
NATIONAL RADIO ASTRONOMY OBSERVATORY

Charlottesville, Virginia

Electronics Division Internal Report No. 225

LIBRARY OF BINARY SUBROUTINES FOR APPLE II PLUS

L. R. D'Addario

January 1982

Number of Copies: 150

A LIBRARY OF BINARY SUBROUTINES FOR APPLE II PLUS

Table of Contents

I. Introduction 3
II. Memory Organization 3
III. The Pointer Reset Program 6
IV. The LINK Subroutine 7
V. Calling Library Subroutine by Name 9
VI. Library Versions 2.0 and 2.1 9

Figures

Figure 1 Memory Configuration of Apple II Plus with
Binary Library 4

Figure 2 Configuration of Lower Memory (Library Larger
than 3k Bytes) 4

Tables

Table T. Contents of Versions 2.0 and 2.1 11

Appendices

Appendix A Internal Organization of the Binary Library 13
Appendix B Listing of "LINK" Subroutine 14
Appendix C Listing of "LIBENT" Program 15
Appendix D Listing of Logical Operation Subroutines 17

References 12

A LIBRARY OF BINARY SUBROUTINES FOR APPLE II PLUS

L. R. D'Addario

I. Introduction

In programming the Apple II Plus computer in Applesoft Basic, it often

happens that some special operation is required which cannot be implemented

within that language, or which is awkward or inefficient to implement. An

expedient solution is to implement the operation as a subroutine written in

another, more appropriate language - usually an assembly language - and to

access it from Basic via the CALL statement or the ampersand (&) command.

In our setup at NRAO, where we have several Apple II Plus computers with

similar peripherals, the same special operations can be expected to be useful

in many programs written by different people. For example, many of our present

programs need routines to control the ADIOS module [1,2]. To avoid duplication

of programming effort, the code for these operations should be written, maintain

and distributed in a way that is independent of the programs that will use it,

and yet is easily accessible to them. The present report describes a method of

accomplishing this.

II. Memory Organization

Figure 1 shows the suggested organization of the Apple's memory when

binary subroutines are to be called from Applesoft Basic. This plan is based

on the following ideas:

1. The subroutines are placed in the lower part of memory, starting at

$800 = 2048. The starting point of the Basic program, normally $800 also, must

Rom m
/\) A-

AMt> x/c?

co-r

Afeaurrg Al>pfit5^
'■CCt MA- f|€fxA

3«4oo

11?34

S'JXo

Zc4S

^4 oo

!4oo

^OO

9o\ 't>os

VOITM

SVU6^lIC

AO- 3 FO^»"£"^-S

:! I *t>rl£ voi 6urftai
_ (oj^OKiAt) _

i: PlS/gs. ere-
I C*tTi'oMA± \

HimeM

40

^ Pfl06l2A^ />-
AK1X>
\//\r^A(iULS

UitiO

(bfnowA-- WiiMbK\)

36 -

70

IO-

Oo

Atyuaoer
F^O^AM
o< M6,fcl

(8k)

UggAfeVH
B>HA(iV oVfcftUVS

Off. VKift CUfc viali
BiMA>2V W'LC.AYq
sysw u^e

Ll&^KJ^ Ul-n-i Miti

Fig. 1. Memory configuration of Apple II Plus with
binary library, with and without protection
of HGR1.

5!^

AS /y

MPd&Of—

i L^iiAcy^em

1*4 oV£<iLAVS

SYS-^c^

u6^D

Fig. 2. Configuration of lower memory if library
becomes larger than 3k bytes and HGR1 is
needed.

-4-

-5-

be moved up enough to make room for the subroutines. An alternative would have

been to place the subroutines in upper memory and to push HIMEM downward. But

since we often want to use high resolution graphics, which requires that any Ion;

Applesoft program be placed above HGR1 ($2000-$3FFF), the space $800-$lFFF is

often unused. The total usable memory is then larger with the subroutines in

low memory.

