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INTRODUCTION 

As long as the position accuracy of radio astronomical 

observations is of the order of minutes-of-arc, all spherical 

astronomy involved in the data reduction is simple. All the 

convenient methods, formulae, and appropriate constants can be 

obtained from most textbooks. 

However, as soon as one enters the seconds-of-arc region 

(as is the case with a large interferometer), many of the "little 

effects" have to be taken into account. For example, when one 

compares observed positions with calculated positions, it is not 

sufficient to include only general precession in the predictions. 

Nutation is of the order of 17 sec. arc. Aberration is of the 

order of 20 sec. arc; and the difference between mean and apparenl 
5 

sidereal time is of the order of 1 of time. 

In principle, it is well known how to take these terms into 

account. Appropriate constants needed to evaluate each term are 

published for each day in the American Ephemeris, and most of 

them are available on punched cards or magnetic tape. All these 

data could be introduced into a computer program for each 

observation period. This might be sufficient for present day 

observations. 

If a very large array of antennas is observing, an enormous 

amount of data reduction will have to be done. One certainly 

wishes to have all the elementary, straight-forward parts of data 

reduction done completely automatically. As far as spherical 

astronomy is concerned, it would be very inconvenient to feed-in 

the Ephemeris data for each day of observation. The process 

represents a possible source of errors that can be avoided by 

generating the terms in the computer. It is the purpose of this 

report to present a convenient, systematic way to generate such 

data. 

All spherical astronomy terms are defined by certain 



constants and by the time that has elapsed since a certain 

standard epoch. In a computer program, all constants could 

be stored in the same way as other mathematical constants are 

stored. The time interval since the standard epoch can be 

computed, and therefore, the terms themselves can be computed. 

However, internal data generated in this manner involves 

unreasonable amounts of computing time. Instead, one may choose 

to store the values of the terms for an epoch close to the 

period of observation (e.g., for the beginning of the current 

year) so that they assume the role of constants for the whole 

current year. All formulae then assume a very simple form. If 

these formulae are available in the form of subroutines, they 

can use a common set of constants that need to be changed only 

once a year. Everything else can then be computed internally, 

and the accuracy of the computations will be clearly defined. 

Part II of this report deals with these subjects. I have tried 

to make certain approximations for each term rather than to 

compute it with full accuracy. Therefore, a limiting accuracy 

had to be chosen. All effects equal to or greater than 0.2 sec. 

arc have been included in the present version of the interferometei 

fringe reduction program. I have chosen an accuracy of about 

0.05 sec. arc for such basic variables as nutation, and hence, 

the Besselian Day Numbers. In the declination range, 
o o . 

-76 < o < +76 , the errors m the apparent positions (the 

latter being obtained from mean positions) would not exceed 

about 0.3 sec. arc with this assumed accuracy of the Besselian 

Day Numbers. Nutation is presented in a series with mono- 

tonically decreasing absolute values of the coefficients. The 

maximum error that can be made by truncating these series after 

any term is also given. Each user can select his own accuracy 

range and therefore reduce his computing expense considerably. 



Part I of the report deals with those little famous problems 

as, for example, "If the calendar date and the local sidereal 

time on the observer's meridian is given, what is the calendar 

date and mean time at Greenwich?" In answering questions like 

this, it is very easy to make errors of the order of almost 

four minutes of time and multiples of four minutes, and of the 

order of one day and multiples of one day. In many applications 

such errors are not very important, but they could be very 

important for special applications. All these problems can be 

handled by the simple, accurate and straightforward formulae 

derived and presented in Part I. 

I have not included many of those subjects for which con¬ 

venient approximate or rigorous formulae are published in 

textbooks or in the Ephemeris (e.g., the transformation of mean 

places from one mean equinox to another mean equinox). This 

report is limited to those problems where the description 

given in textbooks or other sources is not directly suitable 

for programming. 



PART I 

RELATIONS BETWEEN CALENDAR DATE, MEAN TIME, 

SIDEREAL TIME AND LONGITUDE 
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1. PERIODIC VARIABLES FOR TIME MEASURING. DEFINITION AND 

PROPERTIES OF THE "REDUCTION OPERATOR R". 

Time on a day can be measured by: 

UT = Universal Time 

ET = Ephemeris Time* 

GMST = Greenwich Mean Sidereal Time 

GAST = Greenwich Apparent Sidereal Time 

2T = Zone Time (e.g.. Eastern Standard Time) 

LMT = Local Mean Solar Time 

LMST = Local Mean Sidereal Time 

LAST = Local Apparent Sidereal Time 

By definition, the numerical values, x., of all of these time 
i 

measures are restricted to the standard interval: 

0h ^ x. < 24h 

i 

Instead, throughout this report I will use dimensionless 

variables, t., obtained from x. by division with the 
i i 

corresponding length of day: 

0 £ t. <1 
i 

The following table shows the time equivalent (in seconds) of 

a certain error in t: 

(1) 

(2) 

Error in t 

10 

10 

10 

10 

10 

10 

10 

-8 

-7 

-6 

-5 

-4 

-3 

-2 

Seconds of Time 

0?001 

0.009 

0.086 

0.864 

8.640 
m q 

86.400 = 1 26.4 
m q 

864.000 =14 24 

*The difference between ET and UT is so small that it has no 
influence on the various subjects discussed in this report. 
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Since in most applications one has to deal with UT/ GMST, ZT, 

and LMST, a single letter notation is used: 

UT: 0 U < 1 

GMST : 0 G < 1 

ZT: 0 Z < 1 

LMST: 0 s < 1 

LMT: 0 M < •1 

(3) 

Occasionally/ 

will be used. 

In addition to the variables above, two other variables are 

important: 

L = Geographic Longitude of the observer 

= Geographic Longitude of the Zone Time Meridian 

-h < L, L ^ +h 
Z 

(4) 

(5) 

One basic task in spherical astronomy is to compute a time 

variable from other time variables. Normally, the direct 

result will not be within the standard interval. I will denote 

this by giving the direct result an index on the .uppet Tright 

side. For example; 

r 
tI = f(ti' V 

(6) 

means that in order to obtain the variable t. one has to reduce 
i 

r 
t. to the standard interval 0 ^ t. < 1. 
i i 

Obviously, expressions may also occur where the variables on 

the right hand side of the equation are not in the standard 

interval: 

^ = g(tl' t2' t3' V (7) 

In a computer program as well as in hand computations, the 

reduction to the standard interval is easily made by decisions 
r r 

like "if t. ^ 1, subtract 1 from t.", etc. I will describe 
i i 

these decisions with an Operator R (reduction operator) in the 
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following way: 

The result of any computation t^ = f(t ,t /..) 

is a real number: 

- 00 < < + CO 

which always can be written in the form: 

t^f = ti + N(t^) , 

with: 

and: 

0 £ t. < 1 
i 

N(t^) = 0, +1, +2,. 

(8) 

(9) 

(10) 

(11) 

(t./ N(t.) being one and only one pair of numbers 
r \ 

belonging to t^). 

The operator R is defined by: 

r 
R. t. = t. . — i i 

Application of the operator means that not only t 

1C 
but also N(t^) is computed and available. 

(12) 

In a computer program, R is realized in form of a subroutine 

which makes use of such FORTRAN statements as "AMOD" and "INT". 

The operator R is also very helpful in deriving formulae. 

Therefore, some of its properties have to be discussed although 

they are all very trivial. 

Obviously: 

R.M = 0, M = 0, +1, +2,, 

R. t.= t. 
— i i 

0 £ t. < 1 . 
i 

(13) 

(14) 

The equation (9) can be written and used in either of the 

following versions: 

tr = t. + N(tr) = R.tr + N(tr) 
ii i — i i 

r t 
t. = t. - N(t ) 
ii i 

ir r" 
N(t;) = t. - t. 
i ii 

r r 
t. - R.t. 
i — i 

(15) 

(16) 

(17) 
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Let us consider the case 

n 

tr = 2 tr -+ M, M^0/+l/+2/ . 
i=l 

From (15) : 

(18) 

n n 
t + N(tr) = £ t. + 2 N(tr) + M 

i=l 1 i=l ;L 
(19) 

n 

t = 2 ti - N 
i=l 1 A 

(20) 

or i 

where: 

n n 

R. ( 2 tr + M) = 2 (R.tr) - N 
i-1 1 i=l ;L 

n 
N = N(tr) - 2 N(tr) - M 

A i=l 1 

n 
N=kifks 2 t. < k+1; k=0,1,2,...n-1 

A i=l ;L 

(21) 

(22) 

In other words: 

Integer terms disappear during reduction and 

may be omitted before reduction. Reduction of 

a sum of variables is not necessarily equal to 

the sum of reductions. 

