NATIONAL RADIO ASTRONOMY OBSERVATORY
CHARLOTTESVILLE, VIRGINIA

ELECTRONICS DivisioN INTERNAL ReporT No. 225

LIBRARY OF BINARY SUBROUTINES FOR APPLE IT PLUS

L. R. D'Abpario

JANUARY 1982

NumBer oF Copies: 150

A LIBRARY OF BINARY SUBROUTINES FOR APPLE II1

PLUS

Table of Contents

I. Introduction . . ¢ ¢« v ¢ ¢ v 0 v e e e e e e e e

II. Memory Organization « . « & ¢« & .« .

ITII. The Pointer Reset Program « « & o & o« &

Iv. The LINK Subroutine « & & ¢« « « & o« o .

V. Calling Library Subroutine by Name

VI. Library Versions 2.0 and 2.1 « « « . .
Figures

Figure 1

Figure 2

Table T

Appendix
Appendix
Appendix
Appendix

o OQwp

References .

Memory Configuration of Apple II Plus with

Binary Library «
Configuration of Lower Memory (Library Larger
than 3Kk Bytes) « « « « + « ¢ o o o o o« &
Tables
Contents of Versions 2.0 and 2.1
Appendices

Internal Organization of the Binary Library
Listing of "LINK" Subroutine
Listing of "LIBENT" Program
Listing of Logical Operation Subroutines .

OO dOWW

11

13
14
15
17

12

A LIBRARY OF BINARY SUBROUTINES FOR APPLE II PLUS

L. R. D'Addario

I. Introduction

In programming the Apple II Plus computer in Applesoft Basic, it often
happens that some special operation is required which cannot be implemented
within that language, or which is awkward or inefficient to implement. An
expedient solution is to implement the operation as a subroutine written in
another, more appropriate language - usually an assembly language - and to
access it from Basic via the CALL statement or the ampersand (&) command.

In our setup at NRAO, where we have several Apple II Plus computers with
similar peripherals, the same special operations can be expected to be useful
in many programs written by different people. For example, many of our present
programs need routines to control the ADIOS module [1,2]. To avoid duplication
of programming effort, the code for these operations should be written, maintain
and distributed in a way that is independent of the programs that will use it,
and yet is easily accessible to them. The present report describes a method of

accomplishing this.

II. Memory Organization
Figure 1 shows the suggested organization of the Apple's memory when
binary subroutines are to be called from Applesoft Basic. This plan is based
on the following ideas:
1. The subroutines are placed in the lower part of memory, starting at

$800 = 2048. The starting point of the Basic program, normally $800 also, must

SYMBOLIC ADLLEYS

~ ROM N
anv Ifo ~
CO;r
ABOLUTE ADDIESS l
[-“‘:‘—“"—_"‘""_"' 1 go H vos
peerA- hes T WITH :
Ao+ 3 BuFFeRg
3400 Hacoo ,!1 MOrZE D0s BUFFENS
F0-4_ _terrionary _|
i+ PLE,#GE, €TC. |
APPLESOFT
~ PRO G RAM o
ANL
VARARBLE S
rAL 43
16334 - 40 (21tk)
APPLESOFT
PROGRAM
®1 or HakI
(8k)
9 W
BINALY L1BCARY (3¢
S20 —— Fi400 10] BINARY oVERLAYS
O HGR CHR Gl
12048 - *800 . [BNATY evEC VS
00 SYSTEM USE

HiMeM

L _(2FTONALY G om g, Litiam)

LIBEND wnTH H4E|

________ UIBeNDd W T H G

Fig. 1. Memory configuration of Apple II Plus with
binary library, with and without protection

of HGRI.
f l
.]
N n
RIPESHF—
PROZ%AM
LIBRARY, PR2 T
40
HGRY
w -.
-
| LOBRACY PaeT T
400 —

121 ovepavs

| SYsTEM

Fig. 2. Configuration of lower memory if

LIBEND

library

becomes larger than 3k bytes and HGR1 is

needed.

4

be moved up enough to make room for the subroutines. An alternative would have
been to place the subroutines in upper memory and to push HIMEM downward. But
since we often want to use high resolution graphics, which requires that any lon;
Applesoft program be placed above HGR1 ($2000-$3FFF), the space $800-$1FFF is
often unused. The total usable memory is then larger with the subroutines in
low memory.