2. All subroutines which are thought to be generally useful - i.e., used

by at least several different main programs - are assembled together in a single

block called the "binary library," starting at $1400 = 5120. Programs which

use any of the library subroutines would normally load the entire library; this

produces no penalty in usable memory space if HGR1 is also needed.

3. The first page of the library ($1400 thru $14FF) is reserved for JMP

instructions to the entry points of the various subroutines in the library.

Normally, a Basic program should CALL the appropriate JMP instruction address

rather than the actual entry point address of a subroutine. This allows the

library to be updated in a way that might require changing the entry point

addresses of some subroutines without requiring changes in any Basic programs

which use the library.

4. The space $800-$13FF is intended for loading subroutines which are not

in the library but which are needed by a particular Basic program. The idea is

to use this space for specialized routines which are needed by only one program

(or at most a few). An exception is the high resolution graphics character

generator, a purchased program [3] which occupies $C00-$FFF and requires data

(a "font") occupying $1000-$13FF. If this program is required, the space for

other routines is reduced to $800-$BFF, which is shared with Text Page 2.

-6-

III. The Pointer Reset Program

As mentioned earlier, the starting point of the Basic program must be

moved upward to make room for the library. This can be accomplished simply by

changing several pointers in the zero page, provided that the Basic program has

not yet been loaded. A short program to do this is included in the initial

versions of the library. The following command will load the library and reset

the pointers so that.subsequently-loaded Basic programs will reside above the

library:

BRUN LIB

where LIB is the name of a binary file containing the library. This routine

returns to the user in immediate mode, with any previously-loaded Basic program

no longer accessible. An alternative is to use the utility program LOMEM [4]

which actually moves a previously-loaded Basic program, and which can be executed

from within the program. One can then

BLOAD LIB

so that the pointer-resetting program is not executed. However, LOMEM

requires the user to specify the destination address, which might require knowing

the length of the library, and the latter is variable.

The following example illustrates the procedure that I recommend. Suppose

that a Basic program called WORK needs some routines from the library and also

needs a special routine stored in a binary file named WORKER. The user stores

the Basic program in a file named WORK.A and creates a text file named WORK

containing these lines:

BRUN LIB

BLOAD WORKER

RUN WORK.A

-7-

Then, whenever he wants to run WORK, he types

EXEC WORK

and all the memory organization is automatically taken care of. Incidently, the

EXEC file can also do various other useful things, such as making sure that the

text window is properly set and that any resident routines required (DOS, PLE, etc.

are properly connected.

The pointer reset program knows exactly where the library ends and can place

the Basic program immediately afterward, so no space is wasted. However, if

Hires Graphics is to be used, then at least HGR1 ($2000-$3FFF) must also be

protected from the Basic program. Therefore, another version of the library

exists in which the pointer reset program causes Basic to start at $4000 = 16384

rather than at the end of the library. So far, the library does not extend up

to the beginning of HGR1. If it should ever grow beyond that point, we can still

have a version which protects HGR1 by skipping over it, as shown in Figure 2.

IV. The LINK Subroutine

Most useful subroutines require parameters from the calling program and

produce results which must be returned to the calling program. Therefore, it is

important to provide a method of passing data between a Basic program and a called

subroutine. This could be done through POKE's and PEEK's, but that would be

slow and cumbersome, especially for arrays.

The library includes a program which allows parameters to be passed in a

simpler and more efficient manner. If a list of Basic variables is appended to

the CALL statement, we can use routines within the Applesoft ROM [5] to find the

addresses of these variables in memory. Our subroutine can then obtain the values

of these variables or store results into them.