(23) 
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In a similar way one obtains: 

For p > 0: 

R. (ptr) p.(R.tr) + R.(pN(tr)) - N 

N = largest integer in the sum of the first 
two terms on the right hand side 
(N = 0,1,2,...) 

P 

(24) 

Frequently, there will be more than one expression for the same 

variable. Therefore, one has to use different reduction indices 

for each equation. For example: 

tr = f(t ,t ) 
i 12 

ti = g(t3,t4) 

3. 
In this case, N(t^) must not necessarily be equal to N(t^) 

On the other hand, if 

tr = t + t 
12 3 

(25) 

(26) 

one obtains the conv.ersions 

t2 = tl " t3 
(27) 

and 

t3 tl t2 
28) 

In this case: 

N(t^) = 

Ntt^) = -N(t^) 

(30) 
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2. CALENDAR DATE AND JULIAN DATE 

A Calendar date, DAT, can be represented by a six digit nmnber: 

DAT = yymmdd (1) 

If DAT is changed by adding or subtracting a number of n 

days, I will denote this by: 

DAT1 = DAT + n (n=0,+1,+2,...) (2) 

or: 

DAT1 = DAT + (DAT3 - DAT^) (3) 

It has to be understood with this sort of operation that the 

variable number of days in a month and in a year is handled 

properly. In a computer, a corresponding subroutine could 

be used. 

Usually, two different dates are needed: 

GDAT = Calendar Date on the Greenwich Meridian (4) 

ZDAT = Calendar Date on the Zone Time Meridian (5) 

A certain instant of time is defined by a pair of numbers 

such as ZDAT,Z or GDAT,U. Because of the ambiguity of 

sidereal time (see Section 7), however, it would not be 

defined in a unique way by pairs such as ZDAT,8 or GDAT,G. 

Throughout this report, any given instant of absolute time 

is defined by ZDAT,Z or GDAT,U; and it is understood that 

both pairs describe the same instant of time. In other words, 

if ZDAT,Z is given, then GDAT,U can be computed and vice 

versa. Or if x is a variable depending on absolute time, 

then: 

x(ZDAT,Z) = xtGDAT.U) (6) 

If more than one time instant is involved: 

X (ZDAT Z) = x(GDATi,U) 

but not: 

x(ZDAT. ,Z)= x(GDAT. ,U) , and so on. 
1 h h 

Frequently, the value of such a variable for 0 ZT or 0 UT 

two different dates are needed: 

GDAT = Calendar Date on the Greenwich Meridian 

ZDAT = Calendar Date on the Zone Time Meridian 

instant of time is defined by a pair of numbers 
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has a special interest. The second argument can then be 

omitted: 

x = x(GDAT,0) = x(GDAT) (7) 
o 

X1 = x(ZDAT,0) = x(ZDAT) 

In this case, x ^ x_ because GDAT^ and ZDAI^O define different 
o 1 

instants of absolute time. 

Instead of, or in addition to the above time definition, the 

so-called Julian Date is in use. T e (JD) defines 

a certain instant of absolute time. It is, by definition, a 

date assigned to the Greenwich Meridian, and therefore directly 

connected with GDAT,!!. The Julian Day begins with 
h 

GDAT, 0.5 = GDAT, 12 UT. We can write: 

JD = JDCGDAT,!!) (8) 

Of particular interest is: 

JDo = JD (GDAT , 0) = JD (GDAT)"j (9) 

With this notation: 

JD = JD + U (10) 
o 

JD^ can be found in'the American Ephemeris, Table I, where 

the Julian Day number: 

JDN(GDAT) = JD(GDAT, 0.5) (11) 
th 

is given for the zero day of each month. Therefore, 

JDo(GDAT) = JDN(GDAT) - 0_.S| (12) 
3 

knowing JDN, 

Example: 

GDAT = 651228 (1965, Dec. 28): 

Table I in the American Ephemeris: 

JDN(651200) = 243 9095.0 
+ 27.5 

JD (651228) = 243 9122.5 
o 

For computer applications, Dr. Barry Clark has developed a 

straight forward formula for computing JDN(GDAT). 



2 -8- 

Using JD for different dates# the difference in days is 

easily found by JD - JTD , this being an ordinary arithmetic 
■l* £* 

subtraction. 
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3. NUMERICAL RELATIONS BETWEEN MEAN SOLAR TIME AND 

MEAN SIDEREAL TIME 

In all time conversion problems, the following constants are 

involved: 

Ratio 

Ratio 

Where 

<kito V • 

Mean Sidereal Day 
Mean Solar Day 

Mean Solar Day 

Mean Sidereal Day 

kl = 0.99726 95664 14 |(1) 
-0.00000 00000 586 x T 

k2 = 
1.00273 79092 65 

+0.00000 00000 589 x T 
(2) 

T = number of Julian centuries elapsed since 

1900 JAN 0.5 (see equ. 5/2). (3) 

1 Julian century = 36525 Mean Solar Days. 

Neglecting the small variations of the constants, we can obtain 

the following constants and relations: 

Increase of mean sidereal = 

time per mean solar day 

Decrease of mean solar 
time per mean sidereal day = 

k = 0.00273 79093 

(= 3m 56?55536) 

k = 0.00273 04336 
4(= 3m 55?90946) 

"1 2 
k. 

k 

k = 1 

= k. 

= 1 

= k. 

= k. 

1 

k. 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

If ^S and LM are the mean sidereal time interval and the mean 

solar time interval, respectively, both equivalent to the same 

absolute time interval: 

<LS = k .am, 
2 

\M = k^.AS (id 
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4. RELATIONS BETWEEN DATE, TIME AND POSITION 

The basic definitions and relations are compiled in this section. 

Each special problem involving longitude, date and mean time 

can be solved with these relations. 

Definitions: 

L = Geographic longitude of observer, 

L = Geographic longitude of Zone Time 
z 

Meridian, 

M = LMT (Local Mean Solar Time) 

Z = ZT (Zone Time) 

ZDAT = Calendar date on the Zone Time Meridian 

S = LMST (Local Mean Sidereal Time) 

U = UT (Universal Time) 

G = GMST (Greenwich Mean Sidereal Time) 

GDAT = Calendar Date in Greenwich 

0 ^ M, Z, S , U, G, < 1 I 

-h 

VI 

Hi 
V

 +h 

< L £ 
z 

(1) 

(2) 

► Observer 

r 

(3) 

(4) 

(5) 

(6) 

(7) 

Greenwich (8) 

(9) 

(10) 

ZDAT/M^, and GDAT,11 define the same instant of absolute 

time. 

G = G (GDAT) = G(GDAT, 0) = GMST for 0 UT on GDAT 
00 h 

S = S (ZDAT) = S(ZDAT,O) = LMST for 0 ZT on ZDAT 
o o 

0 £ G ,3 < 1 
o o 

2 = R*(S-S ) = Interval of LMST elapsed since 0 ZT 

P = R.(G-G^) = Interval of GMST elapsed since 0 UT 

o ^2, r< 1 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

In the definition of 2 and f, the ambiguity of sidereal time 

is ignored, so that if S is ambiguous the solution 1 is 

assumed. (See Section 7) 



-11- 

Using the definition of the R operator (Section 1), the 

following relations hold: 

Relations: 

U = Z + L 

Z = U - L 

N(Ua) = - N(za) (17) 

= S + L 

= G - L 

N(Ga) = - N(sa) (18) 

U 

b 
M 

= M + L 

= uU - L 

/ bx N(U ) - N(M ) 

U 

Z 

= k_.P = k_.R.(G-G ) 
1 1 o 

= k_.2 = kn.R.(S-S ) 
1 1 o 

In these equations the solution 1 is assumed 

in an ambiguous case. (See section 7) 

(19) 

(20) 

(21) 

G = G + k .U , G = R.G 
o 2 

Sb = S + k .Z , S = R.Sb 

o 2 — 
These equations are never ambiguous. 

