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In order to make that part of the astronomical data reduction 
which deals with the time dependent effects of spherical astronomy 
as easy as possible, we developed a system of FORTRAN subprograms 
solving all of these problems in a very general way.  These 
programs will reside permanently on disk.  They can be called from 
any main program in the same way as SIN.  Table 1 contains a com¬ 
pilation of the names and of the purposes of the programs.  If two 
names appear for the same purpose they indicate two versions of 
different accuracy.  In most cases, the more accurate version has 
a name starting with the character "D"; the arguments, in these 
cases, have to be defined as double precision variables.  If the 
name of a FUNCTION starts with a D, this name must be defined as 
double precision, also.  For the computation of nutation and of the 
Besselian Day Numbers, the arguments of both versions (NUTl, NUT2, 
BDNl, BDN2) are in single precision but are more precisely computed 
in the versions NUT2, BDN2. 

The theory of most of the routines had been described in (I). 
The basic concept of (I) was:  1) To use a COMMON set of constants 
for all programs in order to save memory space.  2) To truncate 
the theoretical expressions for the time dependent effects after 
the first order term in order to make the programs as simple, as 
short, and as quick as possible.  3) To update the values of the 
common constants once every year in order to make the programs 
applicable to any instant of time in spite of the truncation of 
the theoretical equations used inside the programs. 

Discussions within the Computer Division have shown, however, 
that this concept would not be suitable for two reasons:  1) It 
would confuse the user if he had to define COMMON'S which are 
not related to his own program.  2) Practical difficulties would 
occur with the proper updating of the constants.  We decided, 
therefore, to provide every program with its own set of constants 
and to allow for the application of the programs for any instant 
of time within the 20th century.  The low accuracy versions of 
the programs (e.g., SIT, zefr, NUTl, BDNl) are constructed with 
the methods described in (I).  The internal initial epoch for 
these programs is the beginning of the year 1967.  If one applies 
these programs to dates not too far from that epoch (a couple of 
years), they will have the accuracy mentioned in (I).  Of course, 
one can apply them also to dates which are further away from 1967, 
but then the accuracy will decrease.  There will be many radio- 
astronomical applications where the accuracy need is so low that 
these versions could be applied for any time within the 20th 
century with sufficient precision. 

Of course, sometimes there will be a need for greater or full 
accuracy - for instance, in all interferometer applications.  To 
fulfill such requests, we have added high accuracy versions of 
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Name 

I.  TIME AND CALENDAR PROBLEMS 

Given Results 

SIT,  DSIT Calendar Date, Zone Time, 
Longitude 

Local Mean Sidereal Time, 
Julian Date 

Z0T,  DZ0T Calendar Date, Local Mean 
Sidereal Time, Longitude 

Zone Time, Julian Date 

DJL Calendar Date at Greenwich Julian Date of 0n U.T. 
CLD Julian Date Calendar Date at Greenwich 

Name 

II.  APPARENT PLACES 

Given Results 

NUTl, NUT2 Julian Date Nutation in Longitude and 
in Obliquity 

1 BSC Mean Equinox, RA, DEC Besselian Star Constants 

Name 

III.  ORTHOGONAL COORDINATE TRANSFORMATION 

Given Results 

TRC,  DTRC Transformation Matrix, 
Spherical Coordinates in 
the old System 

Spherical Coordinates in 
the new System 

PRE,  DPRE Mean Equinoxes T-, , T2 Matrix for the general 
Precession from T-^ to T2 

CUV,  DCUV Spherical Coordinates Unit Vector 

Name 

IV.  AUXILIARY PROGRAMS 

Given Results 

RED,  DRED Arbitrary Value 
in one of four 
standard units 

of an Angle 
possible 

Value of the angle after 
reduction to one of three 
possible standard intervals 

A13,  DA13 Julian Date Longitudes Al, A2, A3 con¬ 
nected with the mean motion 
of the Sun  

A46,  DA46 Julian Date Longitudes A^, A5, A6 con¬ 
nected with the mean motion 
of the Moon     

