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THE CHARACTERISTICS OF THE NRAO 85-FT.   TELESCOPES 
AT 2.07 CM WAVELENGTH 

J.W.M.   Baars and P.G.  Mezger 

1.     Introduction 

These measurements are part of the program which has been  initiated 

in order   to  test  the NRAO telescopes under extreme operating conditions. 

"Extreme  conditions" mean   that  the  telescope is  operated at a wavelength where 

there is already a substantial reduction in gain  and aperture efficiency due 

to  the RMS deflection yd2   of   the reflector.     Most of the formulas used in  the 

following  sections have been discussed or   derived in two earlier papers,   [ll, 

[2]. 

The measurements were  started (on March 15,   1964)  using a superhetero¬ 

dyne receiver which was borrowed from  the Naval Research Laboratory in 

Washington,  D.  C.     This radiometer received both signal and image frequency. 

The L.O.   was  tuned to  14.5 GHz.     The  85(I)-ft.   telescope  turned out  to be still 

a very useful  instrument  at this short wavelength.     It,   therefore,   was decided 

to  start  some   radio astronomical observations,   the result of which will be 

communicated elsewhere.     At  the  end  of  the measuring period  the setting of the 

reflector of  the 85(II)-ft.   telescope was  just completed.     The receiver was 

then mounted for  six days  (beginning on May 5)   in the new  telescope and  the 

most important  characteristics of  this  telescope were also measured. 

For   these measurements  a horn feed was used whose edge  taper (free 

space taper not  included)   is  -14 dB as  compared  to a  taper of -16 dB of  those 

feeds normally used at  NRAO.     The  path difference A between the  ray from the 

focal point to  the edge and  that to the vertex of  a paraboloid  is given by 
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D 0 
A  =    —     tg    —2   ,   where  0    is  the  aperture angle. 

4 2 0 

The space attenuation A of a ray under   an  angle 0 with  the  central ray is 

given by  the  relation 

A  = 20 log sec2   £   ,   in dB. 
2 

For 0    = 60° we arrive  at a free  space  taper  for the edge ray 2.5 dB larger 

than  that for  the  central ray.     All antenna measurements have been done with 

the E-plane of the feed oriented in N-S direction. 

2.     Beam Efficiency and Aperture Efficiency at \ =2.07  cm 

The antenna temperature^of Taurus A,   reduced  to zenith distance z = 0° 

and  corrected for   atmospheric extinction and polarization,   is 

(1) TAI(Tau)   = 13.160K 

The   corresponding antenna  temperature measured with the 85(II)-ft.   telescope 

is 

(2) T      (Tau)   = 1.03 T    (Tau) 
All AI 

The flux density of Taurus,   as  obtained from our analysis of the spectra of 

the strongest nonthermal  sources  [4]  is 

(3) S (Tau)   = 510.10-26 W/m2Hz 
14.5 GHz 
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The HPBW of   the  85(I)-ft.   telescope,   as measured with  the planets  Venus   and 

Jupiter,   is 

(4) 9       = 3.35 min of arc 
Al 

This  value is  also  obtained using  Wade's  semiempirical formula.     Taurus has 

an approximately gaussian distribution with minimum  and maximum HPW's 

0"  = 2.6'   and 0'   = 4.2',   respectively.     With the correction factors 
s s 

(5) &'    =   1.133   9'    9"    [l    +   Q'S/QSJ-l/S   [1    +  Q"2/Q2-|-l/2 
s s    s s      A s      A" 

& /£'   = [1  + 9,2/92]  V2  [1  + 9"2/92VV3 
s    s s      A" s      A 

valid for gaussian  distributions   [3]  and  a circular main beam with main beam 

solid  angle  2    = 1.133 92  one  obtains   the relations 
m A 

2kT as 

v    ^B    m  a; 

2kTA    2 
(6b) S    = -r-^    _£ 

v A 9' s 

Integrating   the antenna  temperature over  the main beam  area yields  the formula 

([2]   eq.   2). 