2. All subroutines which are thought to be generally useful - i.e., used
by at least several different main programs - are assembled together in a single
block called the "binary library,” starting at $1400 = 5120. Programs which
use any of the library subroutines would normally load the entire library; this
produces no penalty in usable memory space if HGR1 is also needed.

3. The first page of the library ($1400 thru $14FF) is reserved for JMP
instructions to the entry points of the various subroutines in the library.
Normally, a Basic program should CALL the appropriate JMP instruction address
rather than the actual entry point address of a subroutine. This allows the
library to be updated in a way that might require changing the entry point
addresses of some subroutines without requiring changes in any Basic programs
which use the library.

4. The space $800-$13FF is intended for loading subroutines which are not
in the library but which are needed by a particular Basic program. The idea is
to use this space for specialized routines which are needed by only one program
(or at most a few). An exception is the high resolution graphics character
generator, a purchased program [3] which occupies $CO0-$FFF and requires data
(a "font") occupying $1000-$13FF. If this program is required, the space for

other routines is reduced to $800-$BFF, which is shared with Text Page 2.

ITI. The Pointer Reset Program

As mentioned earlier, the starting point of the Basic program must be
moved upward to make room for the library. This can be accomplished simply by
changing several pointers in the zero page, provided that the Basic program has
not yet been loaded. A short program to do this is included in the initial
versions of the library. The following command will load the library and reset
the pointers so that. subsequently-loaded Basic programs will reside above the
library:

BRUN LIB
where LIB is the name of a binary file containing the library. This routine
returns to the user in immediate mode, with any previously-loaded Basic program
no longer accessible. An alternative is to use the utility program LOMEM [4]
which actually moves a previously-loaded Basic program, and which can be executed
from within the program. One can then

BLOAD LIB
so that the pointer-resetting program is not executed. However, LOMEM
requires the user to specify the destination address, which might require knowing
the length of the library, and the latter is variable.

The following example illustrates the procedure that I recommend. Suppose
that a Basic program called WORK needs some routines from the library and also
needs a special routine stored in a binary file named WORKER. The user stores
the Basic program in a file named WORK.A and creates a text file named WORK
containing these lines:

BRUN LIB
BLOAD WORKER
RUN WORK.A

Then, whenever he wants to run WORK, he types
EXEC WORK

and all the memory organization is automatically taken care of. Incidently, the
EXEC file can also do various other useful things, such as making sure that the
text window is properly set and that any resident routines required (DOS, PLE, etc.
are properly connected.

The pointer reset program knows exactly where the library ends and can place
the Basic program immediately afterward, so no space is wasted. However, if
Hires Graphics is to be used, then at least HGRl ($2000-$3FFF) must also be
protected from the Basic program. Therefore, another version of the library
exists in which the pointer reset program causes Basic to start at $4000 = 16384
rather than at the end of the library. So far, the library does not extend up
to the beginning of HGRl. If it should ever grow beyond that point, we can still

have a version which protects HGR1 by skipping over it, as shown in Figure 2.

IV. The LINK Subroutine

Most useful subroutines require parameters from the calling program and
produce results which must be returned to the calling program. Therefore, it is
important to provide a method of passing data between a Basic program and a called
subroutine. This could be done through POKE's and PEEK's, but that would be
slow and cumbersome, especially for arrays.

The library includes a program which allows parameters to be passed in a
simpler and more efficient manner. If a list of Basic variables is appended to
the CALL statement, we can use routines within the Applesoft ROM [5] to find the
addresses of these variables in memory. Our subroutine can then obtain the values

of these variables or store results into them.

A subroutine called from Basic which needs the addresses of passed parameters
should include the instruction

JSR LINK

where LINK is an entry point in the library. Upon return, the addresses of up to
three parameters will be stored on the zero page, starting at $19, in the same

order as in the CALL statement. For example, if Basic executes
CALL SUB,A,B,C

and SUB contains JSR LINK, then upon return from LINK the address of the Basic
variable A will be in $19,$1A; the address of B will be in $1B,$1C; and the addres
of C will be in $1D,$1E. LINK also advances the text pointer to the end of the
Basic statement, so that when SUB executes a RTS, the Basic program continues
normally. If the CALL statement lists more than three parameters, the additional
ones are ignored.