-8-

A subroutine called from Basic which needs the addresses of passed parameters

should include the instruction

JSR LINK

where LINK is an entry point in the library. Upon return, the addresses of up to

three parameters will be stored on the zero page, starting at $19, in the same

order as in the CALL statement. For example, if Basic executes

CALL SUB,A,B,C

and SUB contains JSR LINK, then upon return from LINK the address of the Basic

variable A will be in $19,$1A; the address of B will be in $1B,$1C; and the addresi

of C will be in $1D,$1E. LINK also advances the text pointer to the end of the

Basic statement, so that when SUB executes a RTS, the Basic program continues

normally. If the CALL statement lists more than three parameters, the additional

ones are ignored.

The precise syntax of the CALL statement is

CALL <adr>[{<delim><parameter>}]

where <delim> is any of the delimeter characters defined on page 33 of the Apple-

soft manual, except the colon and either parenthesis ; <parameter> is the name

of a simple variable or an array element; and <adr> is a Basic expression which

evaluates to the entry point address of the subroutine being called. Note that

an array name (without a subscript, as distinguished from an array element)

cannot be used as a parameter because LINK will think it is a simple variable.

Another linking routine, called MLINK, has been written to pass array names

without subscripts, but it will not be discussed here; contact the author if

this interest you.

The delimeters are thus ^=+-<>/* , ;

-9-

V. Calling Library Subroutine by Name

As mentioned earlier, the first page (255 bytes, actually) of the library

is reserved for JMP instructions to the entry points of the various subroutines.

This allows for 85 such instructions, which we'll call "indirect entry points."

The addresses of these indirect entry points should remain stable through many

revisions of the library. Nevertheless, the user must know at least the indirect

entry address for each subroutine he calls.

To free the Basic program almost completely from the need to know absolute

addresses in the library, a short program has been written which allows library

subroutines to be called by name. The calling syntax is

CALL <libent>"<name>" <parameter>[{<delim><parameter>}]

where <libent> is the address of the LIBENT program, and <name> is the name of

the desired subroutine. For example,

CALL LIB"CMUL"Y(0) = A(0)*B(0)

will execute the complex multiply subroutine. A slightly shorter calling sequence

is obtained if the & command vector has been set to <libent>. Then

&IICMUL"Y(0) = A(0)*B(0)

will have the same effect as the previous example. Notice that, in either

calling syntax, the second quote replaces the first delimeter of the parameter

list.

In timing tests which compared CALL's through LIBENT to CALL's to the indirect

entry points, no measurable difference was seen with a resolution of about 200 ysec

VI. Library Versions 2.0 and 2.1

At this writing, the NRAO binary library contains the subroutines listed in

Table I. The current library is called Version 2.0 or 2.1, according to whether

-10-

th e Basic program begins immediately after the library or after HGR1.

When the library is loaded, the version number times 10 is stored in

$14FF = 5375. It is intended that this number will be odd for versions in

which HGR1 is protected, and even otherwise. It is also intended that changes

in the fraction part of the version number will indicate a minor revision whicl

is downward-compatible (that is, all programs which worked with the earlier

version should work with the new one), whereas changes in the integer part

indicate major revisions in which some routines may operate differently or be

deleted. If the library is loaded through an EXEC file as suggested earlier,

might be useful to include the line

PRINT "LIBVERS = "PEEKCSSyS)/10

to be sure the user knows which version he got.

-11-

TABLE I: Contents of Versions 2.0 and 2.1

PROGRAM NAME

PTRSET

LINK

ADIOS

ABOUT

AND16

OR16

XOR16

CADD

CMUL

CDIV

POLAR

RECT

ADD2X2

SUB2X2

MUL2X2

INV2X2

LIBENT

INDIRECT ENTRY

Dec

5120

5123

5126

5129

5132

5135

5138

5141

5144

5147

5150

5153

5159

5162

5165

5168

5171

Hex

1400

1403

1406

1409

140C

140F

1412

1415

1418

141B

141E

1421

1427

142A

142D

1430

1433

NOTES

Resets pointers for Applesoft;

automatically executed by

BRUN LIB.

See text and Appendix B of this report.