(7) s*= ^r Li TA ^d£ dTi 
region 
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With  the  numerical value // T (£,r))  dr dt) = 3190K (min of arc)2 and  the 

above given  values one finds 

(8a) 

(8b) 

0.342 

B »0.358 

(eq.   7) 

(eq.   6a) 

With  the relation between aperture  efficiency and beam  efficiency 

(9) -n    = 0.76 TI 
A 'B 

we find for  the  aperture  efficiency 

(10) 

^A  " 

85(I)-ft. 85(II)-ft. Using equation 

0.260 0.268 8a;   9 

0.273 0.281 8b;   9 

3.     The RMS Reflector Deviations 

The best values for   the aperture  efficiency of the   85(I)-ft.   tele¬ 

scope at various wavelengths  are given in  the following   table. 
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Table 1 

Wavelength Aperture efficiency Estimated error 

21.1     cm 0.58 +  10% 

10         cm 0.52 +  15% 

6         cm 0.51 +  10% 

3.95  cm 0.34 +  15% 

The measured and weighted RMS reflector deviations are given in the follow¬ 

ing table (compare also [l]). 

Table 2 

z  = 0° z  * 90° 0 

RMS  reflector deviation from 
photogramme trie measurement 

3.16 5.71 

- 

Weighted  for feed  taper 2.75 4.17 

Effective RMS reflector 
deviati on 

f85(I)-ft. 
1.75 { 

^85(II)-ft. 

1.92  (85(I)-ft.) 

1.83 (85(II)-ft.) 
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The aperture efficiency decreases with  increasing RMS phase error 

■/62 according   to 

(11) r) (\)   = -n,     exp  {-P2} 
A A0 

___ d2 

with fi2  =  16TT
2
 — 

■\2 

T]      is  the  aperture efficiency of the undisturbed  reflector.     It  is  ob- 
Ao 

tained by  plotting  log (T).)   over   l/'X2  and calculating   the  best fitting 

straight   line  through   these points.     We found 

(12) T]       = 0.59 
A Ao 

In  the same  way the  effective  reflector deviation can  be found which led 

to  the  value v d2     = 1.75 mm  in Table  2. 

The  aperture efficiency as  a function  of wavelength has been cal¬ 

culated using  eq.   (11),   (12)   and  the  RMS deflections  at  z  = 0°  as  given in 

Table  2o     It is  quite obvious  that  the  photo gran me trie survey yields  a 

much  too high RMS  deviation,  whereas Wade's measurement of the 85(II)-ft. 

reflector is   in  better   agreement with  the   effective RMS deviation de¬ 

termined by purely high £re€|tierTcy measuremerttit* 

If the   telescopes are   tilted from zenith  to  horizon  the  aperture 

efficiency decreases.     This is  a very  general  feature of most radio tele¬ 

scopes,   since their reflectors have been in most cases  set at zenith position, 

*Wade's  measurements have  been  made for   the  85(11)   reflector,   but are not 
weighted for   the antenna pattern.     From  the fact  that  the  aperture ef¬ 
ficiency of  this telescope  at z  = 0°   is only 3% higher   than  the correspond¬ 
ing value of  the  85(1)-ft.   reflector,   it  can  be concluded  that  the  two 
reflectors have  approximately  the same RMS deviations   at  zenith. 
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The change in  aperture  efficiency can   be determined by measuring  point 

sources at various  hour  angles  (and hence at  various elevation angles). 

The  antenna   temperature of  a point source is  directly proportional  to the 

aperture efficiency apart from  the  influence  of atmospheric  extinction. 

If  T    is  the antenna temperature measured at  z   =0°,   then  the  antenna 
A 

temperature at any  zenith distance  z is 

F(z) 
(13) T (z)   = T p 

A A 

with p  the  zenith extinction  coefficient;   F(z)   the  air mass function. 

Adopting log  (p14  5 Q^)   = -0.001 and  F(z  = 80°)   =5.6,   one  obtains 

p =0.9.     That means  that the atmospheric  extinction causes at z = 80° 

and for \  = 2.07  cm  an   apparent  change   in  the  aperture efficiency of  10%. 

The measured values have,   therefore,   to  be corrected for extinction.   The 

result  of  our  measurements is presented in  the form of  two   curves in fig. 

1.     The  aperture  efficiency  changes between  zenith  and horizon position 

by 40% (85(I)-ft.)   and  10% (85(II)-ft.),   respectively. 

