NATIONAL RADIO ASTRONOMY OBSERVATORY

Tucson, Arizona

COMPUTER DIVISION INTERNAL REPORT NO. 17

Basic Principles of FORTH Language
as Applied to a PDP-11 Computer

E. D. Rather
C. H. Moore
Jan M. Hollis

MARCH 1974

{oo

10.

11.

TABLE OF CONTENTS

Introduction

FORTH Programmer's Guide. General discussion of FORTII.

The FORTH Dictionary. How it is organized, and how a

dictionary cntry is constructed.

Stack Manipulation. How the paramctcer stack 1is used;

stack handling vocabulary and examples.

FORTH Compiler. Gencral rules for making : definitions;

loops and conditionals.

FORTH Interpretcr. How the inner and outer interpreters
handle words typed at the terminal, load blocks of FORTH

source, compile and execute definitions.
Nouns. INTEGERs, CONSTANTs, and morc elaboratc nouns.

Arithmetic. Bacic single-precision arithmetic; 14-bit

fractions; trinary operations; number formats.

The FORTH Assemblcr. Assembler conventions; action of

the assembler and execution of assembled code; interpreter

returns; sStack modification; macros.

Block T/0. Tape and disk I/0, with suggestions for organ-

izing data records.

FORTH Programming. Suggestions for organizing and testing

an application vocabulary.

Text Editor. How to generate new blocks of FORTH source

on tape or disk, and to modify existing blocks.

After Word.

Appendix A. Basic FORTH vocabulary.
Appendix B. Listing of basic FORTH text.

Appendix C. Comparison of the FORTH language symbolism for
register addressing with those of the PDP 11/40 Processor
Handbook.

INTRODUCTION

The only way to learn any programming language OT
technique is by using it. This is especially true of FORTH
-- since it is inherently intcractive, if you will spend an
hour or two at a FORTH terminal 1t will instruct you as you
use it. If you wish to become a FORTH programmer, or only
to become familiar with its advantages and disadvantages,
we recommend that you follow these steps:

1. Read this book.

2. Look at the vocabulary lists summarized in Appendix A.

3. Using these 1lists, the book and your computer manual.
study the basic routines in blocks 3 - 10 in Appendix B.

4. 1If possible, have a look at an example of a FORTH
application.

5. Sit down at a FORTH terminal and solve a few simple
mathematical problems. Work out a definition or two, type

them in and test themn.

This book assumes you have had some programming experience.
Portions of it assume that you are familiar with the assembly
language for your computer. If you are not, you will need to
keep your computer manual at hand ... perhaps you will want to

study its basic instruction set before attempting to use FORTH.

FORTH PROGRAMMER'S GUIDE

FORTH is a programming technique designed for real-time
interactive computer applications, particularly for mini-
computers. In such an environment it offers several advantages
over more conventional programming languages, such as FORTRAN,
BASIC, and assembler language. These advantages are summarized
in Fig. 1. The concept of a high-level language which 1is
more core-efficient than assembler language, and very nearly
as fast, may be a bit hard for you to get used to -- perhaps
you will understand the basis for this claim as you become

familiar with FORTH's structure.

The minimum computer configuration for FORTH is shown in
Fig. 2. The applications for which FORTH has been used so far
have included a radio telescope control system and several data
collection systems. Computers for which FORTH systems have
been written include Honeywell DDP-116 and 316, NOVA, Varian,
MODCOMP II, PDP 11, PDP 10 and IBM 360-50. Since most of these
are 16-bit machines, this manual will assume a 16-bit word

length.

FORTH is a language. It 1s structurally quite different
from other languages, however. To begin with, it has no
separate compiler or assembler -- the routines that generate
and execute machine instructions are always present in the
FORTH computer, along with a small, fast interpreter and a
sort of executive whose characteristics are determined by

the specific application.

1.1

LANGUAGE ADVANTAGES DISADVANTAGES
FORTRAN Familiar Separate compiler
High-level Separate loader
Handles mathematical Large program
formulae well Slow program
Good output formatting Cannot control special
(mcssages) equipment
ASSEMBLER Fast program Separate asscmbler
Can control special Separate loader
equipment Monolithic
Inflexible
Long listing
Machine dependent
Addressing problems
Debugging aid needed
Hard to evaluate
mathematical formulae
Poor I/0 formatting
Low level
BASIC Interactive Large program
Somewhat machine Very slow program
independent Limited syntax
FORTH Flexible Unfamiliar
Interactive Poor message formatting

Small program

Fast program

High and low 1level

Extremely modular

Somewhat machine
independent

Can control special
equipment

Somewhat hard to evaluate

long mathematical
expressions

Define functionson-line
Numbcr conversions easy
(octal, sexagesimal, ctc.)
Includes own assembler
compiler
loader
interpreter

Fig.l Language Comparisons

(APPLI CATION)

N\

Figure 2

FORTIl's minimal computer

i e
LR Tl\FW:
-ix\&)ﬁ’ UNIT

TERMINAL

It seems to have 5 main elements that together comprise
it. Take away any one, and you have something that is not
useful. There is a synergistic effect among them that produces
a remarkably powerful combination. Many of the characteristics

and capabilities of FORTH were (and some rcmain) a surprise to

ne |

1. Dicticnary

The kcy element, if one must choose, is the dictionary. A
FORTH program is 90% dictionary. This, as implied by its name,
is a collection of words together with their definitions. We
are trying to explain a problem to the computer, and do this by
explaining what cach of a number of words mean. Thus it is a
Man-to-Computer dictionary.

A collcction Of wOrds 1S commonly called a vocabulary.

The dictionary defines a vocabulary for the computer. Perhaps
several distinct vocabularics. Indeed, speaking of a FORTH
program is sloppy, for FORTH is the program. An application
coded in FORTH is better called a vocabulary. You load an
editing vocabulary to edit text; an observing vocabulary to
observe; etc. The vocabulary is just that. It is not a program
for it can't stand alone. It depends upon FORTH to do all the
work and mercly describes what must be done.

Each defined word has an entry in the dictionary. FORTH
provides the mechanism for searching the dictionary, executing

words, and defining new words. These operations will be

described in a moment.

1.2

2. Stack

Another amportant and visible element of FORTH is a push-
down stack for paramcters. Some words represent operations;
operations {ind their parameters on the stack.

In particular, numbers are placed on the stack; constants
are placed on the stack; the addrcsses of variables are placed
on the stack; results are placed on the stack. All this
happens in a convenient and natural way, and provides an
indispcnsible tool for describing algorithms.

Another largely invisible stack is also important. It 1is

used to store return information for the interpreter.

3. Code

Some words are defined by code. That means that they cause
a sequence ol computer instructions to be executed. Such a word
is similar to the name of a subroutine. However the analogy is
weak, for it isn't a subroutine in the tcchnical sense; nor do

you think of it -- or use it -- as you would a subroutine.

4. High level definitions

Some words are defined in terms of other words. Thus they
are a sort of abbreviation. However, again the analogy fails,
for such definitions are much more powerful than the notion of

abbreviation conveys. In fact, perhaps 90% of the words in a

vocabulary are definitions. These are computer-independent.

5. Blocks

The final clement of FORTIH are its blocks -- chunks of

secondary memory 1024 bytes (512 words) long. A block may

1.3

contain source code -- the text that defines words; or it may
contain the data that justifies the computer. Whatever, it
has been chopped into fixed-length chunks and assigned a
number -- usually between 0 and 511. You may load programs
from blocks, or place data in blocks, as if the blocks were
core. FORTH provides the I/O required to access them auto-
matically. This form of virtual memory provides a very great

service -- at a very small cost.

Keyboard Input

FORTH is a terminal-oriented language. It demands the
subtlety of expression that only a keyboard can provide. A
FORTH application may well have a vocabulary of several hundred

words. Of these, maybe 20 will be of direct interest to the

VYV, A

The input that FORTH wants is simple:

words separated by spaces.
In order to permit changing your mind, and correcting errors,
it recognizes:

RETURN to mark the end of a message.

RUB OUT to erase a letter.

BREAK to cancel a message.

This i1s as simple a way to communicate as I can devise. It
does cause some trouble: People may forget to type RETURN, or
fail to space between words, or don't know whether to spell the
word

GOODBY, GOODBYE, or GOOD-BYE.

But these are just conventions that must be learned.

1.4

Internally, FORTH rcepresents characters with 7-bit
ASCII code and even parity. This is an extrcmely important
convention, as it permits effortlecss compatibility betwcen com-
puters. If you have a non-ASCII device, the character-conversion
cost is properly assigned to the device. Likewise, parity 1is
much casicr to discard than crecate; a non-parity device (tcletype)
should bear the cost of providing it.

In the chapters to come we will discuss the basic
elements of FORTH in more detail, and describe the process of

developing a FORTH vocabulary for your application.

1.5

THE FORTH DICTIONARY

The dictionary is a linked 1list of variable-length entries.
It grows toward high core, and each entry points to the one
that preceeds it. The beginning of the last entry is pointed

to by the variable HEAD. It identifies the head of the chain

to be searched. The end of the last entry -- the next avail-
able word -- is pointed to by the variable DP (Dictionary
Pointer).

The dictionary is searched by following the chain until
a match is found, or the bottom reached. This organization
permits a word to be redefined, since the latest definition

will be found first.

As Figure 3 shows, the dictionary can be rather naturally

divided into three parts:

The object program is pre-compiled (on the same computer
or any other FORTH computer), and contains about
30 defined words from which all other words can be
defined. It is difficult, and normally unnecessary,
to change these words.

The FORTH vocabulary is compiled when you load FORTH (3
LOAD). It is common to all applications, and though
you may change it as you wish, you probably won't.

The application vocabulary contains those words peculiar
to your application. You will be changing, re-

arranging and adding to this vocabulary continuously.

From the point of view of the search algorithm, these
vocabularies are indistinguishable. However, you can dis-

tingquish them -- and other subvocabularies -- by being able to

2.1

P
Q

s
f
i
£

OBJECT FORTH APPLICATION

Figure 3

FORTH Dictionary

A compiled dictionary contains segments of logically related

definitions, which in turn may be thought of as divided into
three major groups.

discard them. For example, you might discard one application
vocabulary and replace it with another. It is also possible
to define a context in which only certain sub-vocabularies

will be searched.

The essential structure of all dictionary entries is the
same regardless of the type of entry (nouns, verbs, etc.). The
first two words contain the count of the number of characters
and the first three characters of the word. Note that although
this gives you far more flexibility in naming words than a simple
limit on characters, it does require uniquemess in the first
three characters of words of the same length. Note also that
any characters you can type on your terminal are valid for use

in words being defined.