If 
a 

= R.(U-L ) 
z 

GDAT, U is given: Z 

isi II 

ZDAT = GDAT + N(za) 

If ZDAT,Z is given: U II 1#
 

= R.(Z+L ) — z 
GDAT = ZDAT + N(Ua) 

(22) 

(23) 

(24) 

(25) 

It is important to know G or S . Formulae will be 
o o 

developed in the next two sections. 
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5. COMPUTATION OF G = GMST FOR O UT 
o 

Given: GDAT = Calendar Date in Greenwich 

Wanted: G = GCGDAT.O) = GMST for 0h UT. 
  o 
For hand computations, G^ is found in the American Ephemeris 

for each day of the current year. (Table: Universal and 

Sidereal Times). These values are defined by and computed 

from the following equation: 

Gr = c_ + c .T + c.T^ (1) 
o 1 2 3 

T is the number of Julian centuries elapsed on GDAT, 0 UT 

since the standard epoch 1900 JAN 0.5. 

Let JD (GDAT) be the Julian Date for GDAT, 0 UT; then T 
o 

is found from: 
JD (GDAT) - 2415020.0 

T = —2  (2) 
100.JY 

JY = 365.25 Mean solar days (3) 

= Length of the Julian year 

The constants in equ. (1) have the following values: 

c1 = 0.27691 93981 45 (=6h 38m 45?836) 

c2 = 100.00213 59027 77 (=8640184?542) (4) 

c3 = 0.00000 10752 31 (= 0?0929) 

Of course, one could use the equ. (1) in a computer and have 

a completely accurate representation of the G^ values as 

published in the Ephemeris. However, this is inconvenient for 

two reasons: 1. Since T^0.7 for the present observation 

period, the second order term would have to be included if the 
s 

accuracy has to be 0.05 or better. 2. c^ involves 100 

"revolutions", and, therefore, considerable effort in reduction 

of G to the standard interval, 
o 

This inconvenience can be easily avoided by choosing another 
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epoch, T , instead of 1900 JAN 0.5 and by using a time variable 

other than T. 

Most reasonable definition of T : 
A 

f— 
T = corresponding to the beginning of the Besselian 

Year next to observation period. 

With 

equ. (1) becomes: 

GA ■ Go(V 

(5) 

(6) 

G^(GDAT) = Ga + C2.(T - Ta) (7) 

During the period 1967-1977, the neglected second order 

term will always be: 

c .(T2-T^) ^ 0?0007 (8) 
o -A 

The astronomical definition of c is: 
2 

c^ = increase of the mean longitude of the sun (9) 
per Julian century, at 1900 JAN 0.5. 

The daily increase of the mean longitude is, therefore: 

aL = C2 (at 1900 JAN 0.5) (10) 

100.JY 

On the other hand, the time interval during which the sun's 

mean longitude increases by exactly 360° ( =1, in the units 

used in this report), is: 

TY = length of the tropical year 

= 365.24219 879 - 0.00000 614 x T (11) 

TYo= TY(1900.0) = 365.24219879| (12) 879 j 

From equ. (10): 

c = 100.— (13) 
2 TY K J 

o 

The term c (T-T ) in equ.(7) can be written in the form: 
JD - JDA 

C2(T-TA) " C2 100.JY (14) 
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with: 

I JDA = JD(epoch T ) 
A 

Ijwbh I   ii i i WTf*^gWg8y^g— 
(15) 

If one defines the new variable: 

t(GDAT) = 
JD (GDAT) - JDA 

TY 
(16) 

one obtains G (GDAT) from: 
o 

Go(GDAT) = Ga + t(GDAT) (17) 

Remarks on JDA and G 
A 

If JDA is chosen to be the beginning of the Besselian 

Year next to the observation period, then t is the same 

variable which is used for many other purposes, for 

example, in the computation of apparent places. 

The constant G^ has to be taken from the American Ephemeris 

for each current year. 
g 

The accuracy of equ. (17) will be better than 0.001 for 

the period 1967-1977. 

Of course,, one has the choice of using a constant epoch 

JDA throughout all applications. 

For instance, if: 

JDA = 243 9491.541 = 1967 JAN 1 
jjED 

(18) 

which is the beginning of the Besselian Year, 1967.0, 

one obtains: 

G, = 0.27777 87126 
A 

(19) 

In this case, t increases during 196 7-1977 from about 

0 to about 10. The error in equ. (17) will increase from 

0 to about 0.013 during this period, 
.h 

The constant G , which is generally not a GMST for 0 UT, 

must be taken from the American Ephemeris in the following 

way. 
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Let GDAT,U be the time instant equivalent to JDA. In the 

Ephemeris: 

G (GDAT) in h.m.s. (20) 
o 

Convert this to a fraction of a day. Also, express U in 

the fraction of a day. Then: 

Gr = G (GDAT) + k .U (21) 
A o 3 

Daily Increase of t and G : 
o 

AG (1 ) = ATtl ) = -y = 0.00273 79093 = k3 

o 
(22) 

This result is already known from Section 3. We could 

have derived equ. (17) in a much shorter way, starting with 

the definition of k . However, since the constants kn to k, 
3 14 

are derived from the analysis of the mean longitude of the 

sun rather than being "original" constants, the above 

derivation of equ. (17) seems to be more appropriate. 

Another trivial relation follows from equ. (22): 

If: GDAT = GDAT + n, n=0,+l,+2, 
o — — 

T = T(GDAT ), 
o o 

then: Gr(GDAT) = G (GDAT ) + nk 
o o o 3 

t(GDAT) = t + nk 
o 3 

(23) 

As far as the computation of t itself is concerned, it is 

more convenient to use k^ as the basic constant than to use 

TY : 

t = k3.(JDo-JDA) (24) 
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6. COMPUTATION OF LMST FOR GIVEN ZT 

Given: ZDAT, Z, L, L 
z 

Wanted: S = LMST(ZDAT,Z) 

The usual way of solving this "problem", as explained in the 

American Ephemeris, consists of the following steps:* 

a. Find: GDAT and U corresponding to ZDAT and Z 

b. Find: G (GDAT) from the American Ephemeris 
o     

c. Compute: G = R. (G + 

d. Compute: S = R.(G - L) 

Instead, a straight forward formula shall be derived. The 

formula includes a minimum amount of numerical and logical 

operations arid does not explicitly use the Greenwich Meridian. 

The following equations are available: 

Equ. 4/18 Sa = G - L (1) 

4/22 G = G + k U (2) 
o 2 

4/17 Ua = Z + L (3) 
z 

5/17 Go = GA + T(GDAT) 

4/25 GDAT = ZDAT + N(Ua) (5) 

5/23 T(GDAT)=T(ZDAT) + k3.N(Ua) (6) 

Making use of equ. (1/15), one obtains: 

Sa = g + t(ZDAT) + k .N(ua) + k_.(Z+L ) - k .N(ua) 
A 3 2 z 2 

- L - N(Gb) - N(Gr) 
o 

Remembering that = an(^ integer terms can 

be neglected, it follows that: 

Sa = G + k .L - L + t(ZDAT) + k .Z (7) 

* In our notation. 
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Introducing the new constants: 

a = L - L 

GB =^(GA +k3-Lz 
-a) 

(8) 

(9) 

the solution can be written in the following form 

Given: ZDAT/ Z, G / JDA 
B 

Compute: JD (ZDAT) 
  o 

T = k .(JD -JDA) 
3 o 

S = R.(Gb + T + k2.Z) 

(10) 

Frequently, the following case will appear 

r 
Given: ZDAT, Z, T (DAT), n = ZDAT - DAT 

o 

In other words, for a certain 
date, DAT, the value of t has 
already been computed and is 
still available. 