This gain  change  could be  caused by either  a  systematic defocusing 

of  the feed or  by  an  increase in  the RMS  reflector deviation.     If d is  the 

effective  RMS deviation at  zenith  and d   + Ad is  the effective RMS deviation 

at zenith  distance  z,   then 

TlA(z) f Ad(2d  + Ad) 

= exp ( -  16T!
2 

T^(O) —^        "" X* 

and for Ad « d„ 

(14) Ad = \^    log   h  (0)/TIA(Z)1 

2d I6TT2 
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V0) 
= 0.224 for  the Inserting in   this  equation d  = 1.75 mm and   log 

hA(90o) 
85(I)-ft.   and 0.063 for   the 85(II)-ft.   telescope,     one  obtains Ad  = 0.17 

and 0.078,   respectively,   for   the  increase in the RMS  reflector deviations 

between  zenith  and horizon positions.    The values d  + Ad  (90°)   are given 

for  the  two   telescopes   in  Table 2.     It is  assumed here that  the decrease 

in  aperture efficiency is  entirely due  to an  increase in the RMS reflector 

deviation.     The  alternative possibility  to  explain the deterioration in 

the  antenna  characteristics by defocusing is discussed in section 5. 

4.     The Error  Pattern 

The   theoretical behaviour of the   error  pattern of a   radio  telescope 

caused by  random deviations of its reflector has been discussed in  [2], 

section 3.     We will adopt  an RMS reflector deviation  of V d2  = 1.8 mm,   since 

most of the measurements have been made  at zenith distances of  about 20 

to  40°. 

The average antenna temperature of  the  center part of  the moon 

measured during  one  lunation,   is  TT!  = 114.50K.  Assuming   the  brightness 

temperature of 210oK,   one obtains  the beam efficiency rj'   =  114.5/210  = 0.545, 

whereas  the beam  efficiency measured with a point source   is ri    = 0.35.   The 
B 

beam efficiency of the undisturbed reflector is obtained from eqs.   (12)  with 

(9),  -n       = 0.775.     Calculating the ratio 
Bo 

'B      'B 
0.195 

0.425 
= 0.46 

we notice  that   the left side of  [2],   eq.   (17)   can no  longer be considered 

to  be « 1 and hence  [2],   eq.   (18)  has  to be written  in the form 
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(15a) 1 = (in    V^ 
V^ 

1/2 1 1.094.103 VR    | d < X/12.566 

' 1.375.104 \l d^/R  Id > X/12.566 

where R, here the radius of the moon, has to be inserted in minutes of arc. 

Remembering that d > \/l2.566 and inserting the values for -n  , n and n', 
B0  'B     'B 

we finally obtain 

(15b) X = 1.20 m 

Eq.   [2],   14 yields  then   a side  lobe level of -16 dB and eq.   [2],   13  yields 

the  ratio 0e/9A  =10.3 for   the HPBW's  of error  and diffraction  pattern. 

With  9d   = 3.35'   follows  9     =34.5'. A e 

Two different  attempts have been  made to measure   the  power pattern 

of the 85-ft.   telescopes.     Figure 2a  and  b show drift  curves of Taurus A 

through   the H-plane of   the   two   telescopes.     Although   the main beam is  con¬ 

siderably broader due   to  the finite gaussian  shape of Taurus,   the figures 

show clearly that the side lobes are attenuated by   about -14 dB,  which is 

2 dB  less than predicted by  theory. 

At  very short wavelengths,   where  the  antenna  temperatures of most 

radio sources  are  very  low,   the  measurement   of  the power  pattern becomes 

a real  problem.     It has been suggested,   therefore,   to  use drift  curves  of 

the  sun or  the moon   to determine main beam  and first  sidelobes of a  radio 

telescope. 

The  theoretical  problem consists  in  solving   the  antenna  convolution 

integral,  which  might  become  rather difficult  if the  sidelobe  level is 

high.     In  the  case  that  the brightness distribution of  the  sun or  the 

moon   can be  approximated by  a step function and   the  angular  diameter  of  the 

main beam and sidelobes of the antenna are so  small that the problem can 
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be  treated as  a one dimensional problem,  a  relatively simple  solution of 

the  integral equation can   be obtained. 

The   antenna  convolution integral  can be written  in the form 

TA<SfTl)    = Tl      To //dS'   dn'    f(l;',V)   t   (^   "   £\   H   -   TJ1) 

where TV,  is  an  effective beam  efficiency,   T    the maximum brightness  tern- 0 o 

perature  of  the  sun or  the moon,  M^,r\)   the brightness distribution function 

(^        =1)   and f(£,n)   the unknowi  antenna  pattern.     Assuming now that the max ' 

antenna pattern can be approximated by a function f(£,r))   = f (£) f2(r)) 

(which is  always  the case for a gaussian function)  and that the distribution 

function depends only on one coordinate ^(?,T]|)   3 \K£)   the integration in 

T) can be performed and  the convolution integral yields 

+*• 
(16) TA(0   = T^KT]) /d^'   fi  (^«)  ^ (£-r) 

with KT))   =/   drj f8(Ti) 