The third word contains the location of the first word
of the next previous entry. This is to facilitate searches,
which start at the ''recent' end of the dictionary and work
back. This searching order is necessary in order that the
most recent definition of a word will be the one used. Also,
since in a developed application the user is dealing with
the highest level of the program, it optimizes search time.
The high order 2 bits of the link word contain a flag called
"precedence'": It identifies a few special words, such as com-

piler directives. It is zero for most words.

The fourth word contains a pointer to the code to be
executed for the definition. This code address depends on

the type of word:

For a CONSTANT, the pointer refers to code that puts the
value of the constant (which is in word 5 of the definition)

on the stack.
2.2

L A
a

B C
4

PRECEDENCE | LINK

(Am&tss 1B

yd
PARAMETER

Figure 4

16-Bit Dictionary Entry Format

For an INTEGER, it refers to codec that puts the address

of the value (again, word 5) on the stack.

For a : definition, it points to a portion of the inter-
preter, which will begin following a string of addresses be-
ginning in word 5 and continuing until the ; which terminated

that definition is found.

For CODE, the pointer is to word 5, which contains the

beginning of the code, which is simply executed directly.

Other kinds of entries have code addresses that point to

the appropriate code.

The fifth and subsequent words are sometimes called the
“"parameter field", which is of variable length. CONSTANTS
and INTEGERS keep their values in word 5, as noted above.
Other nouns (see *"Nouns') may keep several values. In the
latter cases, the length of the parameter field is either
determined by the type of noun, or is kept in one of the early

words in the field.

Figure 4 shows a diagram of the dictionary entry format
for 16-bit computers. Similar diagrams of specific types of

entries will be found in subsecquent chapters.

2.3

STACK MANIPULATION

An incrcasing number of computers and desk and pocket
calculators nowadays base their logic on a parameter stack.
FORTIlI has a parameter stack that increases toward low core.
There is a pointer to the word holding the number currently
"on top of the stack' (kept in register 5 on the PDP 11).
To add a word to the stack, the pointer is decremented,
and the number placed in that word. To remove a word from

the stack, the pointer is incremented.

If you type a number on your terminal, the number will
be converted to binary and placed on the stack. Typing .
(period or decimal point) will cause the binary number on
top Of the stalk to be convertid o numcvic charvacters
and printed on the terminal. Most FORTH words expect one
or more parameters on the stack (including words in the

assembler), so you must make sure that they are there, and

that they are in the proper order.

Figure 5 shows the result of typing a sequence of words.
Recall that a word is 'separated by spaces'. There are no
special characters in FORTH, so that ? and @#$%¢ and 4th are
all perfectly good words. Several of these words deserve

comment:

! 1s the replacement operator. It expects 2 para-
meters on the stack: an address on top and a num-

ber beneath., It stores the number at the address.

3.1

FORTH Stack

Example You type: Action
(1) 4 5 + 4 Number 4 converted to binary
and pushed on the stack.
5 5 converted and pushed on
the stack, over the 4.
+ 4 and 5 replaced by 9.
(2 17 X 17 17 on the stack (over the
9).
X Address of X (which was

previously defined as an
INTEGER) pushed on stack.

H 17 stored in X, both 17
and address (X) removed
from stack.

(Remember 9 is still on
the stack from Ex. 1)

(3) X e ¢* X Address (X) pushed on
stack.
¢ Address replaced by con-
tents (17).
* 9 and 17 replaced with 153.

153 typed on terminal.

Figure 5

Thus the FORTRAN statement

X =17
in FORTH 1is
17 X ¢

e is an operator that fetches a value. It expects
an address on the stack; it replaces it with the
content of that address. @ is an extremely im-
portant operator. It distinguishes between loading
and storing a value into a variable; a function
FORTRAN accomplishes by context -- in one particular

way.

is an operator that types the number on the stack

(and discards it).

Thesc operators have been assigned single character mnemonics
because they are used so often. Although their mnemonic

value 1s weak, they are worth learning.

Similarly, + adds the two numbers on top of the stack,
replacing them by the sum; - subtracts, etc. Refer to the
vocabulary in Appendix A for a fuller list of the operators

available.

Several words have been defined in basic FORTH for
manipulating the stack. The operation of these words is

summarized in the table. A fairly standard set of more com-

3.2

Stack Manipulating Words

Lxample
Word Explanation Before Operator After
FORTIl words (may be used in de-
finitions or in CODE)
Top Top

SWAP reverscs order of top 1 2 SWAP 2 1

2 entries
DUP reproduces top entry 1 DUP 1 1
DROP discards top entry 1 2 DROP 1
OVER | pushes entry 2 on top 1 2 OVER 12 1

ot entry 1

plicated stack operators is
cations, for such things as

numbers several levels down

The order of parameters

several fairly well-defined

available in some developed appli-
double precision numbers, fetching

in the stack, etc.

on the stack is governed by

conventions:

1) Numbers are always pushed onto the top of the stack

or popped off the top. Thus, if you type 1 2 3 the

top is the right-most (or most recent) number. If

you print these, the result will be

3 .2

2) A '"store'" operation

1

(!) operates from left to right

(or entry 2 into entry 1), i.e.,

3 SEC ¢

stores 3 in SEC.

3) Double precision numbers are always placed on the

stack with the high order part on top and the low

order part beneath.

4) Multiple-parameter arithmetic operators use an order

such that if the operator were moved from a suffix

position to an infix position the operands would be

in their customary position. Thus:

AB - is equivalent to A - B

ABC*#*/ is equivalent to (A * B) / C

3.3

5) An operation will destroy all its input parameters
and leave only its results (if any) on the stack.
It will, of course, destroy no more than its own

parameters. Thus
123+ will leave 1 5

All routines developced for an application should adhere

to these conventions.

The stack is located in high memory and extends toward
low memory. Unused core is defined as the area between the
high end of thec dictionary and the top of the stack. The

size of the stack is limited only by this amount.

FORTH checks for stack underflow and overflow (since over-
flow can occur only when memory is full; 1t normally is not of

concern), If either occurs, the error message 1is
[operator] ?

where the operator that failed to find or place a needed para-

meter on the stack is given.

The stack is by far the best place to use for temporary
storage, since stack accesscs are faster and specific core
allocation is not required -- the dictionary entry for a one-
word number costs an extra four words of overhead. 1In parti-
cular, the stack is an excellent place for saving the contents
of a variable which must be changed temporarily. It will take
a while to become comfortable using the stack, but when you do

you will be impressed by its convenience and economy.

3.4

FORTH COMFILER

The IFORTH Compiler is very small and simple -- it is not
in any sense comparable to, say, a FORTRAN compiler. But it
does make the task of writing inter-related routines extremely
convenient and straightforward, and allows as much control over

logical {low as one neceds even for very complex applications.

The basic form of a definition is
word other words ;
Many examples are available -- just look through the basic pro-
gram listing. The syntax is as simple as possible. The first
word following the colon is the word being defined. There is
no punctuation except for the : and ; ... words are separated
by spaces. Literals may be used anywhere, as long as they are

in a recognized form. (See '"numbers').

The cardinal rule that must be followed is this: YOU MAY
NOT USE ANY WORD THAT HAS NOT BEEN PREVIOUSLY DEFINED. Remein-
ber, this is a 1-pass compiler. The same rule applies to the
assembler. This means that forward references (except in case
of the IF ... ELSE ... THEN construction, which we'll get to
shortly) are not allowed. This may rcquire you to modify your

programming style, but it is not a serious inconvenience.

The action of the interpreter in compiling definitions is
discussed under "Interpreter'. After the basic four word
standard dictionary entry heading come a string of addressecs
of the words that form the content of the definition. These

may be addresses of code entries or other : definitions -- it

4.1

doesn't matter. Somewhere at the top of the chain, of course,
is code which will be executed. Literals require two words:
the first being the address of LITERAL, a short routine that
pushes the contents of the second on the stack. You should
bear this in mind, and define as a CONSTANT any literal that
you find yourself using often.

1 CONSTANT 1
has already been defined for you -- use of "1" in a definition
adds only 1 word (the address of the 5-word definition 1) in-
stead of two. Figure 6 shows the dictionary entry for a simple

definition.

Since FORTH encourages extremc modularity, your control
of logical flow will mainly be through appropriate management
of previously defined words in a definition. In addition,
FORTH supplies words for forming loops and two-branch condi-

tionals.

LOOPS: Loops are constructed using the FORTRAN-ish word
DO (which expects two loop parameters on the stack and one of
two ending words: LOOP (which increments the loop counter by
1) or +LOOP (which increments it by the signed amount on the
stack). The two DO parameters are the limit (upper or lower)
of the loop beneath and the initial value of the counter on
top of the stack. Both LOOP and +LOOP compile a conditional
return to the location of the DO. When the counter is in-
creasing, the loop terminates when thc limit is reached.

When the counter is decreasing, the loop tcrminates when the

limit is passcd.

4.2

!

LINK

 wreeT,
ADDRESS [y EpRAn

LITERAL
|12

BASE

2

)

Figure 6

Dictionary entry for

DECIMAL 12 BASE

(Stores 128 in the variable BASE)

The loop parameters are not kept on the stack during the
loop. The limit, in fact, is not accessible during the loop.
The counter may be accessed using the word I, which places
the value of the counter on the stack. Remember that I is a
verb! Do not use it as a variable. The counter may not be
changed except by the LOOPs. In nested loops, I provides the

counter for the innermost loop.

Here are some examples; try to figure out how each works,
referring to the vocabulary in Appendix A for unfamiliar words.
You may find it helpful at first to keep track of what's on

the stack on a piece of scratch paper.

(1 : suM 0 101 1 DO I + LOOP ;
adds the numbers from 1 to 100 and leaves the

result (5050) on the stack.

(2) : SQUARES 0 SWAP 1 + 1 DO I DUP * =+
LOOP
6 SQUARBS adds the squares of numbers from 1 to 6.
(3) ¢ PRINT 0 DO I 1 + . LOOP
10 PRINT

types the integers from 1 to 10.

(4) ¢+ PRINT DUP 0 DO CR DUP I 10 + MIN
1 po I ., LOOP 10 +LOOP DROP ;
103 PRINT

prints the numbers from 0 to 102, 10 per 1line.
(5) A non-trivial example of a loop is the Buclidean
algorithm for the greatest common diviser of two

integers:

4.3

For a > b, a = gb + r
If d divides a and b it must also divide r
Then GCD (a,b) = GCD (b, r)
The process terminates with r = 0
Suppose a and b on the stack:
GCD 1 0 DO SWAP OVER MOD
DUP 0= +LOOP DROP

The loop parameters are kept on the return stack, which
also contains return addresses for the interpreter. DO and
LOOP must be in the same definition. Likewise, I may only be
used in that definition (since entering another definition
modifies the return stack). Within these restrictions, keeping
these numbers on the return stack does not interfere with the
interpreter’s use o 1it, and the paramcier stack 1s vl
cluttered by their presence. It is recommended that you study
the way DO, LOOP and +LOOP are coded for your computer, because
you may wish to code additional related words for your appli-

cation. Three which are now available on the PDP 11 are:

*LOOP - multiplies the loop counter by a specified

amount (similar to +LOOP)

%} push the counters for second and third outer
loops on the stack (similar to I) - useful

for matrix operations.