Compute: S = R.(G_ + t + k .n + k^.Z) 
— B o 3 2 

(11) 

Special values of G. 
B 

If we take the longitude of Green Bank, as published in the 

American Ephemeris. and the longitude of the Eastern 

Standard Time Meridian, we have: 

h^in ^s„ T ^h 
L = 5 19 20.7 , L =5 

z 

and in our notation: 

L = +0.20833..., k_.L = +0.000570397762 
z 3 z 

a = +0.01343402777 

(12) 

Therefore: 

g
b = - 0.01286 36300) 

for L = +5h19m20?7, L =+5h 

z 

(13) 

(14) 
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If the origin of t is the epoch 1967.0, G obtains the 

value of eqUo (5/19): 

G = 0.26491 50826 
B 

for L = +5h19m2 0?7, L =+5h 

z 

JDA = 243 9491.541 = 1967.0 

(15) 

LMST for 0h ZT 

This is obtained by putting Z=0 in equ. (10): 

3AT)) 1 So(ZDAT) = R.(Gb + T (ZDAT) 

        w 

(16) 
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7. THE AMBIGUITY OF SIDEREAL TIME WITH RESPECT TO CIVIL TIME 

Since the mean sidereal day is shorter than the mean solar 

day, a certain range of values of mean sidereal time will 

h 
occur twice a day. The value S (LMST for 0 ZT) is defined 

o 
by equ. (6/16). Its daily increase is given by k , and the 

corresponding interval of mean solar time is k^. The con¬ 

ditions are illustrated in the following figure: 

S (ZDAT) S =R.(S +k ) 
o 1 — o 3 

A A 

j ambigj 

? 1 ^ 
no ambiguity 

s q =s _ 2 o 
S (ZDAT+1)=R.(S +k ) 

o . — o 3 

f  TTTTrTTTTTj 

ambig.; 

f"' ' ' ' ' ' 'S 

(Mean SLtdereal Time) 

(Mean Solar Time) 

DAT= ZDAT 

0 

b 
ZDAT+l 

In the interval, k ^ Z < k , each value of S occurs only once. 

However, the S values in the interval, 0 ^ Z < k^ occur a second 

time on the same day in the interval k^ ^ Z < 1. 

The ambiguity can be described in terms of 2" th® LMST interval 
h 

since 0 ZT(equ. (4/14)), as follows: 

Given: ZDAT, 0 ^ S < 1, O^S <1. 
o 

For: 

Y = R.(S-S ) — o 

^ 2 < 1 a unique solution Z(s) exists. 

For: 0 ^ 2 < k^ one obtains Z^ = Z(S), but there 

is another solution Z2 = Z1 + ^1 Poss^le on 

same day. Z^ is the solution near the beginning 

of the day and Z2 is the one near the end of the 

day, and it is: 

0 ^ Z 

L 
1 k4 ' Z2 < 1 

(1) 

(2) 

(3) 

(4) 
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Solution of an Ambicruous Case 

a„ Only ZDAT and S are given: No solution 

b. If, in addition, a control is given which, for example 

is 0 in the first part of ZDAT and 1 in the second part, 

then: 

Z = if control = 0 

Z = Z^ if control = 1 

c. If a table of consecutive time instants is given, each of 

them consisting of a pair ZDAT, S: 

ZDAT , S1 

ZDAT , S0 
2 2 

(Telescope Tape) 

ZDAT., S. 
i i 

then the ambiguity can be solved, at least in most practical 

cases. Normally, Ro(S. „-S.) will be larger than . Therefore, — i+l i 3 

If ZDAT. t = ZDAT. : Z(S . ) = Zn (S . ) 
i+l i ill 

If ZDAT. , n = ZDAT.+l: Z(S.) = Z (S.) 
l+l 1 1 2 1 

(An example of where the ambiguity cannot be solved would be 

the case ZDAT. = ZDAT.+l, 2- , for all i. But this 
i+l i i 3 

is only of an academic interest.) 

d. No ambiguity would occur if one stores either ZDAT,Z or 

SDAT^ on the tape, where SDAT = Local Mean Sidereal Date, 

which is easily relactad to the Greenwich Sidereal Date. 
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8. COMPUTATION OF ZT FROM GIVEN LMST 

Given: ZDAT,S and information for solving an ambiguity.. 

Wanted: Z = ZT(ZDAT,S) 

With eqUo 4/21, 5/23, and 6/16, there are many possibilities 

to write down the solution<, Some such ways are compiled below 

without further explanations: 

Given: ZDAT,3,8 

Compute : 2= R. (S-S ) 

Z = k . V 

If 0 ^ V < k. Z1 = Z< Z2 = Z1 + *1 

Given ZDAT, S, G , T = T (ZDAT) 

Compute: X= R. (S-G„-t) ———— B 

Z = k. 

If 0 s £ < k : z = z 
1 

z_ = Z1+ kl 

Given: ZDAT. S f G 
B 

T = t(DAT), n = ZDAT - DAT 
o 

Compute s J = R. ^s""G
B~T

0~no''<:3 

z = k
r 2 

If 0 £ <k3: ZI = Z' Z2 = Z1 + kl 

(1) 

(2) 

(3) 

In all of these methods, the decision about ambiguity could be 

made with the value of Z itself rather than with the value of 

2. For instance, method (1) could be put in the following 

form: 

1 Given ZDAT, S, S 

Compute: Z = k..R„(S-S ) 
  1 o 

If 0 ^ Z < k : Zn = Z, = Zn + k_ 
4 12 11 

(4) 
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One further remark should be made although it is a rather 

trivial one. With the abbreviation: 

tr = S - S 
o 

one can write the solution in the form of: 

Z = k^.R.tr 

The right side of this equation is not necessarily equal 
£• 

to R. (k^t ) as shown in Section Ij equ. (24) . Under the 

conditions in equ. (5), we have: 

-1 < tr < +1 . 

It is easy to see that N =0 because kn <1. 
Pi 

Therefore: 

Z = k1.R.tr = R.(k:Lt
r) + R. (k N(tr)) 

Since N(t ) can assume the values 0 or -1, we could make 

an error of the order 1 - k^ = k if we reduce Z to the 

standard interval after the multiplication with k^ rather 

than before. 
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9. COMPUTATION OF UT FROM GIVEN LMST„ COMPUTATION OF AN 

INTERVAL OF UT ELAPSED SINCE A CERTAIN INSTANT GDAT ,0. 
o 

Given: ZDAT, S, and information for solving an ambiguity, 

Further: GDAT , n = ZDAT - GDAT 
o o 

Wanted: U = UCZDATjS), GDAT = GDAT(ZDAT,S) 

AU = (GDAT, U) - (GDAT ,0) 
o 

Purpose of computing aU: Extrapolating or inter¬ 

polating an "Ephemeris Variable" (e-g,, a Besselian 

Day Number) whose value and one, two or more 

derivatives is given for the epoch GDAT^,0. Let 

Qo be such a variable for this epoch, and 6(Q ) 

its first derivative (daily variation). Let us 

assume that extrapolation over n days could be 

made linearily. Then: 

Q(ZDAT,S) = Q + 6(Q ) .AU 
o o 

(It is obvious that aU is not restricted to the 

standard interval.) 

In most actual applications, one will explicitly need the 

Zone Time. 

If 

Z = Z(ZDAT,S) 

has been computed by one of the formulae in section 8, we 

obtain from equ. (4/25): 

Ua = Z+L , U = R. (Z.+L ) 
2 — Z 

GDAT = ZDAT + N(Ua) 

Furthermore, from equ. (1) : 

L.JJ = GDAT + U - GDAT 

= ZDAT + N(Ua) + U - GDAT 
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Since 

U + N(ua) = Ua = Z + L and ZDAT - GDAT = n 
z o 

we obtain: 

aU = Z + L + n 
z 

(5) 

These results can be compiled as follows: 

Given: 

for solving an ambiguity. 