Figures 3a and b  show drift  curves measured with the 85-ft.   tele¬ 

scopes  at X = 2.07  cm,  which can  be approximated fey  the integral equation 

(16).     The  angular   coordinate £ describes the position of the center  of 

the antenna beam relative   to  the center of the moon's disk (£ = r) - 0). Uie 

dashed curves in  this  figure have been calculated by  convolving a gaus¬ 

sian antenna pattern  with 9.   = 3.35'  with a disk with 16'   radius.     The 

quite considerable deviation of the measured curves from the calculated 

curves show  that either  the antenna pattern deviates strongly from the 

gaussian   approximation or  the distribution of the  radiation temperature 

of  the moon deviates   strongly  from a disk distribution.     We  assume now 

that the moon has really a disk distribution and  try  to  calculate the 

antenna pattern.     Differentiating eq,   (16) we obtain 
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(17) dTA(n ** 

d^ 
= -n T KTJ) /    dV  f (?') —- ^ (S - £') 

»   O        ' o. 1 de 

* T) T KTI)   •   f,(^) 
'Bo' 1 

d 
considering the fact that   \\r (Z - £*)   = 6(£ - $:•)  (Dirac-function)   and 

d£ 
the convolution f^')* fi(^ - £')   = f^U). 

Each drift  curve of  the moon yields consequently two  approximations 

of  the power pattern.     The differentiated   curves have merely to be nor¬ 

malized  to unity.     Fig.   4a and  b show  the  results  of  these calculations. 

The HPBW obtained from calculating the best fitting gaussian  curves agree 

pretty well with  the   corresponding values obtained from drift  curves with 

the planets.     The sidelobes,  however,   are considerably higher  than would 

be expected from the drift  curves fig.   2a  and b.     This may  be due  to   the 

fact  that  the brightness distribution of the moon deviates  from the step 

function assumed  in the derivation of  eq,   (17). 

This  method  is  of  special  importance for measurements of  the  antenna 

power  pattern  m   the mm-wave range.     F.  Low supplied  a drift  curve of the 

sun  through   the NRAO 5-ft.   telescope at   a wavelength of \ =  1.2 mm (fig. 

5a).     Using eq.   (17)  we derived the main beam pattern of  the  5-ft.   tele¬ 

scope  shown  in fig.   5b.     The HPBW of  the   telescope,   as obtained by  averaging 

the  two  sets of points obtained from the  east  and west limb,   respectively, 

yields 9     = 3.8 min, of arc.     The HPBW expected from  theory would be 

9    =3.3 min.   of arc.     We believe that by  averaging  the results obtained 

from five or ten drift curves would yield   a fairly good result,   since 

then   most of   the   fluctuations   in   the  differentiated  curves,   which   are   mostly 

due  to noise fluctuations   in  the  original drift  curves,   could be eliminated 

by  the  averaging process. 
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^•  The Effect of Axial Defocusing of the Antenna Feed 

We call Af  the distance between the phase center of the feed and 
ax 

the focal point of the paraboloidal reflector.  As a result of the axial 

defocusing a quadratic phase error is introduced (Appendix eq. 1,1). 

(18) 
2TT 

\Kr) = Br2 with B = —■ Af  (1-cos 9 ) r       r   \       ax       o 

P has the meaning of a phase difference between central and edge ray. For 

not too large phase errors, the effect on the antenna characteristics can 

be described by a decrease in gain and aperture efficiency and an increase 

in HPBW.  Some calculations have been made on both effects, the results 

of which will be shortly reviewed. 

a.  Gain reduction 

Our calculations in Appendix I, a, lead to the following results 

(19a) 

(19b) 

G/G     = 
o 

G/G0  = 

«  1 - p2/l2   +   ...   uniform illumination 

sin p/2 

P/2 

4 4 Sin  {J 
-   1 

P2 

»  1 + 
18 

..   tapered illumination  (1  -  r2) 

Both  equations  are  plotted in fig.   6. 

Bracewell   [5l   gives   the quadratic  approximation  of eq.   (19a).   Cheng 

derives as a   lower   limit for  the  gain reduction   [6]. 