SUL,  DSUL Julian Date True Longitude of the Sun 
EPS,  PEPS Julian Date Obliquity of the Eclxptic 
ECC,  DECC Julian Date Eccentricity of the orbit 

of the Earth     
ECE,  DECE ECC and A3 (or DECC and DA3) Equation of the center for 

the orbit of the Earth 
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most of the programs.  Usually; these are not only formally in 
double precision bu-c use the definitions of fundamental astronomy 
with their full accuracy, i.e., without the truncations mentioned 
above.  For instance, the time conversion routines DSIT and DZ0T 
can be applied to any instant of time and will yield results with 
the same precision as those obtained from the annual volumes of 
the American Ephemeris.  The nutation is calculated (in NUT2) 
with full precision, i.e., with all known theoretical terms.  In 
the case of the Besselian Day Numbers, however, the routine BDN2, 
although more accurate than BDNl, will not give the accuracy of 
these numbers as published in the American Ephemeris.  The reason 
for this is that aberration can only be approximated neglecting 
the periodic perturbations in the motion of the earth and neglect¬ 
ing the transition from the heliocentrum to the barycentrum.  In 
principle, of course, one could develop much better approximations 
for this, but that would increase the length of the program 
considerably.  Since the Besselian Day Numbers A, B, and E will 
have the full accuracy of the American Ephemeris, and since C and 
D will not have errors larger than about O'J 02, we decided not to 
try any further improvements. 

In addition to those programs already mentioned, a rather 
large number of other routines have been added to the system. 
Part of these will have advantages for the direct explicit use in 
any main program, such as the calendar routine CLD* and the 
Julian date routine DJL*;  or the coordinate transformation routines 
TRC, DTRC, CUV, DCUV, UVC, DUVC; and the two routines which generate 
the matrix of general precession PRE and DPRE.  All the remaining 
routines have a more auxiliary character in that they are used 
internally by many of the other programs.  For example, A13, DA13, 
A46, DA46 generate the basic longitudes Al, A2, A3, A4, A5, A6 con¬ 
nected with the mean motion of the sun and the moon (see (I) , 
p.25 ff).  They are used directly in the two nutation routines 
(NUTl and NUT2).  They are also used by the routines SUL and DSUL 
which compute approximate values for the ecliptic longitude of 
the sun - neglecting only the periodic perturbations and the 
transition from heliocentrum to barycentrum.  SUL and DSUL are 
directly used for the computation of the aberrational day numbers 
C and D.  Later we will add routines which compute the reduction 
from observed to heliocentric radial velocities which also will 
use SUL and DSUL.  If one can generate approximate values for the 
ecliptic longitude of the sun, approximate values for right 
ascension and declination of the sun can easily be obtained.  This 
is done by the FUNCTION EQT which calculates the sun's coordinates 
for any time with an accuracy of about 3 0" or better.  The value 
of the function itself is the so-called "equation of time", which 
mignt Joe useful sometime. 

x^s far as general precession is concerned, we have adopted 

*The authors of these two programs are Johann Schraml and 
Barry Clark, respectively. 
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the following procedure.  The precession transformation consists 
of a time dependent part and of a position dependent part   The 
time dependent part is given by the matrix of general precession 
which depends on the two mean equinoxes only.  Essentially, the 
position dependent part is the multiplication of an initial unit 
vector with the precession matrix.  If one has to precess many 
sources from one given equinox T  to a second equinox T , the 