ZDAT, S, n = ZDAT - GDAT , and information 
o 

Compute: Z = Z(ZDAT,S) 

(Section 8) 

1o Wanted GDAT, U and au 

Compute: U = Z + L 

U = R.U 

GDAT = ZDAT + N(U ) 

AU = U + n 

(6) 

Wanted: au 

Compute; au = Z + + n 

In case No. 1, one has to carry out two reductions (for Z ajad1. u) 

In case No. 2, one has to carry out only the one for Z. 



PART II 

COMPUTATION OF NUTATION, EQUATION OF THE EQUINOXES 

BESSELIAN DAY NUMBERS, AND VELOCITY COMPONENTS OF THE 
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10. THE MEAN MOTION OF THE SUN AND THE MOON 

Many effects in spherical astronomy are represented in terms 

of Fourier Series. The arguments in these series are connected 

with the mean motion of the sun and the moon and are given by 

the following "basic arguments" or by combinations of them: 

Table 1 

Basic Arguments 

Notation 

Explanation 

Here 
Explanatory Supplement 

of the American Ephemeris 

Al L J Geometric mean longitude of 
the sun, mean equinox of date. 

A2 
r 

Mean longitude of perigee, 
mean equinox of date. 

A3 g Mean anomaly of the sun. 
A4 

( 
Mean longitude of the moon, 
measured along ecliptic from 
mean equinox of date to the 
ascending node of the moon's 
orbit, and then along the 
orbit. 

AS 
1 j 1 Longitude of the ascending node 

of the moon's orbit, measured 
j from mean equinox of date. 

A6 C -1" | Mean anomaly of the moon. 
ECC e Eccentricity of the earth's 

| orbit. 
EPS 

1 
| Obliquity of the ecliptic. 

Obviously, the arguments are function of Ephemeris Time. The 

original equations are published in the Explanatory Supplement, 

page 98 and page 107. The "T" in these equations is the same 

as in our equ. (5/2). Following our procedure in section 5, we 

introduce instead of "T" the variable t, the time elapsed since 

the beginning of the Besselian Year next to observation period, 

expressed in fractions of a tropical year. Over a time interval 
2 3 of one year, all the terms with T and T in the original 

equations become less than 1". As shown in the following sections. 
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the basic arguments have to be computed with an accuracy of 
o .23 

about 0.01*. The terms xn T and T can therefore be neglected. 

For the arguments Al, A2,  A6, one has the following 

equations: 

A. = A . , + a . . t 
i lA i 

T = k .(JD - JDA) (1) 

where the are the values for the beginning of the Besselian 

Year next to observation epoch. JD is the Julian Date corres¬ 

ponding to the instant of time for which A^ has to be computed. 

JDA is the Julian Date of the beginning of the Besselian Year. The 

A. can be taken almost directly from pages 50-51 of each 

current volume of the American Ephemeris. 

If <y is the coefficient of T, expressed in degrees per day, 

one gets the value of a^ in equation (1) from the following 

relations depending on the units chosen for A^: 

A. in radians: a. = a . .TY .tt/180 = or .. , 6,374678936 
i i i o i 

A. in degrees: a. = ct . .TY = oi .. 365,2421988 (2) 
i i i o i 

A. in 1/360°: a. = ot . .TY /360 = a. 1,014561663 
i i i o i. 

In a computer program, since sin and cos of the arguments have 

to be computed, one will prefer radians. In FORTRAN sin and 

cos subroutines, the reduction of angles to standard interval 

is done implicitly. However, it could happen that one has to 

use special high speed sin-cos-subroutines which do not include 

reduction. In that case, the units 1/360° could be preferable 

and the reduction could then be made with the subroutine for 

the operator R which must be available for other purposes. 

In the computation of t, therefore, UT can be used instead 

of ET. 
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The next table contains the coefficients in all three units: 

Table 2 

Coefficients a. 
i 

Arcrument ! Radians 1/360° Degrees 

Al ; + 6 o 283185307 

o
 

i—
i 

+
 + 360.0 

A2 + 0.0003000459 + 0.00004775379 + 0.01719137 

A3 , + 6.282885261 + 0.9999522459 + 359.9828087 

A4 1 +83.99529741 ' 
+13.36826678 +4812.576041 

1 AS i - 0.3375642524 - 0.05372501937 - 19.34100698 

! A6 
L  

] +83.28513217 j +13.25524047 
1 » 

+4771.886570 

The annual variations of ECC and EPS are so small that they 

can be kept constant over a year - in most applications even 

over a longer period. 

For the beginning of the Besselian Year 1967/ the constants 

^iA7 ECC' anc^ EPS are coinPiled in "the next table: 
Table 3 

Constants Al . A2 , . . . , E'CCQ EPS (1967.0) 
   A  fx      

Argument Radians 1/360° Degrees 

Al 4.8870266 0.7777945 280.0060 

A2 4.9283368 0.7843692 282.3729 

A3 6.2418751 0.9934253 357.6331 

A4 2.7429856 0.4365597 157.1615 

A5 0.7560801 0.1203339 43.3202 

A6 5.8749004 0.9350195 336.6070 

ECC 0.016723 

EPS 0.4091677 0.06512106 23.44358 

As stated above, the accuracy of the arguments should be 0.01. 

This corresponds to about 0.0002 radians or 0.00003 of the 

/ 0 

1/360 units. In the constants above, five significant digits 
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will be good for most applications. In the coefficients, 

the accuracy depends on the value which t can reach. If 

t is restricted to about ^ (which would correspond to the 

conventions), then the number of digits after the decimal 

point, which must be taken into account, is about 4 for 

radians, 5 for the 1/360 units, and 2 for the degrees. A 

general rule would be: Use 6 significant digits for all, 

then the obtained accuracy will be a little bit better tha. 

the accuracy needed. 
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11 NUTATION 

If the accuracy of position measurements becomes better 

than about one minute of arc, one has to take into account 

nutation in longitude (A\|f) and nutation in obliquity (as) . 

These variables enter, for example, in the Besselian Day 

Numbers and in the equation of equinoxes (= difference 

between apparent and mean sidereal time). Obviously, one 

can generate both in the computer by: 

a* = T b .sinB Y n n 
n 

a e = V c .cos B 
^ n n 
n 

Here, the B are linear combinations of the A. (see last 
n i 

section), and the b , c are constants (some of them very 
n n 

slowly changing with time; their variations are so small 

that we can keep them constant). 

In order to obtain a\J/ and as with the same accuracy as in 

the American Ephemeris, one would have to compute 69 terms 

for A\jf and 40 terms for as. Now we will discuss the accuracy 

which can be reached by a reasonable reduction of the number 

of terms. The terms and the arguments are published on 

pages 44-45 of the Explanatory Supplement. We can arrange 

them in the sequence: 

Aty = 5] b. smB. , Ae=yc. cos C. 
.i i .i i 
i i 

(: 

b. ^ b. . 
i-l 

c. I ^ c. n for all i 
i i-l 
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If we extend the summation to a term i = r, the error can be 

estimated by: 
69 

R(M) * 2 |k. 
r+1 

40 
R(Ae) ^ 2 

r+1 

(3) 

c . 
i 

The actual errors will be smaller since many of the neglected 

terms will have opposite signs and therefore cancel. Since 

in most applications (Besselian Day Numbers, Equation of 

Equinoxes), Aty appears with factors sine or cose, we should 

also consider R.sine and RoCose. The results are shown in the 

next tables. The term R in a line i always means that R is 

the upper limit of the error which is made if the terms 

1=1,2,...! are included and all the remaining terms are 

neglected. The number n is the current number of the nutation 

terms in Explanatory Supplement (not printed there). The 

lines i=0 show the upper limit of the whole | or |Ae|. 