These are not implemented in basic FORTH because of their

specialized uscfulness.

4.4

CONDITIONALS: FORTH offers a convenient one -- or two --

branch IF. Its use is given in this example:

0 INTEGER S 99 CONSTANT LIMIT

SLIM S @ LIMIT > IF 100 ELSE

S @ 1 + THEN § !
This takes an integer S, which is initialized to 0 but whose
value may change in use, and compares it to the constant limit
of 99. If the limit is exceeded, S will be set to 100; other-
wise, it will be incremented by 1. The word IF compiles a
conditional forward jump dependent on the top of the stack being

zero (false). The destination of the jump is not known at the

time the jump is compiled, but the address of the jump desti-
nation is left on the stack., When ELSE is compiled, its 1lo-
cation is set as the destination of IF's jump, and an uncon-
ditional forward jump is compiled -- its destination to be
similarly supplied by THEN., THEN terminates the conditional,
as it compiles no jump. The ELSE clause may be omitted en-

tirely. Note: Every IF must be followed by a THEN.

Remember that the IF will jump to ELSE or THEN if the
top of the stack contains zero (false). Therefore, the IF
inherently contains an ''equal to zero' test. Remember also
that IF will destroy its parameter (the condition), 1like all
FORTH words. You thus may want to include a DUP in your
definition:

X e pur IF .,... ("If X is zero,")

Several words have been defined to perform other tests for IF:

0< Replaces a number by 1 if the number was negative,

4.5

0 if zero or positive.

< Replaces two numbers by 1 if the lower is less than

the top number.

> Opposite of <.

Memory usage and timing:

The length of a : definition is very easy to determine.
The colon and word generate the dictionary entry, which gives
an overhead of four words. Thereafter, add one word for every
defined word in the definition, including the semi-colon, and
two for every literal. Timing is more a function of the
execution time of each word in the definition than their num-
ber -- only you can estimate that*-- but you must add the
interoreter cvcle overhead for each word, which is 4.6 us
on the PBP 11. If you are trying to decide whether to define a
word separately or include its functions in other definitions,
you can assume that you break even in memory space if you will
use the defined word two - five times*, and will save (length
1) words for every subsequent usage. The cost in time will
be 1 interpreter cycle per usage -- not very much for what

can be an extremely great saving in core.

tTypical times for simple opecrators such as +, -, stack operations,
@, =, etc. are around 6 us on the PDP 11.

* Total length:
Uses to break even:

6
4

>8

2

(G2 p]
[EARN

4.6

FORTH INTERPRETER

Everything FORTH does is controlled by its interpreter,
and everything you will do using FORTH is therefore also con-
trolled by the interpreter. The interpreter itself is quite
small. But it controls several routines that are invisible
to the user that do quite a lot for you, including number con-
versions, dictionary searches, generating dictionary entries,
managing the stack, etc. Some of these functions are very
intricate. Many of them do not have to be understood by a
user or applications programmer, and I will not attempt to
explain these in detail here. If you are interested, however,
please inquire. In this chapter I will explain what the in-

terpreter does for you, and how you will use it.

Intcipretling a sitliug 0L wurds Lyped ai tie terminal.

-

Your main communication with FORTH is through a terminal. You
type one or more words and they are interpreted and obeyed.
If you have requested something to be typed out, it will be;
if you have asked that something be done which requires no
typing, FORTH will reply OK when it has done it. If you send
a null message, in fact, FORTH will cheerfully reply OK.
The operations that have been performed are the following:
1) A word is taken from the terminal line buffer. (Remember,
a word is a character string bounded by spa;es).
2) a. If it is a word which can be found in the dictionary,
the code for that word is executed.

b. If it is a number, it is converted to binary and

pushed on the stack.

5.1

c. If neither of the above is possible, the word
is sent back to the user with a *?
3) Following successful completion of 2a or 2b, the in-
terpreter continues on to the next word, if any. At
the end of the string of words, it says OK.
Therefore, you may string together a number of commands, and

they will be interpreted and executed one at a time.

II. Interpreting source blocks. If you type a load command,

like

3 LOAD
the interpreter operates 1n a slightly different mode, since in
the process of executing the word LOAD it must interpret words
in a block read from disk or tape, rather than the terminal
line buffer. It keeps track of what block it is taking its in-
structions from; the terminal, for this purpose, is '"block 0".
The only differences in interpreter behavior between operating
on "block 0" and any other block are (1) that only "block 0"
gets an OK on completion; (2) interpreting in other blocks ceases
when ;S 1is encountered. Note that, just as '"block 0" 1is

loading a block, that block may load other blocks.

IIT. Compiling definitions. If the interpreter encounters a

command, it will be executed. Defining words (such as : , CODE,
CONSTANT, etc.) are commands whose execution causes the inter-
preter to behave in a special way. The generation of CODE

entries and nouns is discussed elsewhere in this manual ("Assembler"
and "Nouns'"). A colon not only generates the beginning of a

dictionary cntry for the word immediatcly following the colon,

5.2

it also sets a flag for the interpreter. Thereafter, the

words in the definition will not be executed -- their addresses
will be placed in the dictionary entry being compiled. This
flag will be reset by the ;

IV. Executing definitions. The code address for : definitions

points to a routine which at executing time sets the compile/
execute flag (called STATE) to '"execute', sets the instruction
counter (IC) to the parameter field of that definition, and
jumps to NEXT. NEXT is the most fundamental routine of the
interpreter -- the basic loop that goes on to the next word,
controlled by IC. When a : definition is being executed, the
interpreter is going down the addresses supplied in the defini-
tion, and going off to execute whatever is at those addresses. Of
course, these addresses might point to other : definitions, and
so on, so the code for : saves the current IC on a special push-
down stack called the "return stack.'" The code for ; therefore
resets IC from the top of the return stack before returning to
NEXT. Of course, at the top of any of these chains of pointers is
a CODE definition, and all CODE definitions also end with a
jump to NEXT (often after passing through stack manipulating
routines). It is clear, then, that the greatest overhead in running
FORTH is in this interpreter loop, and great pains have been taken
to code it as tightly as possible. On the PDP11/40 this step
requires only 4.6 us.

The existence of compiled addresses in definitions is the

feature that distinguishes FORTH from other interpretive languages

5.3

such as BASIC, which operate only in modes I and II, and
are therefore much too slow for many real-time tasks and

complicated computations.

5.4

NOUNS

A most important aspect of FORTH 1is its ability to define
new words. New definitions and code are devised continously.
Likewise, new constants or variables are created. Howcver,

a more challenging and significant kind of creativity is in-
volved in the definition of new kinds of words. Not defini-
tions or constants or any other kind of common word, these

can share the attributes of both nouns and verbs. But since

they are mostly used as nouns,we shall refer to them as such.

A new kind of word may be defined by writing a definition
that includes the verb CONSTANT. CONSTANT takes a value on
the stack, reads the next word from the input string and con-
structs a dictionary entry for it initialized to the value cn
the stack. When used in a definition, that definition must
be terminated by the word ;CODE (instead of '";"). ;CODE
completes the dictionary entry by beginning a code string
which follows immediately, and changes the code address of the
word to point to this code string. In a real sense, ;CODE

combines the functions of the separate words '";'" and CODE.

For example, the definition of INTEGER for the pPpp 11 is
INTEGER CONSTANT ;CODE E ASR, S -) E MOV, NEXT
Given that definition, the phrase
0 INTEGER M

then acts as follows: The word

INTEGER - executes the definition, wherein

6.1

CONSTANT - reads the word M and constructs a dictionary

; CODE

E ASR,

S -) E MoV,

NEXT

entry for it, with the exception of the code
address for M. The value of the parameter

field is initialized to the value on the stack,

in this case 0.

completes the entry for M by supplying the

code address -- the word immediately following
;CODE. When ;CODE is compiled, there is no

code there -- nor any guarantee there ever

will be. You must put some there.

generates the first instruction that will be
executed for M (or any other integer). When

a code definition is entered, the E register
(register 2) contains the byte address of the
first word of the definition. E ASR, shifts this
address right one bit, thus converting it to a word
address. See '"ASSEMBLER" for a discussion of
addressing on the PDP 11.

moves the contents of the word pointed to by E to
the top of the stack -- automatically decrementing
S to effect a '"push' operation.

goes to the next word to be executed.

Every time an INTEGER is defined the definition is exe-

cuted.

Every time an INTEGER is referenced the code is executed.

Tbe definition of what INTEGER does is the same on all

FORTH computers; the code of course varies with the computer.

6.2

- A
d
o

LINK |

~ Mg pusH 17
ADDRESS |~ ONTO STACK

17

Figure 7.

Dictionary entry for
17 CONSTANT NUMBER

INTEGER is only one kind of noun. Other kinds of nouns
can be easily imagined: DOUBLE, COMPLEX, VECTOR. Most nouns
share the property that they place an address onto the stack.

But I would like to suggest some more elaborate nouns.

Consider first the distinction between INTEGERs and CON-
STANTs. Referencing a CONSTANT places its value onto the
stack; referencing an INTEGER places its address here. However,
auxiliary verbs permit using either in an equivalent way:

Given

7 CONSTANT A 7 INTEGER M
If I sayM@ or A
I get the same result, 7 placed onto the stack. Similarly,
if I say

M or ' A
I get the same result -- the address of a location that con-
tains 7 (the verb ' provides the address of the parameter
field of a word). The difference between CONSTANT and INTEGER
1s one of usage -- CONSTANT automatically provides the verb @.

This suggests that we might provide a noun that automati-
cally provides the verb !, another verb often associated with
INTEGER. It can be a very effective construct.

I will discuss in a moment a noun that provides an auto-
matic subscript. Often you want to use a noun as a switch, and

an efficient, convenient way of changing it is helpful. So

6.3

I defined a kind of noun modifier called SET: Given a switch
called FLAG, defined 0 INTEGER FLAG

0 FLAG SET AZ 1 FLAG SET EL
Whenever I reference AZ, the constant 0 is stored into FLAG.
Similarly, I can name any value of FLAG, or any other variable,
and establish that value by typing the name. Of course, there
are other ways of accomplishing this same effect:

AZ 0 FLAG ! ;

is completely equivalent to the above. But it is considerably
less efficient, both in space and time (11 pus vs 40 us). A
noun modifier such as SET simply extends the basic philosophy
of FORTH: to define those words that are convenient to
describe your problem.