(20) G/Go   =  (l-m2/2)   »   l-m2,m «  1 

m  is defined  as   the maximum phase  deviation from the average phase  value 

across   the  aperture  plane.     Hence, 
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a 

1 /I 
= 2TI / dr  r  Br2/2TT / dr r   = B/2  and m   = ^        - ^    = B/2 

v r   / r max av 

Inserting this value  into eq.   (20)   and  comparing  the result with  eq.   (19a) 

shows  that m has  to be taken  l/V^T of  its  value  (in  the   case of uniform 

illumination)   to  get agreement between  eqs.   (19a)   and  (20).     In  the case 

of a  tapered  illumination m has  to   be  taken V 2/3  of  its  computed value 

to get agreement  between eqs.   (19b)   and   (20). 

b.  Beam broadening 

Various   computations  of  the beam   broadening  as  a  function of  the 

quadratic phase error {32,   introduced by an  axial feed displacement,   are 

discussed  in  appendix I,b.     If we  use the quadratic  approximation for  the 

beam broadening 

9,/9    = 1  + aB2 

A    A r 

we find values for   the  constant a varying  between   0.002  and  0.06.     The 

numerical   computation of Cheng  and Moseley  [7] ,   which  seems   to  yield  the 

most reliable results,   leads  to  a value of a  ~ 0.01.     Their   computations 

have been made for a feed  taper (1-r2)2. 

If we focus   the   antenna with  an extended radio source  like the  sun 

or the moon,   we have  to  take  into  account not only the decrease of  ap¬ 

erture efficiency   in   the  direction  of  the  electrical   axis   (as  in the  case 

of a  point source)  but we have   to   consider also the  increase  in  the HPBW 

and  the  increase  in  the  level of the first sidelobes which are  caused by 

the axial defocusing.     This  can   be  clearly seen  from fig.   7a  and b,   where 

focussing curves for  the 85(1)-ft.   telescope  are shown, measured at 6 and 

2.07  cm wavelength,   respectively.     The  curves  (a)   have been computed from 

eq.   (19b);   the measurements with a point   source  agree fairly well with 
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these  curves.      In   the  case of  the  6-cm measurements   the HPBW of  the tele¬ 

scope  (11 min.   of  arc)   is about  1/3  of   the diameter of  the moon.     Con¬ 

sequently only a  fraction of the first sidelobe of   the  telescope is con¬ 

tained within  the  apparent  diameter   of  the moon.     The experimental result 

that the   relative antenna temperature of the moon decreases  more slowly 

with axial  defocusing   than the  relative  antenna   temperature  of a point 

source must   be mainly due  to  the beam broadening.     The  antenna   temperature 

of the moon  is  given by   the relation 

(21a) T,   = TI   _£    T 

m 

The   effective  source angle 9'   becomes in  this  case approximately 9.'   =  9  . 
s s        m 

The beam efficiency can  be   expressed by-n    =ri&/ft=n    & G/4TT,   SO  that 
B        R    m R    "» 

we  can rewrite eq.   (21a)   in the form 

(21b) T    = -£ £ GT 3 
A      4TT    m~~M 

The antenna temperature of a point source decreases proportional to G. For 

small phase errors we can use the quadratic approximation G = G (l-bJ32). 
o 

In  the   case of  an   extended source whose diameter   is  at   least two times  the 

HPBW of the  antenna,   the relative  antenna  temperature decreases proportional 

to   the pr©duct  9 G.     Since 9    ~  92,   we can  write for  the  quadratic approxi- 
m m        A 

mation 9    =  &    (1 +  2aB2) .     Computing  the  product we obtain m        mo ' 

(22) 9. G = Q    G    [l -  (b - 2a)  B2 -  2abB4l m mo o r r   ' 

Eq.   (19b)   yields for b  = 0.055.     From the measured change in  the antenna 

temperature  of the  moon   at  X   = 6-cm,   we  find  for  a   = 0.018.      Figure   8 

shows some   computed quadratic approximations  of  the beam broadening;   the 

solid curve has  been derived from  the  observations of fig.   7a,   using 
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for G({3)   the rigorous equation  (19b).     One sees   that for larger  phase  errors 

the beam  broadens   considerably  stronger   than would  be  expected    from the 

quadratic approximation. 

Our  calculations  in Appendix I   show that  the  beam broadening depends 

very  strongly on  the taper of   the feed pattern.     The  voltage patterns of 

various  feeds used  in  the measurements are  shown  in fig.   9,   together with 

some convenient  and often  used  approximations  for  the  tapered feed pat¬ 

terns.     The  free space  taper has been added to the original feed patterns. 