same matrix can be used for all sources.  It saves computer time, 
therefore, to calculate the matrix only once.  This is the 
justification for having the programs PRE and DPRE.  The position 
dependent part is completely general; in other words, the 
corresponding program can be applied to any type of coordinate 
transformation such as the conversion from RA, DEC to A. , b; or 
from HA, DEC to Azimuth, Elevation; or the opposite conversions. 
Which conversion is performed depends completely on the matrix 
elements.  Equations and numerical values of matrix elements for 
some such conversions are compiled in the description of the 
routine TRC (=NRAO 13/lS) in the NRAO program library.  The corn- 
version consists of the following steps:  Compute the unit vector 
which corresponds to the given spherical coordinates (CUV, DCUV); 
multiply that vector with the matrix - whatever this matrix may 
mean - to obtain the unit vector in the new system; compute the 
spherical coordinates in the new system from the unit vector 
(UVC, DUVC).  All these steps could be done explicitly in a main 
program using two of these four routines (CUV, DCUV, UVC, DUVC). 
This might have advantages if one source has to be precessed to 
many different equinoxes, in which case one would compute the 
initial unit vector only once by calling CUV or DCUV.  In most 
cases, however, one wishes to do the transformation in one step 
which can be realized by calling TRC or DTRC (which uses inter¬ 
nally the coordinate to unit vector conversion routines). 

The same split into time dependent and position dependent 
steps holds for the reduction from mean to apparent places.  The 
reduction consists of adding products of Besselian Day Numbers 
and star constants.  This simple step can be left to the main 
program.  The star constants should be computed by calling a 
subprogram (BSC), and the day numbers should be computed by 
calling a subprogram (BDNl, BDN2).  For each date of observation 
one has to compute the day numbers only once, and then compute 
the reduction for every source.  If there are many dates within 
one day, one should call the programs BDNl or BDN2 only for the 
beginning and the end of the observation period, and then inter¬ 
polate linearily.  In particular, BDN2 is a very slow routine 
(61 ms) because it computes all nutation terms. 

Among the auxiliary programs are the two routines, RED and 
DRED, which reduce a given angle to one of three possible standard 
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intervals:  0-*2TT, -TT ■*-+Tr, -TT/2 -^+TT/2. The unit in which the 
angle is given can be either revolutions (REV), radians (RAD), 
hours (H), or degrees (DEG).  The result will be in the same 
unit.  This is a very helpful routine; internally, it is used 
in many of the other programs.  Of course, it is also very help¬ 
ful for external purposes, for example, to answer the following 
type of question:  Two sources are given whose right ascensions 
are RAl and RA2; both of them are expressed in RAD and are 
reduced to CH^TT .  Is source I east or west of source II?  Answer: 
If RED(RAl-RA2,2,2) is positive, source I is east of source II. 
Essentially, these routines correspond to the "reduction operator" 
which was used in (I) as a very helpful tool for handling all 
types of time conversion problems. 

The rest of the auxiliary programs (EPS^EPS,ECC,DECC,ECE, 
DECE) compute values of the obliquity of the ecliptic, of the 
eccentricity of the orbit of the earth, and of the so-called 
equation of the center.  They are called frequently inside the 
other programs.  Except for the case of the obliquity of the 
ecliptic which is frequently used in transformation problems, 
there will not be much external use of these routines. 

Those effects of spherical astronomy which depend on absolute 
time (for example, as nutation) need a time argument.  The easiest 
way to provide such an argument is to compute the Julian date, 
DATJUL, which corresponds to the given instant.  Since one usually 
starts with a calendar date and a local sidereal or zone time, 
one can use one of the first four routines (SIT,DSIT,Z0T,DZ0T) in 
order to get DATJUL.  Later, DATJUL can be used as the basic 
argument for many of the other routines. 

Altogether, there are 34 FORTRAN subprograms which solve some 
of the everyday problems of data reduction.  They are, at the same 
time, the first 34 programs of the NRAO PROGRAM LIBRARY.  In the 
description of the library (see (II)) it was stated that we would 
add the program descriptions of all of these astronomical routines 
to the present report in the form of an appendix.  However, after 
more realistic thought on this promise, we found that Xerox copies 
of these complete descriptions would require an effort which 
probably cannot be justified.  Therefore, we will leave it up to 
the users whether or not they want their own copy of the program 
description.  Instead, we will list (see Table 2) the calling 
sequences of all the routines.  The column on the right limb of 
the table ("Accuracy") gives an upper limit for the error of the 
results within the 20th century.  If there is more than one result, 
the error is concerned with the most inaccurate one.  In most cases 
the actual errors will be smaller, especially within the next years 
The names of the arguments have been chosen differently from the 
actual names in the programs (and in their descriptions): 
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Names starting with a "D" are REAL*8 