A more elaborate noun is one I call VECTOR. Referencing
a VECTOR places an address onto the stack: the address of the
first word in the vector plus the contents of a noun, (), which
is a general subscript. The definition of VECTOR on the PDP 11
would be very similar to that for INTEGER:

0 INTEGER)

VECTOR 0 CONSTANT ;CODE E ASR, E () ADD,

S -) E MoV, NEXT
Notice that the complete value of the vector is not initialized
by the definition. It is simpler to initialize the VECTOR
explicitly to the proper length:*

VECTOR X 0 , 0
In conjunction with SET this leads to some pleasant

notation.

* The operator "," enters a number on top of the stack into
the dictionary.

6.4

I{ 1 define

O () SET LAT 1 () SET LONG 2 () SET BEARING
VECTOR SIN 0 , 0O , O , VECTOR COS O , O , O

and store values in the arrays SIN and COS, I can reference the

respective values by saying
LAT SIN BEARING COS LONG COS
in a natural manner.

An even more intricate noun is invaluable for evaluating
expressions involving constants. I call it POLY (after polyno-

mial) and will give an example to show its use:
4 POLY PRIME 2 , 3, 5,7,

POLY acts like CONSTANT in that it provides a value rather
than an address. The first time I say PRIME I get 2 on the
stack; the next time 5; then 5; then 7; then Z again. Eacll
reference to PRIME gets me the next value in closed circle.
The number 4 above adviscs of the size of the circle. Another

word is used to keep track of the present position.
A more practical example might be evaluating a polyhomial:
S POLY K --, --,

If I say
KX#*#K+X*K+ X% K+ X* K+

(or the equivalent in a loop) I have referenced K exactly 5
times, extracted the values I wanted in the proper sequence,
and reset K in anticipation of my next evaluation. All with-

out explicit subscripts or any other notational baggage.

6.5

A noun analogous to POLY that provides addresses instead
of values I call ARRAY. Tt is extremely useful for storing and
retrieving values into an array in sequence. Yet another kind
of noun that is useful is one which provides an array auto-

matically subscripted by I, which fetches a current loop index.

I hope that 1've shown that different kinds of words can
be usefully defined. Basic FORTH provides only CONSTANT and
INTEGER, but standard definitions of most of the nouns dis-
cussed here arc available. If you encounter more than one
instance of a particular kind of noun, or use such a word fre-
quently, it can pay off in convenience, cfficiency and elegance

to name and characterize those properties that make it unique.

6.6

ARITHMETIC

It is routine to implement the ordinary arithmetic
operations in FORTH. The problem is to decide which will
be useful and exactly how they should act. Keep in mind
that these operations are much too elementary to be of value
in themselves; but they form essential building blocks for

later definitions.

A characteristic of elementary operations is that there
are usually machine instructions that perform them. To embed
such an instruction in code so as to make it accessible adds
significantly overhead, perhaps several times the instruqtion
execution time. But keep in mind that our purpose is to make
these instructions readily executable on arguments conveniently
found on the stack. The value of accessibility versus efficien-
cy is strongly in favor of the former, since we are viewing
the computer from the other side of a keyboard. You can al-
ways construct code for an inner loop where efficiency is a
problem. Furthermore, the use of definitions results in very
significant savings in core.

Certain operations are absolutely essential, as can be

verified by their frequency of use:

Op. Example Description
+ A B + leaves A+B on the stack.
- A B - leaves A-B on the stack.
* A B * leaves A*B on the stack.

7.1

/ A B/ leaves A/B on the stack.
MINUS A MINUS leaves -A on the stack.

(Notice that the order of the operands for - and / (non-
commutative operations in general) is such that if the operator
were moved from a suffix position to an infix position (A B -
to A - B) the operands are in their customary positions. Such

a mnemonic aid is essential to help recall the order of argu-

ments.)

Op. Example Description

MAX A B MAX leaves the greater of A and B
on the stack.

MIN A B MIN leaves the lesser of A and B
on the stack.

ABS A ABS replaces a number on the stack
by its absolute value, leaving
the sign in the variable SIGN.

/MOD A B /MOD returns the quotient or top of
the stack and remainder be-
neath after division.

MOD A B MOD leaves the remainder after di-

vision on the stack.

Many other operations could be added. Some of these can
be defined in terms of those above. If that is awkward or
inefficient, code can be written for them. Remember that we
are dealing with 16-bit 2's-complement numbers. This provides
integers from -32768 to 32767. Another number format that is
useful is 14-bit fractions. It can provide numbers from -2.0000
to 1.9999. The above operations work for such numbers, with

the exception of * and /.

7.2

*, product of 2 arguments, one of which is a fraction
(shift left 1).
/ quotient expressed as a fraction (dividend shifted

right 1).

These are useful operations. You must watch out for the size
of arguments in division (quotient 2). The product works for
fraction*integer or fraction*fraction. The quotient works

for fraction/fraction or integer/fraction or integer/integer.

Fraction/integer should use the integer divide.

The notation is a compromise. A better convention would
be *. and /. where the point symbolizes the decimal in the
fraction. However, the decimal point suggests printing in
most applications. We compromised by replacing the
point by a comma, recalling European custom, although the
comma is badly over-worked. You are free to redefine them, of
course. If you use them a lot (and don't need the integer
operations) consider:

P VAR
Two trinary operations are valuable if you do any extensive
arithmetic:

*/ A B C %/ leaves (A*B) /C on the stack.

+% A B C +% leaves A + (B*C) on the stack.
+* is completely equivalent to * followed by +, but the com-
bination occurs so frequently that the added efficiency of
combining them is welcome. %/ is a natural combination since

the double-precision product in registers 0, 1 is per-

7.3

fectly positioned for the divide. In general, you get better

precision by the combination than by separating the operations.

As an example of the value of the #*/ operator, the
following definitions might be used to implement fixed-point
decimal arithmetic (4 decimal places) as opposed to the fixed-

point binary arithmetic discussed above.
* 1.0000 */ ; : / 1.0000 SWAP */

The numbers in this casec are integers with an assumed decimal
point 4 places from the right, and can represent fractions be-
tween -3.2768 and 3.2767 with no decimal-binary conversion
error. Such arithmetic is perfectly reasonable, the extra
cost of the scaling being completely negligible. However, it

doesn't generalize to double-precison very well.

Numbers.

As previously noted, numbers typed at the terminal or
encountered in a block being loaded are converted to binary
(to base BASE, usually 8 or 10) and pushed on the stack.

This is done by a single routine called NUMBER. NUMBER
follows the following conventions:

1. Positive numbers are unsigned, negative numbers have
a leading minus sign.

2. Legal digits arc 0 through BASE - 1.

3. Single precision integers may run from -32768 to 32767.

4. A decimal point cncountered anywhere in the number
causcs the number to be converted as an un-normalized double-

precision (31-bit) integer, in standard DEC double-precision

7.4

format, and pushed on the stack with thec most significant
part on top. The variable D in this casec will contain the
number of digits found to the right of the decimal point.

5. A colon encountered anywhere in the number will
cause the rest of the number to be converted as a sexagesimal
number. Thus, 30:00 will be converted as 1800.

Remember that a word will be looked up in the dictionary
first, and NUMBER will attempt to convert it only 1if the
dictionary search fails. This enables the user to define
commonly used literals (such as 0 and 1) as CONSTANTs, thus
saving space in definitions. As a side benefit, you may
define any kind of word with a ''numeric'" name ... for example,
a precession routine might define 1950.0 to be a verb which

precesses 1950 coordinates to current positions.

7.5

THE FORTH ASSEMBLER

FORTH can assemble machine-language definitions of words.
Among the many examples in the basic vocabulary are the arith-
metic operations.

+ - % / MOD MAX MIN

The assembler is not intended for conventional programs.
Additional words would be needed for that -- as in the BOOT-
STRAP vocabulary for recompiling FORTH.

Words defined by the assembler are CODE entries. They
have a standard dictionary entry with the address field point-
ing to the next word (the parameter field).

The instruction mnemonics are operations - they compile
the instruction and address (if any). As usual in FORTH,
operands (addresses) precede operations (instructions). De-
pending on computer, several kinds of instructions and address-
ing are possible. On the PDP 11 there are two basic formats:

SO instructions have a single operand

DO instructions have two operands: a source and a

destination.

Depending on the type of addressing used, an instruction may
require 1, 2 or 3 words. Standard instruction mnemonics are
used, with a comma appended. Addresses precede operations
and destination precedes source. The words are exactly re-
versed from the DEC format:

destination source MOV, for MOV source, destination
Addresses are 16-bit word addresses (so that they can be in-
cremented by 1 consistent with other versions of FORTH). The

assembler multiplies by 2 when it wants byte addresses; how-

8.1

ever indexing and immediate addresses are ambiguous. Hence
the distinction between W# and W) for word addresses and #
and B) for byte addresses.

In definitions (beginning with :) the placing of para-
meters on the stack and retrieving them from it is automatic
-- only such words as SWAP, DUP and OVER are normally used.
CODE, however, requires that parameters be handled explicitly,
using S (register 5) and the returns that push or pop the
stack. It is necessary, when you are using CODE, to separate
in your mind the way you are using the stack at assembly time
and at execution time. The words in a CODE entry are executed
at assembly time to create machine instructions which are
placed in the dictionary to be executed themselves later. Thus,

HERE 2 - TST,
at assembly time places the current dictionary location on the
stack (HERE) and decrements it by 2. This number is then the
parameter for TST, which assembles a machine instruction which
is the equivalent of

TST #-2
in conventional assembler notation. Similarly, such words as

SWAP and DUP are executed at assembly time in CODE, and com-

piled into the dictionary in definitions.

The most serious design flaw of the PDP11 computer is the
way byte addressing is implemented: word instructions use
byte addresses. PDP11 FORTH conceals this anomaly in order
to stay compatible with versions on other computers. This
costs time (900 us/address) and space (~ 30 instructions) and

is regretable. However experience with this problem on the

360 amply justifies the cost/benefit in favor of compati-
bility.

The rule is simple: addresses on the stack are word
addresses. Adding one will address the next 16-bit word.
Before such an address can be used by the computer (cn @ and !
for instance) it must be doubled.

This addressing problem cannot be completely concealed
in the assembler. Addresses are expected to be word addresses,
and are doubled. However if an immediate operand is to be
used as a word address, it must be doubled; the operator W#
indicates this. Conversely the offset for an indexed byte
address must not be doubled; the operator B) indicates this.

