vocabularies (the portion that is loaded just after basic

FORTH). The editor, therefore, intends to discard this vocabu¬

lary. But when the time comes to discard the editor, more

will happen: the word FLUSH will write on tape any blocks in

memory that have been updated and not yet flushed before the

editor vocabulary is discarded. (Remember that when a word

appears to refer to itself it is not recursive -- the second

definition of DISCARD redefines DISCARD, including in the

definition a reference to the previous definition of DISCARD.)

When you type a definition, or use an untested definition,

or load a newly edited block, you may get a diagnostic. Diag¬

nostics are very simple:

word ?

This means either that "word" is undefined, or that it ex¬

pects a parameter on the stack and finds none (stack under¬

flow) . You may determine which easily by typing word

10. 4

If the diagnostic is repeated, the word is undefined. If a

number (the location of the word) appears, the word must have

been expecting a parameter. If you have typed a string of

words, you may normally assume that it has been obeyed as

far as the word causing the diagnostic.

When you are testing a new definition it is a good idea

to type . after executing it until there are no numbers left

on the stack except those you expect to be there. A defini¬

tion that accidentally leaves numbers on the stack can cause

subtle and unpredictable things to happen in entirely unre¬

lated parts of the program! Remember the rule that all words

should destroy their parameters and leave only explicit results

1.1

TEXT EDITOR

Although you may type in definitions at any time, they

will be lost if you reload the program. Moreover, the source

is lost fo'rever -- you cannot recall it to refresh your memo¬

ry! The text-editor allows you to save definitions perma¬

nently on disk or tape.

You may list a block (16 lines of 64 characters each) at

any time, by giving its number and LIST:

13 LIST

Blocks that have names may be requested by name;

EDIT LIST

To load the text editor, have basic FORTH running and type

EDIT LOAD

This will usually not only load the editor but also discard

any part of the application that may be loaded, although on

some systems EDIT can co-exist with a portion of the applica¬

tion. The editing commands are:

14 BLK = Specifies that block 14 is about to be

edited. It will be fetched from disk

or tape if necessary.

7 T Type line 7 (place in line buffer).

" text " Place 'text1 in line buffer.*

^Quotation marks are tlie standard delimiting characters for
the text editor. For cases in which you need to use quotes
in a line of text, two other sets of delimiters have been
defined: parentheses and #.

XT . L

7 R Replace line 7 with contents of line

buffer.

13 I Insert buffer after line 13 (discard

line 16).

13 D. Discard line 13 (place in line buffer) .

Line 16 will be reproduced and other

lines will move up as needed.

If you are about to edit a previously undefined block,

type

n EMPTY

where n is the logical block number. Thereafter, when you

type n BLK = you will have a fresh block to work on. This

block is filled with undefined characters. You edit in new

j.ines oy replacing lines wirh xexr. For example:

" THIS IS A NEW LINE 1 R

Begin with "quote space" -- the end of the line is defined by

the last quote. The rest of the line will be filled with

blanks. When you finish typing in lines of text, you should

fill any unused lines with spaces. A blank line is defined by

at least two spaces within quotes:

11 " 13 R 14 R 15 R 16 R

Notice that you may string together R's in this case, becaus

the spaces remain in the line buffer.

To move a line, you may delete it (D places a line in the

line buffer) and then use R or I. For example:

11.3

23 BLK = 8 D 24 BLK = 1 R

deletes line 8 of block 23 and replaces line 1 of block 24

with it.

Remember that the line numbers are current, ordinal

numbers. I and D will renumber the remaining lines in that

block.

The last word of program in a block must be

;s

This marks the logical end-of-block, and when the block is

loaded, loading will cease for that block when it is encountered

It may appear anywhere in the block, though -- anything in the

block after the ;S will be ignored. You may want to put

remarks there.

AFTER WORD

If you have read this book carefully, you already under

stand how FORTH actually works better -(unless you are very

exceptional) than you understand the FORTRAN compiler you

are accustomed to using. Although you may find FORTH's

conventions strange or awkward for a while, you will find

very soon that you can accomplish more wi.th your mini¬

computer, in a shorter time, using less core, than if you

use a conventional assembler.

We hope that this manual (and a little practice at a

terminal) will be sufficient to get you well under way

toward describing your application with a FORTH vocabulary.

We will greatly appreciate any suggestions you have for

improving this book.

As your application develops, you may make substantial

use of vocabularies developed for other applications, or

even other computers (FORTH definitions are fairly computer

independent). These include double-precision math, trig

functions, interrupt handlers, multiprogrammers, drivers

for standard pieces of equipment and many other useful

routines. Your inquiries are welcome.

A.l

APPENDIX A

Basic FORTH Vocabulary

ABS

BASE

BLOCK

CONSTANT

CONVERT

COUNT

CR

DECIMAL

DELIM

Replaces a signed 16-bit integer on the stack

with its absolute value.

The base for converting numbers to binary. May

be set to 10 by DECIMAL or 8 by OCTAL, or to

any other value.