Names starting with one of the INTEGER*4 
characters "I", "K", "L" are 

All other names are REAL*4 

The underlined names represent output variables.  If an 
argument is an array, the dimension of the array is put after 
the name.  For example, BDNl(...,BDNS(5),...) in Table 2 means 
that in a main program one has to CALL BDN1(...,BDNS,...) and 
that this actually fills the 5 elements of the array BDNS. 
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I. SIT 
DSIT 
Z0T 
DZ0T 
DJL 
CLD 
EQT 

II 

III 

NUTl 
NUT 2 
BSC 
BDNl 
BDN2 

TRC 
DTRC 
PRE 
DPRE 
CUV 
DCUV 
UVC 
DUVC 

IV. RED 
DRED 
A13 
DA13 
A46 
DA46 
SUL 
DSUL 
EPS 
PEPS 
ECC 
DECC 
ECE 
DECE 

Table 2 

Calling Sequence and Accuracy of the Routines 

Calling Sequence Accuracy 

IY, IM, ID, ZTIM, 0BL, ZTL, STIM, DATJUL )  4?5 
IY, IM, ID, DZTIM, D0BL, DZTL, DSTIM, DATJUL ). . . full 
IY, IM, ID, STIM, IAMB, 0BL, ZTL, ZTIM, DATJUL ). . 4?5 
IY, IM, ID, DSTIM, IAMB, D0BL, DZTL, DZTIM, DATJUL ) full 
IY, IM, ID )  full 
DATJUL, IY, IM, ID, IWD )  full 
DATJUL, SUNRA, SUNDEC )   1' 

DATJUL, PSIDEL, EPSDEL )  0r.rl 
DATJUL, PSIDEL, EPSDEL, SPSI, SEPS )  full 
EQ, EQALPH, EQDELT, SCRA(4), SCDEC(4) )    lO-6 

DATJUL, EQ, BDNS (5) , PSIDEL )  OVOS 
DATJUL, EQ, BDNS (5) , PSIDEL, SPSI, SEPS )  O'! 02 

MAT(3,3), ALPHl, BETAl, ALPH2, BETA2 )  1" 
DMAT(3,3), DALPH1, DBETAl, DALPH2, DBETA2 )  . . . . full 
EQl, EQ2, PRMAT (3,3) )  1" 
DEQl, DEQ2, DPRMAT (3,3) )  full 
ALPH, BETA, X, Y, Z )  10~6 

DALPH, DBETA, DX, DY/ ^Z )  full 
X, Y, Z, ALPH, BETA )  1" 
DX, DY, DZ, DALPH, DBETA )  full 

ANGLE, K, L )  1" 
DANGLE, K, L )  full 
DATJUL, Al, A2, A3 )  Of02 
DATJUL, DAI, DA2, DA3 )  full 
DATJUL, A4, A5, A6 )  0°2 
DATJUL, DA4, DAS, DA6 )  full 
DATJUL, Al, A3 )  2' 
DATJUL, DAI, DA3 )  1' 
DATJUL )  1" 
DATJUL )  full 
DATJUL )  ID"8 

DATJUL )  full 
ECC, A3 )  1" 
DECC, DA3 )  0,.,02 
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In the following is a brief description of the majority of the 
names contained in Table 2.  We will list the single precision 
names only, since the double precision names have the same 
explanation and are in the same units: 