Addresses in registers, the CODE field, or compiled into
definitions are byte addresses. However, the LINK field has
a word address (<16384). This table illustrates where word

and byte addresses occur:

registers byte
compiled entries byte
CODE field byte
LINK field word
stack word
DP word
W) word
B) byte
byte
W# word
@ word
! word
! word
INTEGER word
S) word
E) word

8.3

‘pJ4OM BdUO pIdueApe SL 44 ‘' ggdd9
9Ll SY0O0] YoLym uoLzonajsul

gdy {ulydew pJOM SUO B S3|qUISSY ‘aay
*ssaJdppe 234Aq © 03 g ua3sibau (ssa4appe aodunos
UL SSDJppe pPJUOM 3Yl SI4dAUO) 9q LLLM) joe3s uo paosejd siL @)

(ssauppe uoljeull
-S3p 8q [LLM) oe3s uo paoe|d sL @)]

‘pPJAOM duopadueApe
St d0 "g@szl 29 LLLM uolldnays
-Ul auiydsew B3yl °*y0e3S IYx uo
pJAoM puo23s 3ayy St YoLym ‘*ousz

(doe1s au3 49151694 SL SSaJppe uoljeul
Wouy PaP4RISLp SL SSIUPpE -mmnpmmp mxuwum m;mu%o nmw mpw
m;pu;ww wmuwvmuwmwm wuw:uw SL $S3J4ppe 824N0S 3Y3} fUOLIONUIS
hele iatutad yaens aua ~UL AQW PULYOdRW PJUOM BUO B SB[qUASSY AOW
. (BuLssaudppe
) smuwmmm; 109J1LpUl *JUSWSUIULONER 404 S3LQ
ojulL jde3}s ayjl jo doi $33s) Y2e31s ayj uo § 3yl 031 Pz SPpY +(

U0 punoj SSaJ4PpPeR P4OM © SprO]

(ssaJdppe 324nos
9q LLLM) joe3}S 3yl uo G singd S

(ssaappe uoljeullsap
9q [[LM) 3oe3s uo padej|d sL ¢ 1]

NOILNJ3IX3 ODNIY¥NA NOILIV ATaW3SSY INIY¥NA NOILIY ayom

LXIN “AOW +(S

*PJOM 1X3U 03 09

*3oe31s 3y Jo dol 9yl wouy

papJ4eISLp SL J43qunu ayjg
¢ @ 493sibdua ulL pagedo| SI
YoLYym ssauappe 9349 a9yl o3

(49qunu e) %oe3}S BY3
40 do3 3yl 40 SIUIIUOD 3Y]} SIAOY

NOILNJIIX3 ONI¥YNA NOILIY

(¢ ‘aay @ @

‘AOW +(S

8 9unbiL4

-doo|
[043uU0D wedaboud sy3z uot Aaessadau
suoL3ond3sui dunf pue 3Aou

g 3009

QULYOeW S| qWISSE YOdLyM oudew Yy

"gLselL st
pa|quWasse uoL3dnJdjlsul aulydeuw
3yl 3daox3 AQW ShoLAdud se

(BulLssauappe 3284lpul
3udwWadoulolne J4o} SILQ S33S)
30e31s 3yj uo G 2yjz o031 @g¢
*joe3S 9yl uo paoeld
(burssauappe

3109J4LpuUL JO} SILQ S38S)

%oe1s 3yl uo @ ay3y o1 g1

*joe31S 9yl uo paose(d

ATdWISSY HNIYNA NOILIY

aues

LX3IN

“AOW

quoM

E i
Vi
LINK
ADDRE $S
MOV g3
ADD
MOV
oo e |,

Figure 9
Dictionary entry for store operator (!)
CODE ! 0 S)+ MOV, 0 0 ADD, O) S)+ MOV, NEXT
Note: PDP11 idijosyncracy in the arrangement of the name field:
the bytes are reversed from their order in standard FORTH nota-
tion due to PDP11 byte addressing convention.

Several operators specify addressing mode:
) register indirect

)+ indirect, autoincrement

-) indirect, autodecrement

W) word indexing : S) S W)

B) byte indexing

I) memory indirect

immediate

W# word address immediate

For example:

CODE ! 0 S)+ MOV, 0 O ADD, O) S)+ MOV, NEXT
will store the second number on the stack into the address on
top of the stack; the 0 0 ADD, is necessary to convert this
address to a byte address. The action of the assembler in
constructing a CODE entry is given in Figure 8. The resulting
entry is given in Figure 9.

RETURN: Code must end with a jump to the interpreter
(NEXT). Several addresses are available which modify the
stack before returning to NEXT; these are summarized in Figure
10. Examples of all of these are in the basic vocabulary. A
computer with a single-word jump includes the jump code with
these words. On the PDP11 these words provide just the address,

and an explicit (perhaps conditional) jump must follow.

STACK: Most parameters come to code entries via the stack.

On the PDP11l, the pointer to the top of the stack is in register
5. Since the top is most often referenced, the word S refers to
it directly:

S) addresses the top of the stack

1 S) the next word - etc.

Autoincrementing pops a number from the stack, and autodecrementing

8.4

pushes a number on the stack. For example:
0 S)+ MOV,
removes a number from the stack and puts it in register @; and
2 S) 0 Mov,
will replace the third parameter with the contents of RO.
Parameters may be taken directly from core. The
assembler will automatically check to determine whether the
address of the argument permits a single word instruction,
and if it will not, the extended form is used. For example:
B A ADD,
will add the value of A to B (note this will be a 3 word
instruction - the addresses of A and B each requiring a
full word. In fact, since the stack is cheaper and faster
to use, this form rarely occurs.) Often parameters may be
picked up without being named. So long as their address is on
the stack, 1t doesn't matter how it got there:
HERE 55 ,
will assemble the constant 55 and leave its address on the
stack. The instruction
0 SWAP MOV,
coming later will encounter its address -- and assemble an
instruction to move it to RO.
REGISTERS 0 and 1 are always available; they are not

disturbed by the interpreter. Register 2 is set by the

interpreter but is available as a scratch register. The others
may not be used without saving and restoring. The conventional
place to save registers is the return stack. The full register

allocation scheme 1is:

8.5

register name pointer to:

0
1
2 E parameter field of current word.
3 U user area of current user (on multi-user systems)
4 I address of address field of next word to be executed.
5 S top of parameter stack.
6 R top of return stack.
7 P next instruction.
MACROS :

Many instructions are useful, though not implemented on
a particular computer. Macro definitions will implement them
with several instructions. On the PDP11, NEXT is a macro
which assembles two words on the end of a code definition.
The following macros are available for branching:

BR, generates a single or double word jump as necessary.

BEGIN =0 END

<0 IF ELSE THEN
>0

=0 NOT

<0 NOT

>0 NOT

1V (overflow set)
1C (carry set)

IF begin true condition code
ELSE begin false condition code
THEN end conditional code

IF and ELSE leave the address of a branch instruction
destination on the stack; THEN, provides the address.

IF takes a condition code as parameter; O IF is an
unconditional branch.

Example:

0= IF (code for 0) ELSE (code for not 0) THEN
or

0= IF (code for 0) THEN

8.6

IF and ELSE leave the address of a branch instruction
destination on the stack; THEN provides the address.

IF takes a condition code as parameter; 0 IF 1s an
unconditional branch.

Example:

0= IF (code for 0) ELSE (code for not 0) THEN
or

0= IF (code for 0) THEN

Some dcfinitions provide loops:

BEGIN begin loop

END end loop
BEGIN puts an address on the stack; END assembles a con-
ditional jump back to that address - again either condition
code or 0 preceding.

Therc are no labels in FORTH. You could define them but
their function is performed by CODE names, IF, THEN, BEGIN
and END.

All thesc words are defined in the basic FORTH vocabu-
lary for your computer. Examples of their use are there
as well. A bit of study should make clear how they work, and of

course you're free to define any others you wish.

There are two words that function similarly to CODE:
,CODE and ;CODE. ;CODE is used to define classes of words,
especially nouns. This use is discussed further under "NOUNS'".

;CODE assumes you have included in the word you are defining

a defining word (such as CONSTANT) which at a later time
will generate a definition. ;CODE assembles some code at
this time, and at the later time will modify the address
field of that definition to point to this code.
Example
INTEGER CONSTANT ;CODE E ASR, S -) E MOV, NEXT

The definition of INTEGER includes in its parameter field
the addresses of CONSTANT and ;CODE, followed by four words
of actual code. Later, if FORTH encounters

0 INTEGER X
a definition will be constructed for X by the action of
CONSTANT (which sets up the basic definition with the value
0 in the parameter field, and ;CODE, which put the address
of the ASR instruction in X's code address field. Still
later, if you type

X
the code will be executed - its effect will be to push the
address of the parameter field of X on the stack. Note the
use of E in this example. When the code for a definition is
entered, E points to the parameter field of the definition;
in this example, when the code for INTEGER is entered, E
contains the address of the parameter field of X. It is
converted to a word address and pushed on the stack.

,CODE is the same as CODE except it requires a parameter:
the number of words in the parameter field to be skipped be-
fore the actual code begins, thus allowing a few local constants

to be available without their having to be defined separately.

It 1is not used very often.

8.8

It should be clear by now what the relative trade-offs

in time and core efficiency are between CODE and : definitions
of verbs. CODE will be almost exactly comparable to conven-
tional assembler code, with some advantage due to the handy
convention of the stack, which saves the time and complexity
involved in parameter passing -- but : definitions are ve'y
much more compact, being only a string of addresses of previous-
ly defined words. The combination of CODE and : definitions
means that the overall programs will be extremely compact, as

even short code strings will rarely be repeated.

Suppose, for example, you have a 4-word code string that
seems to perform a useful function. It may at first glance
seem ridiculous to double its length by making a dictionary
entry out of it, but since every subsequent reference to it
takes one word, it will take very few uses to recover the cost,
and from then on you will save three words for every usage.
Clearly, the saving will be greater for longer strings, but you
should always perform only a single logical operation in one

CODLE definition.

8.9

Exampie

Word Explanation Before Operator After

Interpreter returns (terminate CODE entries-contents of A shown as A(n))

Top Top
PUT replace top of A(2) 1 PUT JMP, 2
stack with RO
PUSH push RO onto A(2) 1 PUSH JMP, 1 2
top of stack
'DROP discard top of 2 1 "DROP JMP, 2
stack
Figure 10

Assembler return locations which modify

the stack and return to NEXT

BLOCK I/0

Tape and disk I/0 is handled by FORTH in standard blocks
of 512 words. This fixed block size applies both to FORYH
source text and to data taken by FORTH programs. This appar-
ent inflexibility may appear strange to programmers accustomed
to designing specialized data formats, but in fact causes the
entire problem of I/0 to disappear behind one standard block
handler. In addition, it eliminates many of the headaches
concerned with tape handling: searching, maintaining order,
compatability with other computers, etc. The block size chosen
is a convenient, modest size. FORTH applications exist with
as many as ten data records in a block, and with several blocks
forming a data record.