ADIOS interface control; see [1,2].

Logical operations on 16-bit integer

variables. See Appendix D for listi

Complex Arithmetic Package; see [8].

See text and Appendix C of this report.

-12-

REFERENCES

G. Weinreb and S. Weinreb, "ADIOS - Analog-Digital Input Output System

for Apple Computer," NRAO Internal Report No. 212, April 1981.

L. D'Addario, "Improved Software for Controlling the ADIOS Module," NRAO

Internal Report No. 224, January 1982.

A.P.P.L.E., "High Resolution Graphics Character Generator."

N. Konzen, "The &LOMEM: Utility." The Apple Orchard, vol. 1, no. 1,

p. 21 (March/April 1980). See also [3].

J. Crossley, "Applesoft Internals." The Apple Orchard, vol. 1, no. 1,

p. 12 (March/April 1980); also Call A.P.P.L.E. In Depth, no. 1,

p. 51 (1981).

C. Bongers, "In the Heart of Applesoft." MICRO-the 6502 Journal, no. 33,

p. 31 (Feb. 1981).

S-C Software, P. 0. Box 5537, Richardson, TX 75080; telephone (214) 324-:

"Apple 6502 Editor-Assembler" manual.

S. Keller and L. D'Addario, "Complex Math Package for Apple II Plus Compu

NRAO Internal Report No. 226, January 1982.

-13-

Appendix A

INTERNAL ORGANIZATION OF THE BINARY LIBRARY

The following information is provided for the benefit of those wanting to

write programs for the library or to modify it. Familiarity with 6502 assembly

language programming is assumed.

Two assemblers were evaluated for this application, the S-C Assembler II [6]

and the DOS Tool Kit Editor-Assembler [7]. Several other assemblers were considered

on the basis of their advertised features. The S-C Assembler II was selected,

primarily because of a feature that allows the various subroutines to be maintained

in separate source files but assembled together. The assembler accepts the

pseudo-op

INCLUDE filename

which causes the specified source file to be included in the assembly in place

of the pseudo-op. This assembler has the disadvantages that its editing facilities

are poor and it stores the source code in a way that is not compatible with other

editors.

To produce the library, a source file called LIBROOT was created containing

the code for the indirect entry JMP table, the version number, the pointer reset

program, and a list of .INCLUDE pseudo-ops for the subroutines to be assembled.

Also in LIBROOT is a list of label definitions ("equates" or .EQ pseudo-ops) for

addresses commonly needed by subroutines, including a large number of Applesoft

internal subroutines and zero page addresses.

The library is maintained on a disk called the "NRAO Binary Library Master

Disk," which includes a copy of the assembler; LIBROOT; the source code for each

subroutine; and binary files with the current versions of the assembled library.

-14-

Appendix B

LISTING OF "LINK" SUBROUTINE

2330 .IN LINK
1000 ************************************
1010 * LINK PMRHMETERS FROM HPPLESOFT
1020 *
1030 * 810831 LRD. REU 820111.

0019- 1050 PTOBLE .EQ *19 POROMETER ODDRESS TOBLE, THRU *
00FH- 1060 PT0BLE2 .EQ $F0 SECONDARY PTOBLE

1070
1525- 02 00 1080 LINK LDX #0
1527- 86 06 1090 .1 SIX TEMP
1529- 20 B7 00 1100 JSR CHRGOT NEXT CHOR OF BASIC TEXT.
152C- F0 IB 1110 BEQ .5 END OF BOSIC STATEMENT, EXIT.
152E- 20 B1 00 1120 JSR CHR6ET SKIP DELIMETER <NORMALLY COMMA)
1531- F0 16 1130 BEQ .5 END OF BOSIC STOTEMENT, EXIT.
1533- C9 2C 1140 CMP #COMMO DOUBLE COMMA?
1535- F0 09 1150 BEQ .4 YES: POROMETER MOS OMITTED.
1537- 20 E3 OF 1160 .2 JSR PTR6ET GET POINTER TO POROMETER IN (0/
1530- 06 06 1170 -3 LDX TEMP RESTORE X-REG (USED BY PTRGET).
153C- 94 10 1180 STV PTOBLE+l *X
153E- 95 19 1190 STO PTOBLE,X
1540- E8 1200 .4 INK
1541- E8 1210 I NX
1542- E0 06 1220 CPX #06 MOXIMUM NUMBER OF POROMETERS IS
1544- 30 El 1230 BMI .1
1546- 20 95 09 1240 JSR DOTO TOBLE FULL, SKIP TO END OF ST.
1549- 60 1250 .5 RTS