TIME AND CALENDAR PROBLEMS 

IY, IM, ID 

IWD 

ZTL 
0BL 
STIM 
ZTIM 
IAMB 

DATJUL 

DJL 

EQT 

SUNRA 
SUNDEC 

in REV 
e./24

h=l 

calendar date on the zone time meridian 
(example:  IY=1967, IM=12, ID=31) 
day in the week 
(IWD=1 for Monday,....,=7 for Sunday) 
longitude of zone time meridian 
longitude of observer 
local mean sidereal time 
zone time J i 
ambiguity control; IAMB=0 in the first 
half of the calendar day, IAMB~L in the 
second half 
Julian date of any instant of time 
(example:  for IY=1967, IM=12, 10=31, 
ZTL=0, (2feL=0, Z.TIM=0:  DATJUL=2439855 . 5000 . .) 
Julian date of O*1 U.T. , for the given Greenwich 
calendar date 
equation of time = apparent minus mean solar 
time, in REV 
right ascension of the sun 
declination of the sun 1 

in RAD 

II APPARENT PLACES 

PSIDEL 
EPSDEL 
SPSI 
SEPS 
EQ 

EQALPH 
EQDELT 
SCRA 

SCDEC 

BDNS 

in RAD 

= total nutation in longitude 
= total nutation in obliquity 
= short period nutation in longitude 
= short period nutation in obliquity 
= mean equinox of given source position 

(example:  1968.0 for observing dates 
between July 1, 1967 and June 30, 1968) 

= mean right ascension for EQ     1  .  _,_ 
-,  , •   .   r- (m RAD = mean decimation for EQ J 

= Besselian Star Constants in right ascension in RAD 
(SCRA(l)=a, SCRA(2)=b,...,SCRA(4)=d ) 

= Besselian Star Constants in declination in RAD 
(SCDEC (l^a1 , SCDEC (2)=^* , . . , SCDEC (4) =d ' ) 

= Besselian Day Numbers in RAD 
(BDNS(1)=A, BDNS(2)=B,...,BDNS(5)=E) 



-9- 

III ORTHOGONAL COORDINATE TRANSFORMATIONS 

MAT 
ALPHl 

BETAl 

ALPH2 
BETA2 
EQ1,EQ2 

PRMAT 

ALPH 
BETA 
X,Y,Z 

]' in RAD 

Transformation Matrix 
given spherical angle along fundamental 
plane in RAD 
given spherical angle perpendicular fundamental 
plane in RAD 
value of ALPHl in new system 
value of BETAl in new system 
the two mean equinoxes for general precession 
(for example:  EQl=1950.0, EQ2=1968.0 (forward); 
EQl=1968.0, EQ2=1950.0 (backwards)) 
matrix of general precession.  If one has to 
carry out the precession transformation, one 
calls TRC (PRMAT, ). 
spherical angle along fundamental plane        ~J 
spherical angle perpendicular fundamental plane J 
components of unit vector corresponding to 
ALPH,BETA 

in RAD 

IV.  AUXILIARY PROGRAMS 

HNGLE 
K 

RED 
L 

value of any angle 
unit control; depending on the unit in which the 
Angle is given, K must obtain one of the following 
values:  K=l for REV, K=2 for RAD, K=3 for H, 
K=4 for DEG 
value of ANGLE after reduction to standard interval 
interval control: 

L = 1       0 ^ RED < 2Tr 
L = 2      -rr <: RED ^ +rr 
L = 3    -TT/2 ^ RED ^ +TT/2 

RED is, of course, in the same unit as ANGLE.  If 
one calls RED with L=-l, the argument L has after 
the RETURN the value of N (the number of revolutions 
included in the reduction; see Ref. (I), section 1, 
"reduction operator").  If one wishes to use this 
trick, one should call RED with the following 
statements:  N=-l 

REDANG = RED(ANGLE, K, N) 
If one would call RED(ANGLE, K, -1), the numerical 
constant "-1" could be "destroyed". 

The remaining names are not described here since they will not be 
used very frequently. For these as well as for all other details 
the reader is referred to the NRAO PROGRAM DESCRIPTION FILE. 
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In order to illustrate at least some of these routines, 
two examples are given. 

EXAMPLE 1:  Calculation of 1950.0 Positions from Observed 
Apparent Positions 

It is assumed that very accurate apparent hour angles and 
declinations are obtained from interferometer observations.  The 
mean right ascensions and declinations for the mean equinox 1950.0 
are to be computed.  The names are defined in the same way as 
previously mentioned:  Names starting with I are INTEGER*4, names 
starting with D are REAL*8, all other names are REAL*4. 

