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MEASUREMENT OF OUTPUT CHARACTERISTICS OF A RADIOMETER 

The characteristics of a radiometer system are quite well known as far as the effects 

of thermal noise in the system are concerned.   The necessary formulas for treating the 

sensitivity of a total power receiver (under idealized conditions) were given by Rice (1945), 

and the sensitivity of the switched radiometer has been discussed by Goldstein (1956), 

among others.   The effect of instabilities in the system gain upon the overall sensitivity, 

however, has not been thoroughly discussed.   The switching scheme was invented byDicke 

(1946) to overcome the effects of gain instabilities in a total power receiver.   Strum (1958) 

mentioned the loss in sensitivity which gain instabilities would introduce and depicted the 

gain as being a random function of time and having a certain probability distribution function. 

In order to get some idea as to the effect instabilities in the system gain may have upon 

a radiometer output characteristics, it was felt that an analysis of a radiometers output 

noise was of some interest, and this note gives the results from such an analysis. 

The output noise from a switched radiometer of the type described by Orhaug and 

Waltman (1962) was recorded by using a digital output system.   The system noise tempera¬ 

ture was 1200 *K (at 1400 mc) including the terminating load at the input to the switch. Two 

different runs were taken, each run occupying 3 hours, and the output time constant was 2 

seconds while the gate time of the digital readout was 5 seconds.   The system time con- 

stant is thus determined by the gate time and is finite memory type integrator.   In the first 

run the input to the receiver was balanced while in the second run an unbalance signal of 

10 •K was inserted through a directional coupler.   In the first case the effects of gain in¬ 

stabilities should be absent, according to the theory of the switched radiometer, and the 

only output fluctuations should be noise fluctuations and eventually zero drift.   In the second 

case, however, there should be additional fluctuations caused by gain instabilities, and the 

output fluctuation term should be proportional to the unbalance signal (in our case 10 ^J. 

Our first task is to analyze the output fluctuations for different effective integration 

time.   We know that if only thermal noise is present in the system then the rms-value of 

the output fluctuations is given in terms of equivalent input noise temperature variations. 

AT  -  C^ (1) 



-2 - 

where T   . is the total system temperature, B is the rf-bandwidth, and T the effective 

integration time.   C is a constant dependent upon the actual system parameters {approxi¬ 

mately equal to unity).   The rms-fluctuations were then computed (by the use of a Bendix 

G-20 computer).   The next time two consecutive output readouts were averaged (thereby 

doubling the effective integration time) and the rms-value was computed.   The third time 

three consecutive readouts were averaged, giving the effective integration time three 

times the initial integration time.   The result is then a series of computed rms-values 

as a function of integration time, AT (nr ), where r  is the initial integration time 

(= 5 seconds).   From Equation (1) we have 

ATVKT" = c-=r o VB (2) 

which means that a plot of AT Vnr   against n is a constant, dependent only upon the sys- 

tern parameters, if only the effect of thermal noise is present. 

If, on the other hand, we assume that the gain instabilities can be approximated with 

a gaussian random process and if the power spectrum associated with the instabilities is 

concentrated to low frequencies (i. e., to frequencies below b ), then we have the approxi¬ 

mate situation as depicted in Figure 1. 
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Fig. 1 — Approximate power spectrum when signal (T ) and gain instabilities are 
present.   Situation depicted for output of phase detector.   Skjuare law detector assumed. 
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We have assumed an input signal T   'K and also assume that the gain instabilities in the 

system have a mean square value of (AG/G)2.   If a switched receiver with a gain modula¬ 

tor is used, then the equivalent rms input noise temperature variation is, for a square 

law detector (Orhaug and Waltman (1962)) 

T      =  (T„ + T^) 
eq      x C       R 

TA + TR 
TC + TE 

-K V /AG|2 
G (3) 

where T   is the antenna temperature, T_ is the temperature of the comparison channel, 
A C 

and K is the gain modulation factor (K = G  /G ).  For K = 1 (as in our case) we have 