Magnetic tape records have a 513th word at the end,
giving a logical block number. The FORTH instruction READ-MAP
causes records to be read from tape until a file mark is
reached. The logical block numbers read are used to construct
a map in core showing the tape record position for the most
recent version of each block. This map is 512 words long, ex-
pecting one tape file to contain no more than 512 blocks, or
262,144 words. Multiple files may bc written. Thus, the
tape can be handled as a random access device, in that any
block may be fetched directly, with no need for searching.

To facilitatc this, the current tape record position is kept
at all times. Blocks may be in any order on the tape, and

updated versions of each block may be written at the end of

the tape.

9.1

Standard FORTH programs have two 513-word block buffers
in core. This number may be increased if the need justifies
the amount of core used, for example in an application re-
quiring data records several blocks long. The 513th word con-
tains the logical block number, which will be complemented if
the block is updated. If a block is requested (by the in-

struction
n BLOCK

where n is the logical block number) the block handler will
check the two core buffers to see if the requested block is
present. If not, it will fetch the block from disk, if it is
there, or tape (according to the tape map). If the block is
not available, an empty core buffer will be provided. 1If a
core buffer must be over-written, the block -handler will use
the one least recently referenced. If the block to be over-
written has been updated, the updated block will be automati-
cally written on tape or disk before the requested block is
read. Finally, BLOCK will push the address of the first word
of the requested block on the stack. A flow chart of this

process is given in Figure 11.

The only requirement for fitting data records into this
scheme is that data record numbers (or '‘scan numbers') be a
fixed function of block number. Then a word can be defined

that will use BLOCK to fetch the block(s) containing scans

requested by scan number.

Herc is an example in which data records are smaller

9.2

R et

Enter with block no. on stack

/\.

YES /” Block

in ccre ?

Determine which
core buffer to use.

FLUSII block to tape

N

—
Check tape map tor r$“-ﬁJ

l requested block

4

Read block Empty core buffer

I)

4 Put block address
on _stack

Return to NEXT

Figure 11
Block handler for tape systen

than blocks. Two CONSTANTs have been defined: LR is the data
record length in words, and R/B is the number of records per
block.
ADDRESS R/B /MOD 511 MIN BLOCK
SWAP LR * +
ADDRESS replaces a scan number on the stack by the address of
the first word in the scan, having fetched the scan as necessary.

It should be noted that disk systems do not require any
sort of map in core, as block numbers are a direct function
of disk address (the exact relationship is designed to suit
the particular disk involved). Tape utilities are provided
to dump blocks onto tape and re-load them as necessary. This
saves a substantial amount of cere, but has the side effect
that all blocks within the capacity of the disk are, by definition,
"available'. Blocks which are not in use should be flagged,
normally by putting # in the first word.

By convention, logical blocks 1 and 2 always contain the
only portion of the program which is previously compiled. These
1024 words are read directly by the key-in loader, and contain
the basic interpreter and I/0 handlers for the terminal and
tape or disk, plus character conversion routines and the dic-
tionary building and searching routines. These routines are
very rarely changed, and for all practical purposes may be re-
garded as the ''given' or fixed portion of your application.

The remainder is kept in source form on the tape or disk.
Source blocks contain 16 lines of 64 characters each (again,

512 words plus block number). These blocks are rarely full. It

9.3

is to the programmer's advantage to keep logically related
routines in the same block or nearby blocks, and to allow for
future modifications it is handy to keep a few blank lines in
each block. There is essentially no cost for this convenience,
since loading 1is very fast and load time is fairly independent

of the number of blocks being loaded (it depends on the amount

of program being loaded.) This method of keeping the program

source conveniently available is one of the main features that
makes FORTH so flexible. During program development and testing,
specified source blocks may be edited (using FORTH's built-in
editor) and, if desired, reloaded quickly and easily. When a
FORTH program is running in production, the fact that there

1s no complete object program on a mass storage device is no
inconvenience, as the program doesn't need to be reloaded often,
and it is a process taking only a matter of seconds even for

fairly elaborate programs.

The basic FORTH package that comes for your computer includes
the compiled object program (blocks 1 and 2) and about a dozen
blocks of source including the assembler, compiler and text
editor. A diagram showing this basic program is shown in Figure
13. In addition, you will get the source blocks from which the

object program was compiled, and a set of vocabulary 1lists for

all of the above.

9.4

R/B

/MOD

511

MIN

BLOCK

SWAP

LR

ADDRESS

(Scan number on the stack.) Pushes on the

stack the number of scans per block.

Divides the scan number by R/B, leaving the
block number on top of the stack and the re-

mainder (which record in the block) beneath.
511 pushed on the stack.

Leaves on the stack the lesser of 511 and the
computed block number (if you are going to allow
morc than 512 blocks using multiple files, a

/MOD here will get the file position).

Replaces the block number on the stack by

the address of the first word of the block.

Exchanges the block address with the record

number.

Pushes on the stack the number of words per

record.

Replaces LR and record number with the offset

in words from the beginning of the block.

Replaces the block address and the offset with

the record address.

Figure 12

R/B /MOD 511 MIN BLOCK SWAP LR * +

.
b

-

2K

8K

STACK

COMPILER
BASIC
WORDS | |ASSEMBLER
TERMINAL
1/0
ARITHMETIC
BLOCK
I1/0

BLOCK
BUFFER
/
/ 35K
BLock TAPE
BUFFER MAP

OBJECT

Core layout of basic FORTH.
occupy roughly the first 2048 words of memory.
map and block buffers are in high mcmory.

FORTH

Figure 13

I/0

TAPE

The object program and FORTH

The tape

The stack extends

down from the bottom of the block buffers toward the dictionary.

The space between the “top" of the stack and the top of the

dictionary is unused core.

FORTH PROGRAMMING

Since FORTH is interactive, you will spend much more time
at your terminal and less at your desk than with non-interactive
techniques. You will generally want to write down some notes
about the problem you are about to solve, perhaps, and a few
lines of program. If it is a big problem, you will want to
outline your proposed program in some detail. Then you sit
down at a FORTH terminal and type. Your procedure will be to
enter a definition or two, test them to your satisfaction, and
then combine them to form more powerful definitions, until
the problem is satisfactorily described. The definitions may
then be edited into a block or more of source program which
will be kept permanently on disk (or tape), load the new blocks,

and re-test.

To facilitate testing (and also to allow overlays), you
may wish to mark a place in the dictionary with a null definition,
so that at some future time, typing FORGET and the name of the
remembered entry will cause all of the dictionary generated since
that entry to be discarded (or '"forgotten'"). Thus, when you
begin typing provisional definitions, it is advisable to type
something like

TEST
Later, when you are rcady to begin editing, or if you feel
the dictionary is becoming too cluttered, you may type
FORGET TEST

and everything in the dictionary beyond (and including) TEST's

remembered location will go away. Recall that a word may be

10.1

re-defined as often as you like -- the most recent entry will
be the one used thereafter -- but the obsolete entries re-
main, taking up space. Alternatively, you may FORGET any
normal dictionary entry, again discarding that entry and every-

thing following it.

This technique is also useful for marking sub-vocabularies

to be overlaid by other sub-vocabularies. You may, for example,
have a telescope control vocabulary, interrupt handler and
multiprogrammer that you want to be available all the time,
but several observing vocabularies that are mutually ex-
clusive. In the common vocabulary you will want to give a
name to the first block of each:

43 CONSTANT SPECTROMETER 60 CONSTANT COUNTER

72 CONSTANT IMAGE-TUBE 84 CONSTANT GRATING
and at the end of the common vocabulary a null definition:

OVERLAY

Each of these blocks will load the other blocks that are in-
cluded in the sub-vocabulary. The beginning of each block
will contain

FORGET OVERLAY : OVERLAY ;
The FORGET OVERLAY will discard any of the other sub-vocabu-
laries that might be loaded (the null definition of OVERLAY
takes care of the case when none is loaded). Then the new
definition of OVERLAY marks the beginning of this sub-vocabulary
so that it might be discarded later on. In use, one can change
observing vocabularies easily by typing

SPECTROMETER LOAD

10.2

or
IMAGE-TUBE LOAD

without having to worry about discarding an incompatible set

of routines.

When you type a definition, or use an untested definition,
or load a newly edited block, you may get a diagnostic. Diag-

nostics are very simple:
word 7

This normally means either that "word" is undefined, or that
it expects a parameter on the stack and finds none (stack
underflow). You may determine which easily by typing ' word
If the diagnostic is repeated, the word is undefined. If a
number (the location of the word) appears, the word must have
been expecting a parameter. On the PDP 11, there are two hard-
ware traps that cause aborts of this type: 1illegal addresses
and "reserved instructions'. These may only occur in CODE,
thus they may normally be ruled out i1f you definition 1is

using only tested words. If you have typed a string of words,
you may normally assume that it has been obeyed as far as the

word causing the diagnostic.

When you are testing a new definition it is a good 1idea
to type after executing it until there are no numbers
left on the stack except those you expect to be there. A
definition that accidentally leaves numbers on the stack
can cause subtle and unpredictable things to happen in
entirely unrelated parts of the program! Remember the rule
that all words should destroy their parameters and leave only

explicit results.
10.3

TEXT EDITOR

Although you may type in definitions at any time, they
will be lost if you reload the program. Moreover, the source
is lost forever -- you cannot recall it to refresh your memo-
ry! The text editor allows you to save definitions perma-

nently on disk or tape.

You may 1list a block (16 lines of 64 characters each) at

any time, by giving its number and LIST:

13 LIST

Blocks that have names may be requested by name:

TRACK LIST

To get access to the editing vocabulary have basic FORTH

running and type

EDITOR

Remember that you have access only to the EDITOR vocabulary
and basic FORTH - to regain access to your application vo-
cabulary you must type FORTH and the vocabulary name if it

has one. The editing commands are:

14 BLK ! Specifies that block 14 is about to be
edited. It will bc fetched from disk

or tape if necessary.

7 T Type line 7 (place in line buffer).

" text " Place 'text' in line buffer.=*

*Quotation marks are the standard delimiting characters for
the text editor. For cases in which you need to use quotes

in a line of text, two other sets of delimiters have been
defined: parentheses and #.

11.1

7 R Replace line 7 with contents of line

buffer.

13 I Insert buffer after line 13 (discard
line 16).

13 D Discard line 13 (place in line buffer).

Line 16 will be reproduced and other

lines will move up as needed.

No special action is required to edit a previously unused
block. When you type n BLK ! you will have a fresh block to
work on. This block is filled with undefined characters. You

edit in new lines by replacing lines with text. For example:

" THIS IS A NEW LINE " 1 R

Begin with ''quote space'" -- the end of the line is defined by
the last quote. The rest of the 1line will be filled with
blanks. When you finish typing in lines of text, you should
£fi11 any unuscd lines with spaces. A blank line is defined by

at least two spaces within quotes:
"om" 13 R 14 R 15 R 16 R

Notice that you may string together R's in this case, because

the spaccs remain in the line buffer.