The data input file consists of: 

I.  IY = calendar year (four digits)   *7    _,, 
_  ,      .,    f. -, • .. ^    (on the zone time IM = calendar month (two digits)    >    . .,. 
-IJ   J   (±.        *'    -I   \ \   meridian ID = calendar day (two digits)     J 

CE = clock error (in seconds) for that calendar day, 
in the sense: 
True loc. mean sid. time = indicated loc. mean 
sid. time plus CE. 

II.  DSTIND = indicated local mean sidereal time (REV) 
IAMB   = ambiguity control 

IAMB = 0 during the first half of the 
calendar day. 

IAMB = 1 during the second half of the 
calendar day. 

DAPHA  = apparent hour angle     "J 
DAPDEC = apparent declination    J 

The logical sequence in which these data appear in the input file 
will probably be:  I-II-II-II-....-II-I-II-II-... and so on, i.e., 
we will read the calendar date and the clock error, and then the 
times and the apparent places for several sources observed on that 
day; then, another date follows with corresponding observational 
data for other sources.  Each time a date is read, the mean 
equinox belonging to the nearest beginning of a Besselian year 
must be determined and the precession matrix must be calculated. 
Of course, if the mean equinox turns out to be the same for con¬ 
secutive type I data, the precession matrix will be the same and 
should not be recalculated.  In the example we will omit this 
trivial decision.  In the computation of apparent right ascension 
from apparent hour angle and mean sidereal time, we need the 
equation of the equinoxes (difference between mean and apparent 
sidereal time) which includes a factor cos e (e=obliquity of the 
ecliptic).  This is, within the accuracy needed, a constant for 
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ra ther large fractions of the year.  However, for illustration 
we compute it in the example from the given calendar date. 

Each time the type II data are read, we have to compute the 
Besselian Day Numbers and the Besselian Star Constants.  The 
Besselian Day Numbers  of course, could be computed for the 
beginning and for the end of the day and then be interpolated for 
any time on that day.  For the sake of brevity, however, we will 
compute them independently for every time.  Since we need the 
Julian date for that purpose, we call the routine DZ^T which 
results in DZTIM (the zone time) and in DATJUL (the Julian date). 
The Besselian Day Numbers are computed from DATJUL and EQ (the 
mean equinox which was already defined after the date was read) . 
The equation of the equinoxes is computed with the factor cos e 
(mentioned above) and with the nutation in longitude (PSIDEL) 
which is one of the results of the Besselian Day Number routine. 
In the rigorous application of the Bessel method, the star constants 
must belong to the mean equinox, EQ.  However, the positions which 
are observed are apparent positions.  In order to take this into 
account, we first compute approximate mean positions for the 
beginning of the nearest Besselian year (using the apparent 
positions in the Besselian Star Constant routine) and carry out 
one iteration.  The source program is listed on the next page 
(omitting all peripheral organization).  The following is a list 
of some of the names which appear in the source program: 

DPRMAT = precession matrix 
SCRA  = star constants in right ascension 
SCDEC = star constants in declination 
BDNS   = day numbers 
D0BL  = observers longitude (REV) 
DZTL  = longitude of zone time meridian (REV) 
C2PI  = 2TT 

DEQ   = mean equinox (double precision) 
EQ    = mean equinox (single precision) 
DSTIM = true mean local sidereal time (REV) 
DAPST  = true apparent local sidereal time (RAD) 
DAPRA  = apparent observed right ascension 
DEQRA  = mean right ascension at EQ 
DEQDEC = mean declination at EQ 
DELRA  = DAPRA - DEQRA 
DELDEC = DAPDEC - DEQDEC 
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Essential Parts of Source Program (Example 1): 

C     DEFINITIONS AT THE BEGINNING 
IMPLICIT REAL 8 (D) 
DIMENSION DPRMAT(3,3),SCRA(4),SCDEC(4),BDNS(5) 