28 B7 00
F0 25

H& 00
pc; 06
20 81 00
F0 10
C9 CmC.
F0 0C
18
tS 30
06 06
65 06
□ 06

4C 5 c: ID

H2 10
H5 06
DD H9 ID
1-0 20
Ch
00 F8
H9 7F
H0 ID
20 3H DB
H2 10
4C 12 D4
55 4E 4B
4E 4F 57
4E 20 4C
49 42 20
cr-j 55 4^'

£ %Z.

88 0b
h8 01
H0 14

-15-

Appendix C

LISTING OF "LIBENT" PROGRAM

c::4^0 ^ ^ ^ ^ ^ . IN LIBtNT^

10:10 * ROUTINE TO CALL PROPER LIBRMRV PROGRHH BHSEO ON NRME.
1020 *
1030 * 811210 LRO
a 040 *

1060 QUOTE .EQ $22
1070 ERROR .EQ $0412
1080 LIBENT JSR CHRGOT CHECK DELIMITER
1090 BEQ .4 END Ot- STfiTEMENT: SVNTflX ERR
1 i 00 *
1110 * REND STRING FROM APPLESOFT PGM UP TO NEXT QUOTE
1120 * HND COMPUTE ITS HASH CODE:
1130 LDfi #0 INITIMLI2t HfiSH CODt
1140 STR TEMP
1150 . 1 JSR CHRGET NEXT CHHRPCTER
1160 BEQ . 2 END OF STfiTEMENT?
1170 CMP #QUGTE
1180 BtQ • £ VES, END OF NAME.
1190 CLC NOSH IT...
1200 SBC #48 UPPER CfiSE ONLV
1210 msl TEMP
1220 HOC TEMP-
1230 STh TEMP SHUE
1240

1 ^"t L-i
JMP . 1 LOOP TO NEXT QUOTE

.1 C-'JU

.i 260 * btPRuH TMBLE OF URLID HfiSH CODES
1270 . 2 LDX #HfiSHEN -HhSHTB
1280 LDfi TEMP
1290 . 3 CMP HHSHTB^X
1 300 BEQ . 6
1310 DEX
1 ^20 BNE
1330 . 4 LDH #^5 CODE NOT HOUND.
1340 LDV . 5
1350 JSR STROUT PRINT ERR MESSAGE
1360 LDX #16 CODE FOR "SVNTfiX ERR
1370 JMP ERROR

1380 .5 .HS /IJNKNOMN LIB SUBR'V
1390 **
1400 * CODE FOUND, SO JMP TO MPPROPRIPTE ROUTINE IN JUMP TfiBLEi
1410 .6 SlX TEMP
1420 LDM #JTBL+1
1430 LDV sJJBL
1440 CLC

-16-

Appendix C (continued)

i D97- 65 06 1450 fiDC TEHF
.1. D95- 65 06 1460 MDC TEMP
iDSB- 65 06 1470 fiDC TEMP
aDSD- 90 01 1480 BCC « r"
IDSF- C8 1490 INV
.i UH0- 80 fi7 ID 1500 .7 STfi .8+1
iuhS- 6C fi8 ID 1510 STV . 8+£
iDH6- 6C H6 ID 1520 .8 JMP (*)