Table 4 y 
A \lr = .b..sinB. Y i i i 

i n R R. sine R.cos e 
b. 
i 

B 
1 1 

0 - IS1: 36 7 'J 7 0 17'.'76 - 
-J 

L 1 2.13 0.85 1.95 -17'J 2449 Bi 
= A5 

2 8 0.85 0.34 0.78 - 1.2730 = 2.A1 

3 2 0.64 0.26 0.59 + 0.2 088 b3 
= 2.A5 

4 24 0.44 

00 
i—i 

o
 0.41 - 0.2037 B4 

= 2.A4 

5 9 0.31 0.13 0.29 + 0.1259 Bs 
= A3 

6 25 0.25 0.10 0.23 + 0.0675 B6 
= A6 

7 10 0.20 0.08 0.18 - 0.0496 B 
7 

= 2.A1 + A3 

8 26 0 o 16 0.07 0.15 - 0.0342 bR 
= 2 . A4 - A5 

9 27 0.14 0.06 0.13 - 0.0261 B9 
= 2 . A4 + A6 

10 11 0.12 0.05 0.11 + 0.0214 B10 
= 2.A1 - A3 

11 28 0.10 o
 

o
 

0.09 - 0.0149 Bn. 
= 2 . Al - 2.A4 + A6 

12 12 0.09 0. 04 0.08 + 0.0124 B12 
= 2.A1 - A5 

13 29 0.08 0.03 0.07 + 0.0114 B13 
= 2.A4 - A6 
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Table 5 

as = 2 c.ocos C. 
i i 

i 

i n R 
c. 
i 

C . 
i 

0 - 10'.' 04 - - 

1 1 0.83 + 9*: 2106 Bi 
2 8 0.28 + 0.5520 

B, 
3 2 0.19 - 0.0904 B3 
4 24 0.10 + 0.0884 

B4 
5 10 0.08 + 0.0216 B7 
6 26 0.06 + 0.0183 B8 
7 27 0.046 + 0.0113 B9 

All terms whose coefficients have absolute values ^ OV01 

are included in the above compilation. Taking these terms 

into account means that both Aty and Ae are computed with 

an error smaller than O'.'OS. For many applications just 

the first term will be sufficient because it reduces the 

maximum errors 19", 10" to 2", Ol'S, respectively„ 

Considering the number of terms which should be included, 

one has to be aware of the fact that in computation of 

Besselian Day Numbers, nutation is multiplied by tgfi or 

sec 6. The errors made in the computation of nutation will 

increase with these factors (see Section 16)» 

In practical applications the situation will frequently be 

the following: On a certain day, many observations are 

stored on a telescope tapeo All these would have to be 

reduced to mean placeso Therefore, one would need nutation 

for each single time point. Instead of using the above 

formulae, one would like to extrapolate nutation over a 

period of one dayo This could be done if the first 

derivatives of Aty and as were known. For example, let 
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be the values of A\|f and t e for one given time t^ and, 

6( Aij;) , 6(as) their daily variations for the same time 

0 

1 

Then, with t being the time interval from t in units of a day: 

A . = A t + At . 6 ( A ) 
t o Y 

AS = AS + / t . 6 ( AG) 
t O 

The daily variations of Ai|f and as can easily be obtained 

from equ. (1): 

6 ( A-^) = £ 3 c©& B 

n 
n n 

6(Ae) = V y sm B 
^ ' n n 
n 

3 = b . 6(B ] 
n n n 

y = -c .6(B ) 
' n n n 

and the 6(B ) are linear combinations of the 6(A.). 
n i 

following table shows the 6(B^): 

Table 6 

Daily Variations of the B^ 

The 

i n 
B. 
l ^6(B• (degrees) i (rad) 

1 1 = A5 - 0^0530 - 0.00092 

2 8 2.A1 + lo9713 + 0.03441 

3 2 2.A5 - 0.1059 - 0.00185 

4.. 24 2.A4 +26.3528 + 0.45994 

5 9 A3 + 0.9856 + 0.01720 

6 25 A6 +13.0650 + 0.22803 

7 10 B2 + A3 + 2.9569 + 0.05161 

8 26 B4 - A5 +26.4057 + 0.46087 

9 27 B4 + A6 +39.4178 + 0.68797 

10 11 B - A3 
2 

+ 0.9857 + 0.01720 

11 28 B_-B.+A6 
2 4 

-11.3165 - 0.19751 

12 12 b2-As + 2.0242 + 0.03533 

13 29 B . - A6 
4 

+13«2878 -f 0.23192 

(4) 

(5) 
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The 6(B^) for the remaining terms have also been computed 

but are not given here. If one arranges the terms in equ. (5) 

in order of decreasing absolute values of the coefficients 

(3^/ y , the following table is obtained: 

Table 7 
f 

6 ( M) = 2$ • - cos B . i i 
i 

i n R R. sine R.cos e 

0 - O'J 24 O'.'IO 0 V 2 2 - - 

1 24 0.15 oi-oe 0 U 14 - 0,.,0937 B4 
2 8 0.10 0.04 0.09 - 0.0438 B, 

3 27 0.09 0.04 0.08 - 0.0180 B9 

4 1 0.07 0.03 0.06 + 0.0159 B1 

5 26 0.05 0.02 0.05 - 0.0158 bR 

6 25 0.04 0.02 0.04 + 0.0154 B6 

Table 8 
0 

6(Ae) = 2 y> - sin C. 
i 

i n R C. 
X 

0 — o
 

O
 

— _ | 

1 24 0.06 - O'J0407 B4 
2 8 0.04 - 0.0190 B2 

The lines i=0 show the maximum error which can be made by- 

putting the values Aty and as constant over a time interval 
o o 

of one day. 

The value of R in Tables 7 and 8 probably gives only a rough 

estimate of the accuracy since we have neglected the second 

order terms and higher terms in the Taylor development. For 

instance, the second order term corresponding to 3^ would be: 

• 6 (B ) = 0"021 
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The remaining second order terms in Tables 7 and 8 are all 

less than O'JOl. For the sum of all second order terms (the 

factor ^ being included) , we obtain from the Explanatory- 

Supplement : 

In neglecting the second order terms, no error will be made 

larger than the error made by truncating the series for the 

first order terms after i=6 (for A\|f) and i=2 (for Ae) . 

Accuracy needed for computation of the arguments 

The largest coefficient in all of these formulae is the 

b^=17,J2 in Table 4. If we compute the corresponding argument 

with an accuracy of Q?!, the accuracy of the term (b^.sinB^) 

becomes O'JOS. The next largest coefficient is c^ in Table 5 - 

c^=9,.l2. In order to obtain O'.'OS accuracy for the term, the 
o 

argument has to be computed with only 0.2 precision. For 

all remaining terms in either formula, the argument must be 

computed with an accuracy less than 1°. Allowing for the 

summation of these errors, one should follow the rule that 
o 

all arguments should be computed with about 0.01 m order 

to always be more accurate than that corresponding to the 

smallest R in the tables (0"03). 

Procedure for computing and extrapolating Nutation 

Given; ZDAT, (i=l,2,3,...) 

Wanted: A\lr and Ae for Z=Z.   T ! 

lo Compute GDAT, U for ZDAT, 0 (section 9) 

Sum of second order terms in the 

Taylor Development: 

Aij/: O" 045 

Ae: O'JOl? 

U 
a 

L U = R.Ua, GDAT=ZDAT+N(Ua) (6) 
z 

2. Compute 

JD = JD(GDAT, U) 

T = o (JD - JDA) (7) 
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3. Compute 

Al, A3A6 from equ. (10/1): 

A. = A. + a . . t (8) 
i lA i 

4. Compute the B. as functions of the A. (Table 6 
i i 

in section 11, column 3). (9) 

5. Compute sinB. and cosB. 
i i (10) 

6. Compute Ail; = aiHGDAT, U) , as = ae (GDAT, U) (11) 
o o 

with the sinB. and cosB. using the coefficients 
i i 

in Tables 4 and 5. 

7. Compute 6(A\|r) and 6(as) with the sinB^ and cosB^ (12) 

using the coefficients in Tables 7 and 8. 