C     INSERT PROPER VALUES FOR YOUR STATION IN THE NEXT TWO 
C     STATEMENTS 

D0BL= 
DZTL= 
C2PI=6.2831853071D0 

1 READ THE TYPE I DATA 
READ ( )  IY, IM, ID, CE 
CE=CE/86400.0 
DEQ=IY 
IF(IM.GE.7) DEQ=IY+1 
EQ=DEQ 
C0'SEPS=C0S (EPS (DJL(IY, IM, ID) ) ) 
CALL DPRE(DEQ,1950.ODO,DPRMAT) 

5 READ THE TYPE II DATA 
READ( )  DSTIND, IAMB, DAPHA, DAPDEC 
DSTIM=DSTIND+CE 
CALL DZ0T(IY,IM,ID,DSTIM,IAMB,D0BL,DZTL,DZTIM,DATJUL) 
CALL BDN2(DATJUL,EQ,BDNS,PSIDEL,SPSI,SEPS) *) 
DAPST=DSTIM*C2PI + C0SEPS*PSIDEL 
DAPRA=DAPST-DAPHA 
DEQRA=DAPRA 
DEQDEC=DAPDEC 
D0 20  1=1,2 
CALL BSC(EQ,SNGL(DEQRA),SNGL(DEQDEC),SCRA,SCDEC) 
DELRA=BDNS(5) 
DELDEC=0.0D0 
D0 10  K=l,4 
DELRA =DELRA  + BDNS(K)*SCRA(K) 

10 DELDEC=DELDEC + BDNS(K)*SCDEC(K) 
DEQRA =DAPRA - DELRA 

20 DEQDEC=DAPDEC- DELDEC 
CALL DTRC(DPRMAT,DEQRA,DEQDEC,DRA50,DECS0) 

The results are, in each step, the right ascension (DRA50) and the 
declination (DEC5 0) for the mean equinox 1950.0, in RAD. 

*)SPSI and SEPS are results which are not used in this application 
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EXAMPLE 2:  Calculate Apparent Right Ascension and Declination 
for Sources with Given Galactic Coordinates 

We assume that 25 sources are given by their galactic 
coordinates JL ^ and b11.  We want to calculate a list of their 
apparent positions with low accuracy for a number of days.  The 
input of the program shall consist of: 

GAL0NG(25) = galactic longitude (RAD) 
GALAT(25)  = galactic latitude (RAD) 
IYB1 
1MB /• = calendar date of the first day of the list 
IDBj 
NDAY      = total number of days, including the first 
ZTIM      = zone time (the same for all days) at which 

the apparent places have to be calculated 
(in hours) 

0BL       = observer's longitude (RAD) 
ZTL       = longitude of the zone time meridian (hours) 

The apparent places of the 25 sources for each day are listed on 
one page.  The page starts with a header (year, month, day, name 
of the weekday, zone time, local mean sidereal time).  Apparent 
right ascensions and declinations of the sources follow.  We omit 
the formats and other unessential items such as names or numbers 
of sources, etc. 

In a first loop, the given galactic coordinates are converted 
into right ascensions and declinations for 1950.0 (RA50, DEC50). 
The second loop which proceeds from one day to the other is realized 
by computing the Julian dates corresponding to the first and the 
last calendar date.  Inside the loop the actual calendar date and 
the day of the week is calculated with the calendar routine (CLD). 
For each new day the mean equinox of the nearest beginning of a 
Besselian year (EQ) is computed; if the value of EQ differs from 
the last computed one the precession matrix is calculated and the 
source positions are transformed to the new equinox (EQRA,EQDEC); 
then, the Besselian star constants are computed and stored for 
each source (SRA(N,K) and SDC(N,K)).  The Julian date for each 
day and for the given constant zone time on each day is calculated 
with the routine SIT which also gives the corresponding local 
mean sidereal time.  The computation of the Besselian Day Numbers 
with BDNl follows.  Finally, the apparent places (APRA, APDEC) 
are calculated and printed. 
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Essential Parts of Source Program (Example 2): 