Takes a block number on the stack and replaces

it by the address of the beginning of the block

in core, having fetched the block from tape or

disk if necessary.

Defines a named 16-bit constant. A reference to

a CONSTANT causes its value to be pushed on the

stack.

Takes an unsigned 31-bit integer on the stack,

whose signed value is in N, and converts it for

printing by TYPE. Leaves the character count - 1

on the stack and the character address of the

number's character string beneath.

Takes the address of a dictionary entry on the

stack and replaces it by the character count

in its name (obtained from the left half of

the first word of the entry), with the character

address below, for TYPE.

Sends a carriage return and line feed to the

terminal.

Sets BASE to 10; numbers converted on input

and output will be decimal.

'ihe delimiting character that, defines the end

of a word. Normally a blank, it is sometimes

temporarily changed to " of) for special

purposes.

A.2

DO

DP

DROP

DUP

ELSE

EOT

ERASE-CORE

FLUSH

FORTH

HERE

I

IF

Begin a loop. Takes an initial counter value

on the stack and a limit beneath.

The address of the pointer to the next avail¬

able word in the dictionary.

Discard the top number on the stack.

Duplicate the number on top of the stack.

End the true part of a conditional phrase and

begin the false part. Compiles a jump forward

to a THEN (for the true part) and sets the

address of the forward jump in IF for the false

part.

End of input message. On a TTY, sent by the

RETURN key.

Mark both core buffers empty.

Width of a numeric field for printing. Num¬

bers will be right-adjusted in the field.

Write any blocks that have been changed from

core onto disk or tape.

Removes all of the dictionary beyond the end

of the object program.

Push the contents of DP on the stack.

Push the value of the current loop counter on

the stack. Must be used inside a loop.

Begin a phrase to be executed only if the top

of the stack is true (non-zero). Destroys this

stack value. Compiles a conditional forward

jump to an ELSE, or to THEN if the ELSE clause

is omitted.

A.3

INTEGER

LOOP

+ LOOP

MAX

MIN

MINUS

MUD

OVER

READ-MAP

REMEMBER

REWIND

Define a named 16-bit variable. A reference

to an INTEGER causes its address to be pushed

on the stack.

End a loop. The loop counter will be advanced

by 1, and the loop will be terminated if the

value is equal to the limit.

End a loop, incrementing the loop counter by

the signed amount on the stack. The loop will

terminate if the counter value exceeds the

limit.

Compare two numbers on the stack, destroying

the lesser.

Compare two numbers on the stack, destroying

the greater.

Change the sign of the number on the stack.

Divide the second numoer on the stacK oy tne

top number, leaving the remainder on the stack.

Push a copy of the second number on the stack

on top of the stack.

Read to the end of file on a tape, constructing

in memory a map showing what blocks are in which

record positions on the tape.

Mark the beginning of a vocabulary, giving it

a name. A subsequent reference to that name

will cause the vocabulary to be removed from

that point on.

Rewind tape.

A.4

SWAP

THEN

TYPE

UPDATE

WHERE

WORD

:I

; CODE

;s

Exchange the top two numbers on the stack.

End a conditional phrase. At compile time,

sets its address as the destination of the jump

in ELSE, or IF if ELSE is not used.

Move a character string into the line buffer,

to be sent to the terminal.

Mark the block most recently referenced as

changed. A subsequent FLUSH, or the need to

re-use that block buffer, will cause the up¬

dated block to be written on tape or disk.

Print first three characters of the most re¬

cently defined word.

Read the next word (until reaching the character

specified by DELIM) from the input string,

leaving it starting at DP with the character

count in the high order half of the first word.

Type the number on top of the stack.

Begin compiling a definition.

Begin compiling a compiler directive.

End a definition.

End a definition and begin a code string to

be associated with it.

End the part of a source block to be inter¬

preted.

Put the number on the stack into the dictionary

and advance DP.

A.5

1 Push on the stack the address of the parameter

field of the following word.

+ Add two numoers on the stack leaving the sum.

Subtract the number on top of the stack from

the number beneath, leaving the remainder.

+- Add the second number on the stack into the

memory location whose address is on top of

the stack.

@ Replace an address on the stack with the con¬

tents of that address.

= Store the second number on the stack in the

memory location whose address is on top of

the stack.

? Fetch and print the contents of the address

on the 3tack.

I Equivalent to = (defined for consistency with

other FORTH systems).

* Multiply the two numbers on the stack, leaving

the product.

/ Divide the second number on the stack by the

top number, leaving the quotient.

/MOD Divide as in / and MOD leaving the quotient

on top of the stack and the remainder beneath.

*/ Multiply the second and third numbers on the

stack and divide by the number on top. The

intermediate product is 32 bits.

A.6

0< Replaces the number on top of the stack by a

1 if it is negative, or 0 if it is zero or

positive.

0= Replaces the number on top of the stack by a 1

if it is zero or 1 otherwise.

< Compares the two numbers on the stack. Leaves

a 1 if the second is less than the top (both

numbers destroyed).

> Opposite of <.