To move a line, you may delete it (D places a line in the

line buffer) and then use R or I. For example:

11.2

23 BLK ! 8 D 24 BLK ! 1 R
deletes line 8 of block 23 and replaces line 1 of block 24
with 1t.

Remember that the line numbers are current, ordinal

numbers. I and D will renumber the remaining lines in that
block.

The last word of program in a block must be

3 S

This marks the logical end-of-block, and when the block is
loaded, interpreting will cease for that block when it is en-
countered. It may appear anywhere in the block, though --
anything in the block after the ;S will be ignored. You may

want to put remarks there.

11.3

AFTER WORD

If you have rcad this book carefully, you already under-
stand how FORTH actually works better (unless you are very
exceptional) than you understand the FORTRAN compiler you
are accustomed to using. Although you may find FORTH's
conventions strange or awkward for a while, you will find
very soon that you can accomplish more with your mini-
computer, in a shorter time, using less core, than if you
use a conventional assembler.

We hope that this manual (and a little practice at a
terminal) will be sufficicent to get you well under way
toward describing your application with a FORTH vocabulary.
We will greatly appreciatc any suggestions you have for
improving this book.

As your application develops, you may make substantial
use of vocabularies developed for other applications, or
even other computers (FORTH definitions are fairly computer-
independent). These includec double-precision math, trig
functions, interrupt handlers, multiprogrammers, drivers
for standard piecces of equipment and many other useful

routines. Your inquiries arc welcome.

APPENDIX A
FORTH Vocabulary

ABS Replaces a signed 16-bit integer on the stack
with its absolute value.

BASE The base for converting numbers to binary. May
‘ be set to 10 by DECIMAL or 8 by OCTAL, or to
any other value.

BLOCK Takes a block number on the stack and replaces
it by the address of the beginning of the block
in core, having fetched the block from tape or
disk if necessary.

CONSTANT Defines a named 16-bit constant. A reference to
a CONSTANT causes its value to be pushed on the
stack.

COUNT Takes the address of a dictionary entry on the

stack and replaces it by the character count

in its name (obtained from the left half of

the first word of the entry), with the character
address below, for TYPE.

CR Sends a carriage return and line feed to the
terminal.
DECIMAL Sets BASE to 10; numbers converted on input

and output will be decimal.

DELIM The delimiting character that defines the end
of a word. Normally a blank, it is sometimes
temporarily changed to " or) for special
purposes.

DIGITS Takes an unsigned 31-bit integer on the stack,
whose signed value is in N, and converts it for
printing by TYPE. Leaves the character count - 1
on the stack and the character address of the
number's character string beneath.

Al

DO

DP

DROP

DUP

ELSE

EOT

ERASE-CORE

FLUSH

FORTH

HERE

IF

IMMEDIATE

Begin a loop. Takes an initial counter value
on the stack and a limit beneath.

The address of the pointer to the next avail-
able word in the dictionary.

Discard the top number on the stack.
Duplicate the number on top of the stack.

End the true part of a conditional phrase and
begin the false part. Compiles a jump forward
to a THEN (for the true part) and sets the
address of the forward jump in IF for the false
part.

End of input message. On a TTY, sent by the
RETURN key.

Mark both core buffers empty.

Write any blocks that have been changed from
core onto disk or tape.

Identifies the FORTH vocabulary.
Push the contents of DP on the stack.

Push the value of the current loop counter on
the stack. Must be used inside a loop.

Begin a phrase to be executed only if the top
of the stack is true (non-zero). Destroys this
stack value. Compiles a conditional forward

jump to an ELSE, or to THEN if the ELSE clause
is omitted.

Used in a definition to mark the word being
defined as a compiler directive.

A.2

INTEGER Define a named 16-bit variable. A reference
to an INTEGER causes its address to be pushed
on the stack.

LOOP End a loop. The loop counter will be advanced
by 1, and the loop will be terminated if the
value is equal to the limit.

+LOOP End a loop, incrementing the loop counter by
the signed amount on the stack. The loop will
terminate if the counter value exceeds the
limit.

MAX Compare two numbers on the stack, destroying
the lesser.

MIN Compare two numbers on the stack, destroying
the greater.

MINUS Change the sign of the number on the stack.

MOD Divide the second number on the stack by the
top number, leaving the remainder on the stack.

OVER Push a copy of the second number on the stack
on top of the stack.

READ-MAP Read to the end of file on a tape, constructing
in memory a map showing what blocks are in which

record positions on the tape. (Tape systems only).

REWIND Rewind tape.

SWAP

THEN

TYPE

UPDATE

WHERE

WORD

;CODE

Exchange the top two numbers on the stack.

End a conditional phrase. At compile time,
sets its address as the destination of the jump
in ELSE, or IF if ELSE is not used.

Move a character string into the line buffer,

to be sent to the terminal.

Mark the block most recently referenced as
changed. A subsequent FLUSH, or the need to
re-use that block buffer, will cause the up-
dated block to be written on tape or disk.

Print first three characters of the most re-
cently defined word.

Read the next word (until reaching the character
specified by DELIM) from the input string,
leaving it starting at DP with the character
count in the high order half of the first word.

Type the number on top of the stack.
Begin compiling a definition.
End a definition.

End a definition and begin a code string to
be associated with it.

End the part of a source block to be inter-
preted.

Put the number on the stack into the dictionary
and advance DP.

' Push on the stack the address of the parameter
field of the following word.

+ Add two numbers on the stack leaving the sum.

- Subtract the number on top of the stack from
the number beneath, leaving the remainder.

+ ! Add the second number on the stack into the
memory location whose address is on top of
the stack.

@ Replace an address on the stack with the con-
tents of that address.

= Equivalent to ! (defined for consistency with

other FORTH systems).

Store the second number on the stack in the
memory location whose address is on top of
the stack.

? Fetch and print the contents of the address
on the stack.

Multiply the two numbers on the stack, leaving
the product.

/ Divide the second number on the stack by the
top number, leaving the quotient.

/MOD Divide as in / and MOD leaving the quotient
on top of the stack and the remainder beneath.

®/ Multiply the second and third numbers on the
stack and divide by the number on top. The
intermediate product is 32 bits.

0<

Replaces thc number on top of the stack by a
1 if it is negative, or 0 if it is zero or
positive.

Replacecs the number on top of the stack by a 1
if it is zero or 0 otherwise.

Compares the two numbers on the stack. Leaves
a 1 if the second is less than the top (both

numbers destroyed), or 0 otherwise.

Opposite of <.

A.6

&}

[
J = OV QANCCUDWON-

[N S
ADWQN

[y
[0

P)RVNANCUDWON-

N
O QUONOGCADdDON-

=
N

13
i4 .

15

16

APPENDIX B

4 LOAD FORTH DEFINITIONS
CODE -V O U MOV, O ASR, O NEG, PUSH JMP,
USER -J + CONSTANT ; CODE
S =) UMDV, 5) ASR, 5)Y E) ADD, NEXT
140 USER BASE BASE 1 + USER DP DP 6 + USER IN
S LOAD 7 LOAD Uy =0 4+ DUP + 63 & LOAD
. BR, O END ; 10 LOAD 1301 {1 - DECIMAL 21 LOAD
237 LOAD OCTAL 11 LOAD 1z LOAD 13 LOAD
BASE 2 - UZER BLK 14 LOAD 16 LOAD
{ POWER FAIL) 13 1Z2 W! 137 0! “ RESTART 24 + 1 W!
DECIMAL 15 CONSTANT 36”7 417 CONSTANT BOCTESTRAF
FLUSH GET BUFFER BUFFER
. ERR-MSG 32 ¥ 347 BLOCK + ~TRAILING 1 + TYFE
OCTAL 1 BLOCK BLOCK -177 @ DUPF 177743 AND IF 13 ERR-M3G
. O THEN DROP DECIMAL.
{ EDITORY 13 LOAD . TAZK 367 LOAD]
ASSEMBLER DEFINITIONS 3 CONSTANT U
& CONSTANT R S CONSTANT 3 4 CONSTANT I Z CONZSTANT E
) 10 + DL 20 + =) 40 + ; . B) 60 +
7 Y+ CONSTANT # T WH # 2% A) 77 2% ;
W) 2% B)Y T3 S W N =) E W) ;
9000 20 CLR, 9100 S0 COM, SZ00 50 INC, 5300 S0 DEC,
9400 30 NEG, 5500 20 ADC, 5600 0 3BC, 5700 20 TST,
L0000 S50 ROR, 6100 50 ROL, 6200 50 ASR, L300 20 ASL,
100 S0 JIMP, Z00 S0 RTS, 300 S0 SWE, 260 20 SET.
30000 DO BIT, 40000 DO BIC, 50000 DO BIS,

10000 DO MOV, - 60000 DO ADD, 160000 DO SUB,
20000 DO CMP, 4000 DO JSR,
2400 CONSTANT <O 1400 CONSTANT =0 3000 CONSTANT 20
1 CONSTANT C 103400 CONTTANT 1C FUT -1 + CONSTANT FUZH
NEXT E 1)+ MOV, E)+) JMF, 18

FORTH DEFINITIONS
CODE - S) 8)+ SUB, NEXT
CODE AND s) CoM, 5) 5)+ BIC, NEXT

CODE @ 0%) MOV, O O AnD, S) 0) MOV, NEXT
CobE ! 05 ¥+ MOV, O O ADD, 0O) T)+ MOV, NEXT
CODE +! 05)+ MOV, O O ADL, 0)Y 5 Y+ ADD, NEXT
CODE OVER 5 ~) 1 5) MOV, NEXT

CODE SWAP 0 1 3) MoV, 1) 5) MOV, FUT JMP,

CODE DUP 5 =) 2) MOV, NEXT

CODE 1+ S) INC, NEXT

< IMMEDIATE Z351 DELIM ! WORD ;

HERE DF @ 0 CONSTANT 0O 1 CONSTANT 1 1S

B.1

NVOANGCUDOIN-

FORTH DEFINITIONS

: W ASSEMBLER Z%® ! ;

2 CONSTANT Z 3 CONSTANT 3 4 CONSTANT 4
S CONSTANT S5 6 CONSTANT 6 7 CONZSTANT 7

ASSEMBLER DEFINITIONS
102400 CONSTANT 1V
: RTI, Z 4

BEGIN HERE

IF NOT HERE SWAF HERE 1+ - , 3
THEN HERE SWAP +! ; ‘

: EL3SE O IF SWAF THEN
35

ASSEMBLER DEFINITIONS
70000 DO MUL, 71000 DO DIV, L700 SO SXT,
72000 DO ASH, 73000 DO ASHC, 74000 DO XOR.