Fig.   7b shows  the  same  focusing curves as fig.   7a,   but measured at 

2.07-cm wavelength.     The HPBW of the  85-ft.   telescope is,   in  this  case, 

only 3.35 min.   of arc,   so that  about   the first four  sidelobes are contained 

within the  apparent disk of the moon.     The  deviation between  curve  (b)   (which 

corresponds  to   the  6-cm observations with  the  moon)   and   the relative change 

of the antenna temperature of  the moon at 2.07-cm is due to the increase 

in the level  of the first four sidelobes. 

At very  short wavelengths  it is hard to focus  an   antenna with a point 

source,  since in this wavelength region the only  strong  radio sources are 

the   sun  and   the moon.     It has been  suggested,   therefore,   to  use  these 

sources for  the antenna focusing at very short wavelengths.    Our observa¬ 

tions in fig.   7a and b  show,  however,   that  the  symmetry line of the focusing 

curves obtained with the moon do  not  coincide with  the focal point which 

is found with a point source,   but  lies between 0.3  and 0.5 wavelength  closer 

to  the reflector. 

If  the decrease in gain observed at both 85-ft.   telescopes should 

be caused by an axial feed displacement  rather  than by an increase in the 

RMS  reflector deviations,   the   axial defocusing  should  be about 1 wavelength 

in the case  of  the  85(1)-ft.   telescope and  about 0.3 wavelength  in   the  case 
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of the 85(II)-ft.   telescope.     The photogrammetric  survey yields a   change 

in  the focal   length of the best fitting  paraboloid of about  4-cm.     The 

contour map representation  of  the   reflector deviations  at   zenith   (fig.   10a) 

and at  horizon (fig.   10b)   reveals   in addition a very strong  astigmatism 

of  the reflector  at small elevation angles. 
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Appendix I 

Some calculations on "axial defocusing" 

a) Gain reduction 

We call 9 the angle between the symmetry axis of the paraboloidal 

reflector and a ray drawn to the point x,y on the reflector surface. It 

can be easily shown that the phase difference between the central ray and 

the ray reflected at the point x,y is proportional to sin 9 in the case 

of a radial defocusing and proportional to cos 9 in the case of an axial 

defocusing.  Since 

X   x3 
sin 9 ~ — - ii— 

f  2f3 

and ix \  2 /x \ 4 

"^1 cos 9 ~— 
2f, 

the phase difference increases proportional to the square of the normalized 

distance r = x/(D/2) in the case of an axial defocusing, and proportional 

to ar + br^ in the case of a radial defocusing. 

The maximum difference in path length occurs between central ray 

and edge ray and is in the case of axial defocusing 

(1,1)     Al   = Af (1 - cos 9 ) 
max    ax        o 

Af is the difference between the phase center of the feed and the focal 

point of the reflector, 9 is the aperture angle. The phase error across 

the aperture as a function of the normalized distance r is then 

2n 
(1,2) ?(r)  * 8r2 with B  = -- Af    (1 -  cos 9 ) r r        \       ax 0 
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The voltage pattern of  a circular  aperture with  the aperture field dis¬ 

tribution F(P,CD')   is([8],   page  192). 

D/2 2TT jkp sin 9 cos (a>-cp') 
(1,3) g(9,cp)   =/      /    F(p,(p')e pdpdcp' 

o      o 
-jpp2 

Introducing the quadratic  phase error we can  write F(p,cD*)   = A(p,tp')e 

and obtain for   the secondary pattern in the Fraunhofer region 

D/2  2TT Jkp sin 9 cos  (CD -cp')   -jpp2 

(1,4k) g(9,cD)   =/     /  A(p,(D')e e pdpdd)' 
o     o 

Performing the integration for  the  case of a constant  illumination of the 

aperture A^CD' )   = const,   yields 

1 -jpr2 

(1,4b) g(u)   = 2 / J (ur)   e rdr 
o     0 

nD 
with u   = —  sin 9 

\ 

If we  are  only concerned with  the  antenna  gain  in  the direction 

of  the electrical  axis (u =0),  we  find for eq.   (I,4b) 

1   -j^r2 -jp/2    sin(p/2) 
(1,5a) g(0,p)   = 2 / e rdr  = e  r— 

o 0/2 

and for the power pattern 

(I,5b)    f(0,p) = g(0,p). g*(0,p) = 
sin(p/2) 

p/2 
i- El 

12 

This  is the formula usually used to calculate  the gain variation 

as a function of the on-axis position of   the phase  center  of a feed in 

the  case of constant illumination.     In order to get an idea how much  this 

relation will be  changed by a   tapered  illumination,   we assume  an  il¬ 

lumination A(r)   «  (1  -r2).     (I,5a)   then   takes  the  form 



(I,6a) 
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1 -jpr2       1       -jpz 
g(0,p) = 4 / (1 - r2) e    rdr = 2 / (1 - z)e   dz 

o o 

= 2 

and we obtain for the power pattern 

'sin (2/2)" 