8. Compute for each Z^: 

a ilr. = A\lf +Z..6(A\jf)/Ae. =Ae +Z.o6( e) (13) 
1 O 1 1 O 1 

One might wish to avoid the computation of the # 
Ae

0* 

In this case, one has to take their values from the American 

Ephemeris. They are given there for each day, 0 ET; / i|r is 

the "Nutation in Long." in the ephemeris of the sun; and 

e is "-B", the Besselian Day Number B, with the opposite 
o 

sign. The small difference between ET and UT can be ignored 

here since we have limited our accuracy to about 0"03. In 

this case, only B , B , B , B , B , and B and their 
-L 2 4 o o y 

trigonometric functions have to be computed. The time factor 

in equ. (13) is not Z^, but the time interval elapsed at 

ZDAT. Z. since the time for which the Ail; , as are taken frcm 
i o o 

the Ephemeris. The formulae to be used for the computation 

of this interval are given in Section 9. 
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12. EQUATION OF THE EQUINOXES 

The so-called equation of the equinoxes is given by: 

EEQ = Aty.cos EPS 1 (1) 

abeing the nutation in longitude (section 11) . It is, on 

the other hand, the difference between mean and apparent 

sidereal time/ in the sense: 

According to Table 4, the upper limit of EEQ is: 

|EEQ| < 19!.'4 cos EPS = IV'.'S = 1?18 (3) 

If apparent right ascension is observed and mean sidereal 

time (=sidereal clock minus clock error) is given, the 

apparent hour angle follows from: 

App. Hour Angle = LAST - App. Right Ascension (4) 

= LMST + EEQ - App. Right Ascension 

The EQU has to be taken into account in all applications 

where the position accuracy is of the order of 17" or better. 

LAST = LMST + EEQ 
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13. THE BESSELIAN DAY NUMBERS A, B, AND E (PRECESSION AND 

NUTATION) 

These variables are defined by: 

A = T.n + sin EPS.Aty 

B = -a& (1) 

E = C . A t|f 

a \|f and as are discussed in section 11 and EPS (the obliquity 

of the ecliptic) in section 10. t is the usual fraction of 

the tropical year. The remaining coefficients are rigorously 

given by: 

n = annual general precession in declination (2) 

= 20"0468 - 0"0085.T 

- Ratio annua^ Planetary precession on the equator (3) 
annual luni-solar precession 

= 0.002476 - 0.000373.T 

Obviously, both n and c can be kept constant over a long time 

range. For 196 7.0: 

n = 20'.'0411 

c = 0.00223 

The day number E is always less than about OV04? it enters 

the computation of apparent right ascension as an additive 

constant. Therefore, if is computed with an accuracy 

of not more than OV04, E can be neglected for most applications. 

The daily variations are needed for a linear extrapolation 

of the day numbers. Observing that 6(n) and 6(EPS) are 

neglegible, one obtains: 

6(A) = n.6(T) + sin EPS.6(A\|r) 

= + sin EPS.6(a\10 

6(B) = -6(^6) 
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and, obviously, 6(E) =0. In all of these formulae, sin EPS 

can be kept constant (see section 10). Using its value for 

1967.0 (Table 3), we obtain: 

A = 20" 0411 o T + 0.3978.Ai|r 

6(A) = O'.'OSS + 0.3978. 6(A\|r) 

B = —AS 

6(B) = -6(Ae) 

E = 0. 00223. A\|r 

6(E) = 0 

(5) 
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14. THE TRUE LONGITUDE OF THE SUN 

The mean longitude, Al, of the sun was one of the basic 

arguments in the computation of nutation and of the 

Besselian Day Numbers, A and B. The true longitude of 

the sun has to be used in the computation of the Besselain 

Day Numbers, C and D (aberration), and of the Radial 

Velocity of the Earth. It is defined by: 

A7 = True longitude of the sun, referred to the true 

equinox of date, 

\ Al = Al + ECE + At (1) 

where A\jf is the nutation in longitude (Section 10) , and 

ECE = "Equation of the Centre" . (2) 

ECE on tains, so to speak, the elliptic part of the earth's 

motion; it is the difference between mean and true anomaly. 

The following Fourier Series can be used for its approximate 

computation: 
3 

ECE = (2ECC - 1/4 ECC sin(A3) (3) 

+ (5/4 ECC2 - 11/24 ECC4 + ).sin(2.A3) 

+ 

The first two terms are sufficient for all applications in 

this report. Using the value for ECC for 1967.0, we obtain: 

ECE = 1?9162 sin(A3) + 0?02Q0 sin(2.A3) 

rad rad 
= 0.033444 sin(A3) + 0.000350 sin(2.A3) 

(4) 

The neglected remainder is of the order of about 1 . In the 

applications, A7 has to be computed with about 0?01 precision 
o 

At/ which is of the order of 0.005, can be neglected if not 

available (it is available if Besselian Day Numbers are 

computed). 
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For linear extrapolation we need the daily variations of 

ECE and AtJ; (the latter being added only to be consistent 

at this point): 

6(ECE) = "^1?9162 cos(A3) + 0?0200 . 2.cos(2.A3^. 6(A3) 

6(ECE) = +0?03296 cos(A3) + 0?000688 cos(2.A3) 

rad rad 
= +0^00057526 cos(A3) + 0.0000120 cos(2.A3) 

6(A7) = +0.985647 + 6(ECE) + 6(A\|f) 

rad 
= +0.0172028 + 6 (ECE) + 6(A\|f) 

If extrapolation is extended only over one day, one can 

neglect the second term in equ. (5) and, of course, the 

6 (At) . 
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15. BESSELIAN DAY NUMBERS C AND D (ABERRATION) 

Before I960, these variables were computed from the true 

longitude of the suru Since I960, they are computed from 

the true velocity of the earth, i.e., they contain the 

periodic planetary and lunar perturbations and the 

difference between heliocentrum and barycentrum. Since 

these differences concern the region beyond about 0'.' 01, 

we can ignore the 1960's change and still use the old method 

C = -20'.'47 cos (A7) .cos (EPS) 

D = -20,.,47 sin(A7) 

A7, the true longitude of the sun, is described in the last 

section..Puktihg EPS constant = EPS 1967.0, we obtain: 

C = -IS'.^S cos (A7) 

D = -20,.,47 sin(A7) 
     J 

With this approximation, the agreement with the presently 

published values is of the order of about OV01. 

For linear extrapolation: 

6(C) = +18"78 sin(A7).6(A7) 

6(D) = -20'.'47 cos (A7) . 6(A7) 

An accuracy of O'.'01 can be obtained if we include in 6(A7) 
racJ 

only those effects which are about 0.0001 = 0?006 = 21". 

Therefore, 6(A\|/) can be neglected, and only the first term 

of 6(ECE) has to be taken into account. Therefore, we obtain 

6(C) = +0'.'3 231. sin (A7) . {l + 0 . 0334 .cos (A3)} j 

6(D) = -0 . 3521. cos (A7) . {l + 0 . 0334. cos (A3)^ | 
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16 REDUCTION OF MEAN PLACES TO APPARENT PLACES 

Given 

Wanted: 

Procedure 

Q^, 6^ = Mean geocentric position of a source, 

xeferred to the mean equinox of the 

beginning of the current Besselian Year, 

next to observation epocho The source 

has no proper motion. 

cy( t) , 6(t) = Apparent geocentric position of the 

sourc^ referred to the true equinox of the 

date. The date is defined by t, the time 

elapsed since the date to which oi , 6 
o o 

belong, expressed in a fraction of a 

tropical year. 

Compute the Besselian Day Numbers A, B, C, D, and E, 

corresponding to t. Then: 

Qf(T) = cv + aA + bB + cC + dD + E + F (1) 
o 

6(t) = 6 + a ° A + b ° B + ccC + d'D + G (2) 
o 

Here, F and G are the so-called second order 

corrections, which, in most cases are to be 

neglected. I will discuss their influence later. 