BVTES PER ENTRV

l UHb-
.t Dhh-
i DhB-
.i L.i H L-
i DhD-
i DHE-
IUHF-
.i uBtt-
j. Db i -
.1 uBi::-
iDB3-
i UB4-
i DB5-
.l uBb-
i uB7-
, uBd-

.1DB9-

00
80
56
7D
3B
i' M
EC
09
64

J W km*
90
H0
4F
ID
62
Fi
51

1530 *
.1540 * HERE IS
1550 HfiSHTB .Oft
1580 .Dm
1570 .Dfi
15S0 .Dft
1590 .Dfi
:i 800 . Dm
1610 .DM
1620 BDM
1630 .DM
1640 .DM
1650 .DM
:i 660 . Dm
1670 .Dfi
.1680 .DM
1690 .Dfi
1700 .DM
1710 HfiSHEN .DM
1720 .EN

THE TfiBLE Oh UfiLID HfiSH CODES:
#0 *USE ZERO FOR PROTEi"
#141
#86
#125
#59
#122
#236
#9
#100
#50
#144
#160
#79
#29
#98
#241
#81

-17-

Appendix D

LISTING OF LOGICAL OPERATION SUBROUTINES

2350 .IN LOGICAL

10:10 * LOGICAL OPERATIONS ON INTEGER UORIflBLES-
i 0^0 *
1030 * CALL MDR,Z>.=XV+V-'.
1040 * MILL COMBINE (>'.'4 > HITH CV"'. > HND PUT RESULT IN
1050 * THE OPERATION PERFORMED HILL BE 16-BIT LOGICAL
1060 * AND IF <ADR)=AND16ji OR
1070 * OR IF <ADR>=ORiS, OR
1080 * XuR IF <. AOR /,=:XuR 16.
1080 *

AS 31 1100 AND 16 LDA #$31 OP CODE
8D 1C 16 1 110 STA 0PER1
80 £!•'■ 16 1120 STA 0PER2
4C 15 16 1130 JMP LOGIC
H8 11 1140 OR 16 LDA #$11 OP CODE t-OR OR A M >V
80 1C 16 1150 STA 0PER1
80 16 1160 STA 0PER2
4C: 15 16 1170 JMP LOGIC
A9 51 1180 X0R16 LDA #$51 OP CODE rOR tOR
80 IC 16 1190 STA 0PER1
80 23 16 1200 STA OPFR?
20 25 15 1210 LOGIC JSP, LINK
fi0 00 1220 LDV #0
81 0B 1230 LDA < PTABLE+2 >#V GET LSB OF X-
31 00 1240 0PER1 AND <PTABLE+4),V OPERATE HITH LSB Or
91 09 1250

'i -;lZ iyi
STA
T hi V

(PTABLEXpV RESULT TO LSB OF jf

L. ij
81 0B 1270

1 li T
LDA <PTABLE+2>,V GET MSB OF X.

31 0D 1260 0PER2 AND <PTABLE+4>#V OPERATE HITH MSB OF
81 09 1290 STA (PTABLE>,V RESULT TO MSB OF Cm. m
60 1300 RTS DONE.

NATIONAL RADIO ASTRONOMY OBSERVATORY

Addition to EDIR No. 225

A Library of Binary Subroutines for Apple II Plus

NRAO BINARY LIBRARY VERSIONS 3.0 and 3.1

L. R. D'Addario

May 3, 1982

I. NRAO Binary Library Versions 3.0 and 3.1

Versions 3.0 and 3.1 of the NRAO Binary Library are now current. Changes

from versions 2.0 and 2.1, described in EDIR #225, are as follows:

1. LINK has been extended to allow passing up to six parameters instead

of three. The addresses of the 4th, 5th, and 6th parameters are stored

beginning at PTABLE2=$FA.

2. Errors in CMUL and CDIV have been corrected. The original versions

did not handle properly the case where the result used the same variable as

an operand.