$72 

s 2 
+  J - 

sin p 
- 1 

(0,p). g*(0,p)   = 
sin (p/2) 4 

+ 
4 sin p 

■  1 

p/2 f 
(I,6b) 

18 

These results show  that  gain  and aperture efficiency decrease more 

slowly in the case of a  tapered illumination.     Both  eqs.   (1,5 and 6)   are 

shown  in  fig.   6. 

b)     Beam broadening 

We  consider  again the simplest  case of uniform  illumination. 

But now we have   to   solve  equation (I,4b)   for the far field  pattern  of a 

circular aperture with quadratic  phase error for values of  the variable u 

at  least up  to  the order of u   ,   the value of u at the half power points 
o 

of the pattern.     Writing  eq.   (I,4b)   in the form 

-JP    1   JpU  - r2) 
g(u)   = 2e        / e J (ur)   rdr 

o 
(1,7a) 

it is possible to relate the integral 

(I,7b) 

to the lommel functions 

Jp  2 
g(u)e  =- LU (p,u) + jU.(p,u)l 

p  i        2 
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(1,8) U_(P,U)   = p / J (ur)   cos   [p(l -  r2)]   rdr 
1 o      o 

1 
U

2(P>U)   = P f J (ur)   sin  TpCl -  r2)]  rdr 
o 

for which the  series expansions exist 

2P                      / 2p \3 / 2p l 5 

(1,9)                      U  (p,u)   =—    J (u)   -    -1      Ja(u) + Ll      J (u) 1                 u1             lul u5 

U„(p,u)   = 
/2p\2 

IT) 3^ - 
/?Bl4 2p 
—      J^Cu)   + 

\ u 4 

And we obtain finally for  the power  pattern 

(1,10) f(p,u)   = —  [U2 (p,u)   + U2  (P,u) ] 

= 4 
J^Cu) 

-   16p: 
2J1(u)JJ5(u) J2(u) 

U* U* 

As one expects 

f(p,0) = 1 - 16p2 lim 
u->o 

f 2^(11) J^CiO-Jgdi) 

u* 
= 1 p2 + 

12 

and 
f(o,u) = 

/2J1(u)\
2 

In order to calculate the HPBW of the broadened beam we have to renormalize 

the power pattern 

(I,11a)       f(p,u) = 

f0(u) 16p: 

1 - p2/l2    1 - p2/l2 

2J1(u)J3(u)   J2(u) 

u4 U* 

Expanding the Bessel functions and breaking off after the quadratic term 

yields after some calculation 
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(1,11b) f(p,u) = 
fo(u) p2/l2 

1 - p2/l2    1 - p2/l2 
1 - 

u* 

96 

We call u the normalized angular coordinate, at which the power pattern 

of the broadened beam has dropped to 1/2, and find the following equation 

for u , neglecting the term with u*. 

P: 
f (u_) =-(!+ — 1   2 1   12 

u2 

1 -J; 

u 

Inserting here the usual gaussian approximation f (u) = exp /-   
0 ^     (1.2 u )2| o    J 

with u    the  normalized angular  coordinate corresponding  to the HPBW of  the 
o 

undisturbed main  beam,  we can calculate  the main beam solid angle 

(I,12a) 

and 

(I,12b) 

ft'   = 9 
m        m 1  + O.ip2 -  0.16 — 

12 

9'   = 9    (1   + 0.05p2 -  0.038p4) 
A A 

Another possibility  to calculate approximately  the increase in HPBW 

consists in  expanding the antenna pattern f(u,p)   in a  Taylor series.     Let 

u    = u     + Au be the  argument   at which f(u   ,p)   =  1/2.    We  then calculate 
i o 1 

Au by solving  the equation 

(1,13) 
(Au) 

f(u )   =  1/2   = f(u )   + Au f'(u  )   + 
1 o o 

.   f"(u   )   +   .. 
o 

This  leads  to 

(I,14a) u /u    «  1  + 0.002 p; 

1     o r 
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if only f'(u  )  is   considered,  and to 
o 

(I,14b) u  /u    «  1  + 0.003 p: 

i    o r 

if f"(u )   is considered also.     Comparison with our  experimental results shows 

that the beam broadening conforming to  eqs.   14 is  too small,   an  effect which 

is probably due  to the slow convergence of  the Taylor expansion. 