T      = T   . eq imb VjlF (4) 

where 

T   .   = TA -T^,  =  10 TC 
unb A       C 

The signal to noise ratio is now 

fkT ."w2 

B\2 

ecQ   + (kTB)2 m 

4     / B 

fkT    B\2 

 e 
i     4 

provided that the output filter bandwidth is larger than the largest frequency of the insta¬ 

bility spectrum (b > b ).   Setting s/n = 1 gives in the usual way the rms output noise 

fluctuations 

12*11/2 
(5) T     = AT  = 

s T2     + 
CT 

where 

and 

eq    (VBT/ 

C  * 4/C 

Cj  = br 

We notice that C   = 1/2 for an integration of the finite memory type (b = r—) (as we have 

actually used by taking output readings with a 5-second gate time).   Writing T = nr  we 

get 
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ATVnr T2    nr 
 ° = Ji + -sfl-a 

CT 1 CT\' 
V5 V5 

1/2 

CT when n « 1 then "7== » T     if T  is small enough, and therefore 
VBT eq      o 

o e<1 

(AT)XTVnT"   « 
^      N     o 

CT where (AT)XT = 1 for n = 1, and AT. = -7= = noise fluctuations for 1 second integration time. 
N 1     VB 

For no gain instabiHty, T     = O, and therefore (AT) VrrT = 1 independent of integration 

time.   It should be emphasized that we have arrived at this expression for the output fluc¬ 

tuations by assuming that the instability power spectrum is concentrated to frequencies 

below b , and that b always is smaller than the output filtering bandwidth b.   If, on the 

other hand, the instability power spectrum consists of a white continuous spectrum in ad¬ 

dition to a low frequency part just discussed, the only difference will be that the noise 

fluctuations would be larger; the "white" part of the instability power spectrum would have 

the same effect as an increase in receiver noise temperature.   Since no absolute calibra¬ 

tion was applied in the observations reported here, there is no way to distinguish between 

the instability power spectrum according to Figure 1 and the same power spectrum in ad¬ 

dition to a white spectrum.   Figure 2 shows values of (AT) Vnr  plotted as a function of 

nr .   The normalized rms output fluctuations are here called (AT) •   We should notice o c 
that if N   is the number of output readouts used for the computation of (AT)   for n = 1, 

then N = N /n is the number of effective output readouts for arbitrary n.   The standard 
0 -1/2 deviation of the computed (AT) -values is now (AT)__.(2N)        , where (AT)_„ is the theo- 

C Lti xti 
retical rms-value, and the uncertainty of the computation therefore increases as Vh.   In 

Figure 2 is also shown the standard deviation where (AT)-., is taken to be unity.   The 
Tri 

graph shows that the experimental (AT) -values hardly significantly deviate from unity.. 
There is a slight trend for smaller (AT) -values for increasing n, for n larger than 
approximately 15.   This point will be discussed later. 

The output rms-fluctuations for the case with an input unbalance signal of 10 •K are 
IT  \2    \i/2 IT  ^2 

eal        1 _.        . 
shown in Figure 3 together with the curve  1 + The value 7zn  T  = a T = 

,—* ,      « \AT      o        o 
\     1/      7 \     V 

rr is fitting the observational results best.   The observed rms-values are seen to agree 

extremely well with the simple picture recently, outlined. 
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Fig. 2 — Experimental rms output fluctuations as a function of effective integration 
time nr  for a switched radiometer having balanced input, o 
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Fig. 3 — Experimental rms output fluctuations as a function of effective integration 
time nr   for a switched radiometer having an input imbalance of 10 0K. o 
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By means of the 10 'K input signal the rms-fluctuations for n = 1 are found to be 

0.45 •K.   This means that T     = 0.042 0K, or eq 
1/2 

AG12 

G 
0.4% 

This value of the instability agrees with that found vfoen using the radiometer as a total 

power radiometer. 

For very large effective integration time when b < b , it can easily be shown that 

ATVnr"  = 
o 

i     /rrl2 

eq bj      (/B| 

1/2 

provided that the instability spectrum is flat between 0 and b c/s.   The normalized ex¬ 

pression is 

(AT)NV^ 
T2    C B 

■ ... eq 1 

(CT)2b 

ni/2 
= -/TT/f 

For very long integration times, the experimental rms-value should therefore be parallel 

with the n-axis, and the transition should occur for a n-value approximately given by 

n « 
i o 

In Figure 3 there is no sign to a transition to a horizontal curve for the experimental 

points, and we therefore conclude that the main power in the instability spectrum is situated 

1 1 —3 below approximately b =   = rr—r =4x10     c/s  = 0.24c/min. J n       T        50x5 
max o 

Another way of representing the result in Figure 2 is to make a plot of (AT)   as a 
c 

function of nr , and this is done in Figure 3.   Using logarithmic scales, Equation (1) is 

represented by parallel straight lines, and three such,curves are shown for three different 

(normalized) system temperatures. 
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Fig. 4 — Normalized rms output fluctuations as a function of normalized integration 

time for different normalized noise temperatures. 