The other factors are the star constants: 

a = — + sm q- tgo , 
n o ^ o 

b = cosq' tg6 
o o 

c = coscv sec 6 
o o 

d = sincy sec 6 
o o 

a = cosq' 

b1 = -sina 

c' = tg(EPS )cos6 
o o 

d' = cosq- sin6 
o o 

sincy sin6 
o o 

m 
The term — is defined by: 

n 

- = 2.29887 + 0.00237 oT 
n 

(4) 
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Since the upper limit of A is about 13the 
-4 

precision of m/n must be of the order of 10 

to obtain an accuracy of O'.'Ol for en. Therefore, 

m/n can be kept constant over one year or more: 

1967.0 m/n = 2.30046 (5) 

Error Consideration 

First we will discuss the second order terms, F and G. They 

are given by: 

F = J.tg 6 

G = J■ .tg 6 
(6) 

and have the following meaning. The effects which enter the 

transformation of a mean place into an apparent place depend on 

or, 6 rather than on CY The star constants, however, contain 
o o 

the already known mean places. This was made for computational 

convenience. The terms F and G correct for this and for the 

second order differences which are between rigorous computation 

of precession, nutation, aberration, and the approximate 

formulae (1) and (2) which is a series development of the 

rigorous methods. The new numbers J and J° depend on the 

numbers A, B, C, D, and on the position & , 
o 

6^0 They can easily 

be computed by the formulae given in the Explanatory Supplement 

on page 161. Here we will consider only their influence. J 

and J' have absolute values less than O'.'Ol. For 1967, the 

maximum values are about O'.'OOS. Let us assume these maximum 

values. Let us further assume that we want an accuracy of 

about 0'.'05 in the apparent place. Then from equ. (6) : 

o 
For 

For 

^76 

^86 

^ O'.'OS 

^ O'.'OS 
(7) 
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Therefore, the second order corrections can be neglected 

. o o 
for decimations between -76 and +76 . 

Next, we consider the influence of errors in A/B/C/D,E to 

the apparent places. Since the declination star constants 

do not contain tgS or sec 6 , the accuracy of 6 will be of 
o o 

the same order as the accuracy of the A,3,0,0. In right 

ascension, however, all four star constants contain either 

tgS^ or secd^. The errors in a are given by the errors in 

A,B,C,D multiplied by tgS^. The error in A is the term 

R.sin(EPS) in Table 4; the error in B is the term R in 

Table 5. Let us assume that we compute A and B with maximum 

possible errors of 0'.'05. We must then include the first 

10 terms of Table 4 and all 7 terms of Table 5. The errors 

of C and D are of the order of O'.'Ol. The error in q- can 

then be estimated by: 

Error in a ^ 0,.'07 . tg6 (8) 
^ o 

The error in a, therefore, will be less than 0'.'05, in the 

range -350^6o^+350. In the range, -760^6o^+760, in which 

the second order terms can be neglected, the error in a 

has the upper limit O'.^S. 
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Th e above considerations lead to the following, very rough 

results: 

Besselian Day Numbers A,B,C,D, and E are given with 

errors less than O'.'OS: 

Apparent places are computed from: 

a — a + aA + bB + cC + dD 
o 

$ = 6 + a1A + b'B + c'C + d'D 
o 

Errors in a: ^ O'.'OS for -35° ^ 6 <; +35° 
o 

^ O'^S for -76 

o 

6 ^ +76 
o 

o 

Errors in 6: 

For 6 >76 , second order terms have 
I o » 

to be included, and accuracies of A and B 

have to be increased if an accuracy of 

O'.'S is not sufficients 

^ 0'.'07 for -86° ^ 6 6 +86° 
o 

For larger declinations, second order 

terms have to be included if this 

accuracy is not sufficient. 

Final Remarks 

a. It should be mentioned again, that the mean places enter 

in the star-constants» They remain constant during the 

whole year. This is also true if one first computes one 

apparent place and then makes extrapolations using the 

daily variations of the Day Numbers. 

b. Using a set of A/B/C,D from the American Ephemeris would 

increase the accuracy of the apparent positions for just 

the time to which this set belongs. Unless one computes 

the daily variation with full accuracy, extrapolating the 

Day Numbers over one or more days will lead to possible 

errors (see Tables 7 and 8). Therefore, if the accuracy 
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of the approximation presented in Sections 11 and 15 is 

not sufficient, the only way seems to be the following: 

A table containing all Besselian Day Numbers is stored 

for several days in the observation period, and the 

particular values needed are obtained by rigorous inter¬ 

polation o This, at least, is the method used in auto¬ 

matized evaluation of high accuracy astrometric work. 

As far as the error considerations in this section and 

in Section 11 are concerned, one should keep in mind 

that they only give upper limits. In the §eries for 

nutation, many terms will have different signs. It seems 

to be difficult to study this in detail other than by 

numerical methods. Furthermore, in many applications, 

the position error,Aa, has less significance than the 

angular error, Aq' cos 6. if we ask for O'.'05 of accuracy 

in Ac* cos 6, the 6 limits in the above estimates can be 

increased correspondingly. 

If the reductions from mean to apparent places or vice 

versa have to be made with a very high accuracy, the 

use of the Besselian Day Numbers should be avoided and 

be replaced by rigorous methods. (See Explanatory 

Supplement, page 150, last section.) 



17 -47- 

17. THE RADIAL VELOCITY COMPONENTS CAUSED BY THE EARTH'S 

MOTION 

In a paper written by S. Herrick (Lick Observatory Bulletin, 

page 470), it is shown how that part of an observed radial 

velocity caused by the earth's motion is computed. This 

effect depends on the direction cosines of the object and 

on the ecliptic velocity components X'/ Y' of the earth. 

Here it is ahbwh how the X', Y' can be computed for any 

given time, with the same accuracy as in Herrick's tables. 

Of course, the direction cosines (e.g., the position of the 

source) and the velocity components must refer to the same 

equinox. Let t be the equinox of the positions and t be 

the date of observation (epoch). The velocity components 

for epoch t and equinox t are given by: 

X' = -c1 (sin u + e sin rr) 

Y1 = +c'(cos u + e cos n) 

where 

(1) 

c' 
_ . . . A „ U<» . km 

c = factor converting —  into   
day sec 

k = Gaussian Gravitation Constant 

a,e = Semi-major axis and eccentricity of the 

earth's orbit 

u = true longitude of the earth, referred to 

the true equinox of date 

rr = true longitude of the perihelion, referred 

to the true equinox of date. 

(See Herrick's paper, page 88, equ. (3)) 

First, let us consider the accuracy with which u and rr have 

to be computed. The factor c' is of the order of 30 km/sec. 

Here we limit our approximation to 0.01 km/sec. To go further 
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down would mean that the perturbations by the moon had to 

be included. With this limitation, the accuracy of u must 
o 

be about 0.00033 rad = 0.02? the accuracy of rr has to be 
o 

only 1 because of the factor e. Together, aberration and 
o 

nutation can reach only 0.01. Therefore, they can be 

neglected. This means that with sufficient accuracy, we 

can represent u and rr by our basic arguments A7 (Section 14) 

and A2 (section 10). 

The relation is: 

u = A7 - 180°, tt = A2 - 180° 

Both A7 and A2 refer to the equinox of date (the difference 

between true and mean equinox being negligible, as was 

stated above). In our application, however, they should 

be referred to the equinox t . To obtain this, we have to 

subtract from both the precession in longitude for the 

interval t-t . Observing equ. (2), we obtain: 

X1 = +c1 (s in \ + ECC. s in y) 

Y' = -c^cos \ + ECC.cos/) 

X = A7 - p(t-t ) 
o 

= A2 - p(t-t ) 
o 

(A2 and ECC from Section 10, A7 from Section 14) 

p = annual precession in longitude 

= 50'.'2564 + 00222 . T 

= 50V2415 for 1967,0 
(=0.01396°) 

t-t = time between epoch of observation and 
o 

equinox of source positions, expressed 

in years 
     

In the computation of A7, the term Aijr can be ignored. In 

ECE, both terms have to be included. 

The coefficient c1, in Herrick's paper, corresponds to a 
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solar parallax of 8'.'80. It's value is 29.77 km/sec. Using 
Q 

the recent value of 1.496.10 Ion per AoU„(IAU, 1964, radar 

measurements)/ and the corresponding value of the mass of 

the earth-moon system, we would obtain c' =29.79 km/sec. 