FORTH DEFINITIONS

CODE %/ 1 5)+ MOV, 0 1 3) MOV, 1 5) 1 MOV, S Y+ 0 MUL,
$) 0 DIV, PUT JMP,

CODE /MOD 11 5) MOV, 0 SXT. €) 0 DIV,
1 5) 1 MOV, PUT JMP,

ASZEMELER DEFINITIONS

CODE NOT 0O 400 # MOV, 5) O XOR, NEXT
END NOT SWAP HERE 1+ - 377 AND + ,
508, 100 1 #/ 77001 + SWAF HERE - - ,

15

FORTH DEFINITIONS

SET DUF + SWAP CONSTANT , i CODE E
OCTAL 10 BARSE ! 5 : DECIMAL 1Z BASE !
INTEGER CONSTANT ; CODE E ASR, s
: CODE DUFP + CODE HERE 1 - +!

¥+) E)+ MOV, NEXT
i1 HEX 20 BASE !
-) E MOV, NEXT

CODE MINUS S S) NEG, NEXT

CODE ABS £) TST, <0 IF S) NEG, THEN NEXT

CODE MAX S) §)+ CMF, 20 IF S) =1 S5) MOV, THEN NEXT
CODE MIN 5) 5)+ CMF, <O IF S) -1 S) MOV, THEN NEXT

CODE MOVE 0 35)+ MOV, 1 3 Y+ MOV, 1 1 ADD,
25)+ MOV, 2Z Z ADD, BEGIN 1)+ Z)Y+ MOV, O SOB, NEXT

C % 1 %/ £ /MOD SWAF DROP . MOD /MO0 DROP ;
15

B.z

10

11

NN UDORN-

[N
»OVMANGSWhQON-

Nl
M EN

[
o

VAN ADLON-

FORTH LDEFINITIONZ

: COMPILE 1 - DUP 4+ ,

CODE SKIP I 1) ADD, NEXT

CODE 1IF 5)+ TEST, =0 IF 1 1) ADD,
ELSE 1 Y+ TST, THEN NEXT

IF - IF COMFIIE HERE O , IMMEDIATE

THEN IMMEDIATE HERE OVER - DUF + SWaP ' ;

ELSE 7 SKIP COMPILE HERE O , IMMEDIATE ZSWAP THEN
CODE O= 0 CLR, s) T3T, =0 IF © INC, THEN PUT JMP,
CODE 0O< O CLR, S) TST, <O IF O INC, THEN PUT JMP,
. £ - 0K > SWAP < 15

CODE DO 0O 5)+ MOV, R =) 8)+ MOV, R =) O MOV, NEXT
CODE LOOP R) INC, 1 R W R) CMP,
HERE 100400 (0<) IF I I) MOV, NEXT
THEN I)+ R)+ CMP, R)+ T5T, NEXT
CODE +LOOF R)%) ADD, O R) MOV, O 1 R W) SUB,
5) 77777 # BIC, 0 5 Y+ ADD, BR,
CODE 1 S =) R) MOV, NEXT
CODE 17 5 =) 1 R WY MOV, NEXT
: DO - DO COMPILE HERE IMMEDIATE
LOOF 7 LOOF COMFILE DUF + IMMEDIATE
+L DOF < +L.00P COMPILE DuP + IMMEDIATE

PR
<

{ NUMEBER OUTFUT) 0 INTEGER OF OCTAL
CODE READY O S MW, O =) O =) CMP, O =) Z30 # MOV, B
oP O MOV, NEXT
10 ,CODE DIGIT HEX B130O , 33BzZ , 354 , B736 , 39B5 , 4241 ,
44C3 , LO6CS , OCTAL 0 ClLR, 1)+ MOV, 5) ROL, 1 ROL,
BASE W) O DIV, 5 =) O MOV, o 1 MOV, 1 1 5) M3V,
0 ROR, Y ROR, BAZE U) O DIV, O ROL, %) ROR, © ROR,
1 3) O MOV,
OF DEC, OF 1) < DIGIT 1 W) MOV, B NEXT

CODE SIGN O OFP MOV, 5)+ &)+ CMP, S) TST, <O IF
0 ~) 55 # MOV, B THEN
5) O MOV, & SUB, O 4 W& ADD, 0 NEG, FUSH JMF,

DIGITZ 1 O DO DIGIT OVER ABES OVER + O= +LOOF SIGN ;

DUF AES O READY DIGITS TYFE
7 e . 15

B.3

12

14

1

VYONGUDWN

-
FOVMANGCUDLON-

{ PROGRAMIMING VOCARULARY) OCTAL
DP 7 + USER MSB

co

Cco

Vv
B

-O.

1z ¢

—
e

[
»

[N
€]

16

.
i

- s
b W

[
[

[
QVWANGCUDWN-

CH

DP

O]

DE -
FN C
s =)
MSG
LINE

.0 0]
DUMF

Lo

DE -TR
o =)

TXTB

3 =) R)+ MOV,

ONSTANT -—;
E Y+ MOV,

!

R =) 1 MOV,

MEB @ 2 / 10 +

NEXT

y CODE

it COUNT TYFE

1 - 17 MI

SWAP O READY

OVER + SWA
OF 10O +L00
AILING S
Z80 # CMP,

LIST BLK ! 21 1 D

THEN

SE @ O
HPDATE
INTEGE
STRING
DELLIM
1] 42
HOLD

CR SFACE SPACE HOLD LINE DUF +

T
K LI
D HO
LINE
I 1+
COPY
AIN FO

1 + U
WHERE

FORGET

I . TXTB -TRAILING

DCABULARY EDITOR

N

0,

HERE 120001

40 # BLK @ BLOCK
: BLK-TO-MZE LINE TXTB 40 MOVE RELEASE
HERE 1064035 , 12,

F DO

F o

~
P d

bH

) ASL,

E

G CR
0O DO DIGIT LOOF

CR I .0

O S) MOV,

=0 NOT END © 5)

EDITOR DEFINITIONS

k]

I E) MOV,
MS
+ 3

SUB,

NEXT

G SPACE

SIGN TYPE

1 10 + 1 DO

CTAL MOVE 40 MOVE
=200 @ 40 AND IF CR
R TEXT 37 DP +!
120240 HERE ! HERE DUP 1+ MOVE
! =1 IN +! WORD HERE 1+ TEXT MOVE
STRING ¢ 251 STRING ;

DUFP LINE TEXT MOVE

NE TEXT SWAP MOVE UFDATE

LD ZO SWAF
DUF 40 -

DUF 17 DO
SWAF ELOCK

DC

I LINE DUF 40 + MOVE
1000 + !

1

MOVE LOOP

1o+
UFDATE

UFDATE

RTH FORTH DEFINITIONS BAZE !

SER CONTEXT

(VOCABULARY CONTROL)

DP 3 + USER CURRENT

CONTEXT @ @ COUNT 3 MIN TYPE

IMMEDIAT

E

CONTEXT @ DUF CURRENT

VOCARL
i CODE

CHAIN

DP z ~ @
' ' 4 - DP !

e

O 100 # ADD,
0 INC,
0 CR I BLRK-TO-M5B 1 DBASE @ <
TYFE LOOF O TXTDB

IF
CR

100 TYFE

. O

BEGIN
PUSH JMP,
SFACE

PR

Z ERR-MZG THEN UFDATE

-1 +LOOF R

i

]

SFACE

i

37777 AND

LLARY IMMEDIATE HERE DUF 3 4+ CONSTANT ,

E ASRK,

IMMEDIATE

CONTEXT W) E MOV,

4

Z

~ CONTEXT @ 1+

B.4

NEXT

]
.

i

IMMEDIATE

16

17

b

WVANGCUPRON

[S ol I Sy
GADHBWN=»O

[
[

[N
CADPORNFFOQQANCUWRL QRN

VAN U DN~

-
=0

1z
13
14
15

16

{ TAFE I/0) OCTAL
371 CONTTANT BUF { INTERRUFT) 110 @ 112 !
1001 INTEGER LK
BUF CODE FIX Z + 1) SWB, NEXT
CODE TAFE 27 3)+ MOV, WAIT 1) JMP,
READ —AOO’ —2 26 Y BUF @ DUP -2525 ' 60103 TAPE
-2525 @ OVER - Z / LR ' Z /)
REWIND GET 40117 TAFE
END-FILE 6H0107 TAFE
BACKSFACE -1 -252& Y 60113 TARPE
SKIF GET O -2526 ' 601131 TAPE
7TAFE =2520 @ T 7EOF ?TAFE 40000 AND ;
FPARITY ?TAFE 10000 AND
WRITE —-2 % =252L ' BUF @ -Z3Z5 ' 60105 TAFE
FARITY IF 11 ERR-MSG THEN
DECIMAL i3

(TARFE UTILITY)

0 INTEGER OFFSET

L DUMF I+ ZWAP DO 1 BLOCK @ IF FIX 513 WRITE FIX
THEN LOOE

RECORD BUFFER READ FIX S1Z + @ ;

SFACE 1 - 1 0 DO DUP RECORD < +LOCF DROF ;
SAVE OFFZET @ BUF @ Z / 512 + +! UFDATE ;

BACHIIF 1 456 DUMF O O DUMP END-FILE REWIND ;

[}

[0

B.5

REL.OGT) SFACE 1 O DD SAVE RECORD 7E0F +LOOF FLUZH ;

APPENDIX C

GENERAL REGISTER ADDRESSING

FORTH PDP-11/40 PROCESSOR HANDBOOK REGIS
MODE SYMBOL NOMEN. SYMBOL NOMEN . HAS
|
0 R D.A. R D.A. (Register) A
2 R)+ I.A. (R)+ D.A. (Auto-Inc.) AA
4 R -) I.A. -(R) D.A. (Auto-Dec.) AA
6 n R w) I.A. (OFFSET) n(R) D.A. (Index) AA
1 R) I.A. (R) I.A. (Register Def.) AA
3 R)+) D.I.A. @(R)+ I.A. (Auto-Inc. Def.) AAA
5 R -)) D.I.A. @-(R) I.A. (Auto-Dec. Def.) AAA
7 n Rw)) D.I.A. @n(R) I1.A. (Index Def.) AAA
P.C. REGISTER ADDRESSING
2 n# 1.A. #n D.A. (Immediate) *AA
3 D.I.A. e#A I1.A. (Absolute) *AAA
6 (Not Used) I.A. A D.A. (Relative) *AA
7) D.T.A. A I.A. (Rel. Def.) *AAA

NOTES: (1) D.A.

Direct Addressing

(2) TI.A. = Indirect Addressing
(3) D.I.A. = Double Indirect Addressing
(4) A = Address
AA = Address of Address
AAA = Address of Address of Address
(5) * = Drop off one A if JMP, Instruction Used

C.1