3. POLAR has been changed to conform to the description in EDIR #225.

4. To save space, some code common to CMUL, CDIV, POLAR, and RECT has been

moved to a subroutine called LINKC; the latter calculates the addresses of

imaginary parts of passed parameters.

5. The new routines for handling the ADIOS module (see addition to EDIR //224,

dated March 30, 1982) have been incorporated. The old routines ADIOS and ADOUT

have been deleted.

6. The hash code table used by LIBENT has been moved to LIBROOT for

convenience in maintaining the library.

Changes 1 through 4 have also been incorporated in versions 2.2 and 2.3,

which should be compatible with 2.0 and 2.1.

-2-

Persons desiring copies of the library object code or the source code of

any subroutine should contact Stowe Keller or Larry DTAddario. Notices of futi

revisions will be sent only to known users within NRAO and persons requesting .

to be put on a mailing list.

From the attached listing one can determine the entry points of each

routine (direct and indirect), the name used to access each routine through

LIBENT, and the memory occupied by the library.

-3-

flSM

1488-

1400-
1403-
1486-
14ti9-
148C-
148F-
1412-
1415-
1418-
1418-
141E-
1421-
1424-

J427-
fc|2P-
PI2D-
1438-
1433-
1436-
14FF

4C 11
4C 36
40 60
4C 84
4C ID
4C 23
4C 33
40 4E
40 8F
40 F6
40 m
40 45
40 84
40 09
40 18
40 6?
40 3?
40 F3

15
15
16
15
17
17
17
17
17
17
18
19
19
19
Ifl
1ft
10
ID

- IE

1588-
1581-
1582-
1583-
1584-
1^85-
1586—
1587—
1588—
ISfifl-
158ft-
1586-
1580-
158D-
158E-
158F-
1518-

88
8D
89
09
38
7ft
EC
89
64
32
98
fi8
4F
ID
62
F1
51

1888
1818
1828
1838
1848
1858
1868
1878
1888
1898
1188
1118
1128
1138
1148
1158
1168
1178
1188
1198
1288
1218
1228
1238
1248
1258
1268
1278
12ci8
1298
1388
1318
1328
1338
1348
1358
1368
1378
1388
1398
1488
1418
1428
1438
1448
1458
1468
1478

NRftO BINftRV LIBRftRV

828325 UERSION 3.8 SK
*•

-OR $1488
.TF LIB 3-8

LIBRftRV .EQ *
«+■
* LINKS TO SUBROUTINES:
JTBL JHP LOftDER

'JMP LINK
JHP ftlNIT
JHP ftSERU
JMP ftND16
JHP OR16
JMP X0R16
JHP OftOD
JMP OMUL
JHP CDIU
JMP POLAR
JMP RECT
JMP MLINK
JMP fiDD2M2
JMP SUB2X2
JHP MUL2X2
JMP INU2X2
JMP LIBENT
-BS LIBRftRV+$FF-^
-Dft #38 UERSION NUMBER
IS THE TABLE OF UftLID HASH CODES FOR LIBENT:

UERS
HERE

HRSHTB

HASHEN

-Dft #8 *USE ZERO FOR PROTECTED ROUTINES
-Dft #141 "LINK"
-Dft #137 "ftlNIT"
-Dft #281 "ftSERU"
-Dft #59 "fiNDlb"
-Dft #122 "ORie"
-Dft #236 "XORIS"
-Dft #9 "OftDD"
-Dft #188 "OMUL"
-Dft #58 "ODIU"
.Dft #144 "POLftR"
-Dft #168 "RECT"
.Dft #79 "MLINK"
-Dft #29 "0002X2"
.Dft #98 "8082X2"
-Dft #241 MMUL2X2"
-Dft #81

1 ESS-
ESS-

9

2788 LftSTLB -EQ *
2718 LIBEND .EQ *
2728 - EN