Cheng  [6]  gives  an upper  limit for Au 

(1,15) 
m2 

Au< — 
2 

g (u) 
o 

. JL 
du    o 

Inserting for  the voltage pattern the gaussian   approximation g(u)   = 

\/f(u)   = exp {- u2/2  (1.2u  )2},  we obtain Au<0.72 m2u   .     The discussion of 
o o 

eq.   (20)   suggests to  replace m by m/\/"3 for  the  case of  constant  illumination 

and by mV273   in the case of a (1 -  r2)   tapered feed pattern.    We find  in 

the  case of constant illumination: 

(I,16a) 

and 

(I,16b) 

u /u    = 9'/9    = 1 + 0.060 B2 for a gaussian main 
i    o        A    A r beam 

u /u    = 9'/9    = 1  + 0.057 B2 for a  Bessel function repre- 
i    o A    A r o A    A 

sentation  of  the main beam 

and in the case of a (1 -  r2)   taper 

(I,17a) 

and 

(I,17b) 

u /u     = 9,/9.   = 1  + 0.040 B2 gaussian  main beam 1    o        A    A 

u /u    = 9!/9    = 1 + 0.038 B2 Bessel function representati 
i    o A    A r on 
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Silver ([8],  page 189)   gives an expression for  the voltage pattern 

in  the presence  of   a quadratic phase error,   which is written  in the form 

of  a series expansion  cf derivatives of g (u) ,   the voltage pattern  of the 

focussed antenna. 

* 1      Bn    d(2n> 
(1,18) g(u) =    V JL   L   -     [g0

(u>l 
n  = 0 j"      n.'     duSn 

Breaking off the series after the  third term* we get 

(2) ! 
(1,19a) g(u)   = g  (u)   -  jp  g       (u)   - -    p2g  (4)(U) 

o o 2 0 

and consequently  the power pattern 

(1,19b) f(u)   = g2(u)   - p2 i'go(u)go(4)(u)   -   rg(2)(u)l2} 

It has to be borne in mind, however, that the formula is only valid 

for a linear aperture (including a square aperture which can be treated in 

a similar way). 

As  an   experimental  result we find a beam broadening which can be 

approximated by 

(1,20) 9'/9    - 1  + 0.02 p2 

A    A 

This shows that the analytically derived results yield either  too high or 

too small values for  the beam broadening.     A natural  step is  to  compute 

better approximations using numerical methods.     Cheng and Moseley [7]  con¬ 

sidered the necessary defocusing of an antenna  in order to obtain far field 

*Silver  included in his formula only the second derivative,  which leads  to 
a wrong approximation.     We   are   indebted  to Dr.   J.   Ruze  to  have pointed out 
to us   in  a private communication  that  the  fourth derivative has  to   be in¬ 
cluded. 
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characterlsti cs  in  the Fresnel  zone.     They calculate for  a feed pattern 

taper  (1 -  r2)2  a beam broadening,   which  can  be approximately  represented 

by 

(1,20) 9,/9     = 1   + 0.01 B2 

A    A 

The  curve of this equation is  also drawn  in fig.   8, 
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Figure 1:  Change of the aperture efficiency of the 85-foot telescopes 
at X = 2.07 cm with zenith distance z. 
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Figure 2a:  Drift curve of Taurus A through 
the 85(1)-foot telescope at 
A. = 2. 07 cm. 
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Figure 2b:   Drift curve of Taurus A through 
the 85(11)-foot telescope at 
X = 2. 07 cm. 
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Figure 3b:   Drift curve of the moon through the 85(11)-foot telescope at A = 2. 07 cm. 
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Figure 3a:   Drift curve of the moon through the 85(1)-foot telescope at A = 2. 07 cm. 
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Figure 4a:   Derivative of the drift curve Fig. 3a. 
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Figure 6: Relative change or gain and aperture efficiency as a function of the phase 
error/? introduced by an axial defocusing.   The Afj^/A scale is valid for 
a F/D ratio of 0.42.   The dashed and dash-dotted curves, respectively, 
are the quadratic approximation of the rigorous functions. 
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Figure 7a: Focusing curves,measured with 85(1)-foot telescope at 6 cm wavelength. 
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Figure 10a:   Contour map representation of the 85(1)-foot reflector at z = 0* 
One contour interval = 1. 53 mm. 