We can again see the feature of the output fluctuations when an unbalance is present. 
-1/2 The output fluctuations do not decrease according to (integration time)       .   For longer 

integration time, the output fluctuations decrease with a rate which is less than that ex¬ 

pected from thermal noise alone in the system.   We can describe the situation by saying 

that the system acts like it has, for longer integration time, a larger noise temperature 

than actually is the case.   From Figure 4 we can see that an increase of time constant 

from 5 seconds to 250 seconds increases the "equivalent" noise temperature with approxi¬ 

mately 35 percent. 

A Fourier analysis was also made for the output data for the two different conditions 

described before.   The computer program was made according to a paper by Goertzel 

(1960), where the coefficients in the expansion 

fM  = ?\>+ 

p = l 

27rMp        n     .   27rMp 
<*      C0S OXT . ^    +   £     Sin OXT . ^ p        2N+1 p        2N+1 

are computed. 
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f    is here the values of the output function f(t) at the points 
M 

tM  =  Sh(M = 0'1-2N) 

The lowest frequency in this series expansion is (2N + 1)T     .   Because of the finite 

memory space of the computer used, it was necessary to divide the 3-hour run into 4 

blocks, each block containing approximately 425 data points or 2125 seconds.  This 

means that the lowest frequency in our expansion is 0.028 c/min., or approximately 

one-tenth of the upper frequency limit for the instability spectrum.   Figures 5 and 6 

show the results of the Fourier analysis.   Figure 5 is the result of the receiver run 

during balanced condition, and we notice that for lower frequencies the spectrum has 

a slope toward the p-axis.   The rms-fluctuations for balanced conditions followed the 

simple theory for r< 15x5-75 seconds, and this corresponds to an equivalent noise 

bandwidth of 

b = 2nT 2 x 15 x 5 

and the p-value corresponding to this frequency is 

p  = »  = 28 n 
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Fig. 5 — Power spectrum for balanced condition. 
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This agrees very well with the p-value of the maximum in the power spectrum as 

shown in Figure 5.   Also, the shape of the power spectrum at lower frequencies would 

cause the (AT) Vr-values to decrease with T.   We therefore conclude that the rms- 

fluctuations and the power spectrum agree well with each other* s performance.   The 

power spectrum (Figure 6) associated with the unbalanced condition is more flat than 

the previous one, but there is a slight increase for the lowest frequencies.   This is 

probably the indication of the instability power spectrum. 

Fig. 6 — Power spectrum for unbalanced condition. 

Let us next investigate the expected density of the instability power spectrum.   If we 

assume that the power is uniformly distributed between o and b, c/s, then the density 

in ratio to the density in the spectrum of the thermal noise is 

mst 

noise 

T    \2 

eq|     B 
4b. 

AG2    unb   _B 
G 11   T   I   4b 

(AC ACr\2 -4 -^ 
~L  = 10    , T = 1200 0K, T. » 10 'K, and ^ = 4.10     c/s, we get 
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r21 " ^ 
noise 

From Figure 6 we find that the ratio between the density of the instability power spectrum 

and the thermal noise spectrum is approximately 2, but the instability spectrum is prob¬ 

ably increasing quit e rapidly towards lower frequencies.   The magnitude of the power den¬ 

sity of the instability power spectrum therefore agrees with the order of magnitude to be 

expected from the other information we have obtained. 

The results presented here show that even in a switched radiometer the results of 

the instabilities may play an important role.   The analysis of the output fluctuations for 

various effective integration time shows that the result is in agreement with a model as¬ 

suming the gain instabilities to be a gaussian random process whose power spectrum is 

concentrated to low frequencies.   An upper limit of the highest frequency of the power 

spectrum is found to be 0.24 c/min., and this result is in agreement with the Fourier 

analysis made of the radiometer output fluctuations. 

We are indebted to the Computer Center at the Carnegie Institute of Technology for 

the use of the G-20 computer. 
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