REAL* 8  DJL,DJUL,DJULE,DATJUL 
REAL*4  GALMAT(3,3)/-0.6698874,-0.8727558,-0.4835389, 
1 0.4927285,-0.4503470,0.7445846,-0.8676008,-0.1883 746, 
2 0.4601998/, DAY^)/' M0N TUE WED THU FRI SAT SUN'/ 
REAL*4  PREMAT(3/3),BDNS(5),SCRA(4),SRA(25,4),SCDEC(4), 
1 SDC(25,4),GAL0NG(25),GALAT(25),RA50(25),DEC50(25), 
2 EQRA(25),EQDEC(25) 
EQ0LD=O.0 
READ ( ) GALONG, GALAT, 
D0 10  N=l,25 

10 CALL TRC(GALMAT,GAL0NG(N),GALAT(N) ^BA6 0(N) DECS 0(N)) 
READ( ) IYB, 1MB, IDB, NDAY, ZTIM,0BL, ZTL 
ZT  =ZTIM/24.0 
0BL =0BL/6.2831853 
ZTL =ZTL/24.0 
DJUL=DJL(IYB,IMB,IDB) = 1 
DJULE=DJUL + NDAY 

20 DJUL=DJUL + 1 
CALL CLD(DJUL,IY,IM,ID,IWD) 
DAYNAM=DAY(IWD) 
CALL SIT(IY,IM,ID,ZT,0BL,ZTL,ST,DATJUL) 
STIM=ST*6.2831853 
PRINT  , IY,IM, ID,DAYNAM, ZTIM, STIM 
EQ=IY 
IF(IM s GE.7) EQ=IY+1 
IF(EQoEQ.EQ0LD) G0 T0 50 
EQ0LD=EQ 
CALL PRE(1950.0,EQ,PREMAT) 
D0 40  N=l,25 
CALL TRC(PREMAT,RA50(N),DEC50(N),EQRA(N)/EQDEC(N)) 
CALL BSC(EQ,EQRA(N),EQDEC(N),SCRA,SCDEC) 
D0 3 0  K=l,4 
SRA(N,K)=SCRA(K) 

30 SDC(N,K)=SCDEC(K) 
40 CONTINUE 
50 CALL BDNl(DATJUL,EQ,BDNS,PSIDEL) 

D0 60  N=l,25 
APRA=EQRA(N) + BDNS(1)*SRA(N,1)+BDNS(2)*SRA(N,2)+BDNS(3)*SRA(N,3) 

1 + BDNS(4)*SRA(N,4) 
APDEC=EQDEC(N) + BDNS(1)*SDC(N,1)+BDNS(2)*SDC(N,2) + 

1 BDNS(3)*SDC(N,3) + BDNS(4)*SDC(N,4) 
60 PRINT   ,  APRA, APDEC 

IF(DJUL.GT.DJULE)  ST0P 
Gtf  T0 20 
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We would like to add some concluding remarks.  All the 
routines will reside permanently on disk.  That means that one 
has to be careful in the choice of names of other subprograms 
which may appear in a main program.  Even if the user calls only 
one of these routines, he should avoid any of the names of the 
other routines-  For example, if only NUTl would be called, the 
names A13 and A46 are still forbidden since they are assigned to 
programs internally called by NUTl. 

Our routines were constructed in a very general way.  This, 
of course, could mean that they are not in all applications the 
most effective solutions for a special problem, as far as computing 
time is concerned. 

We have done extensive testing of all of the programs.  At 
present, they seem to be very well debugged.  However, since more 
than 200 essentially different constants are distributed over 
more than 300 different places within this "system", with different 
precision, it will be understood that we cannot entirely exclude 
the possibility of errors.  We would be grateful if the users 
would inform us about errors. 

References:   (I)  NRAO Computer Division Internal Report No. 2 
(II)  NRAO Computer Division Internal Report No. 3 