The precise syntax of the CALL statement is
CALL <adr>[{<delim><parameter>}]

where <delim> is any of the delimeter characters defined on page 33 of the Apple-
soft manual, except the colon and either parenthesis *; <parameter> is the name
of a simple variable or an array element; and <adr> is a Basic expression which
evaluates to the entry point address of the subroutine being called. Note that
an array name (without a subscript, as distinguished from an array element)
cannot be used as a parameter because LINK will think it is a simple variable.
Another linking routine, called MLINK, has been written to pass array names
without subscripts, but it will not be discussed here; contact the author if

this interest you.

*
The delimeters are thus v =+ - <>/ % | ;

V. Calling Library Subroutine by Name

As mentioned earlier, the first page (255 bytes, actually) of the library
1s reserved for JMP instructions to the entry points of the various subroutines.
This allows for 85 such instructions, which we'll call "indirect entry points."
The addresses of these indirect entry points should remain stable through many
revisions of the library. Nevertheless, the user must know at least the indirect
entry address for each subroutine he calls.

To free the Basic program almost completely from the need to know absolute
addresses in the library, a short program has been written which allows library

subroutines to be called by name. The calling syntax is
CALL <libent>'"<name>" <parameter>[{<delim><parameter>}]

where <libent> is the address of the LIBENT program, and <name> is the name of

the desired subroutine. For example,
CALL LIB"CMUL"Y(0) = A(0)*B(0)

will execute the complex multiply subroutine. A slightly shorter calling sequence

is obtained if the & command vector has been set to <libent>. Then
&"'CMUL"Y(0) = A(0)*B(0)

will have the same effect as the previous example. Notice that, in either
calling syntax, the second quote replaces the first delimeter of the parameter
list.

In timing tests which compared CALL's through LIBENT to CALL's to the indirect

entry points, no measurable difference was seen with a resolution of about 200 usec

VI. Library Versions 2.0 and 2.1
At this writing, the NRAO binary library contains the subroutines listed in

Table I. The current library is called Version 2.0 or 2.1, according to whether

-10-

the Basic program begins immediately after the library or after HGRIL.

When the library is loaded, the version number times 10 is stored in
$14FF = 5375. It is intended that this number will be odd for versions in
which HGR1 is protected, and even otherwise. It is also intended that changes
in the fraction part of the version number will indicate a minor revision whicl
is downward-compatible (that is, all programs which worked with the earlier
version should work with the new one), whereas changes in the integer part
indicate major revisions in which some routines may operate differently or be
deleted. If the library is loaded through an EXEC file as suggested earlier,

might be useful to include the line

PRINT "LIBVERS = "PEEK(5375)/10

to be sure the user knows which version he got.

-11-

TABLE I: Contents of Versions 2.0 and 2.1

PROGRAM NAME INDIRECT ENTRY NOTES

Dec Hex
PTRSET 5120 1400 Resets pointers for Applesoft;
automatically executed by
BRUN LIB.
LINK 5123 1403 See text and Appendix B of this report.
ADIOS 5126 1406 ADIOS interface control; see [1,2].
ADOUT 5129 1409 :}
AND16 >132 140C Logical operations on 16-bit integer
OR16 5135 140F j} variables. See Appendix D for 1listi
XOR16 5138 1412
CADD 5141 1415
CMUL 5144 1418 |
CDIV 5147 141B
POLAR >150 L141E i Complex Arithmetic Package: see [8].
RECT 5153 1421
ADD2X2 5159 1427
SUB2X2 5162 142A
MUL2X2 5165 142D |
INV2X2 5168 1430 |

LIBENT 5171 1433' See text and Appendix C of this report.

[1]

[2]

[3]
[4]

[5]

[6]
[7]
[8]

-12-

REFERENCES

G. Weinreb and S. Weinreb, "ADIOS - Analog-Digital Input Output System
for Apple Computer," NRAO Internal Report No. 212, April 1981.

L. D'Addario, "Improved Software for Controlling the ADIOS Module," NRAO
Internal Report No. 224, January 1982.

A.P.P.L.E., "High Resolution Graphics Character Generator."

N. Konzen, "The &LOMEM: Utility." The Apple Orchard, vol. 1, no. 1,

p. 21 (March/April 1980). See also [3].

J. Crossley, "Applesoft Internals." The Apple Orchard, vol. 1, no. 1,

p. 12 (March/April 1980); also Call A.P.P,L.E. In Depth, no. 1,

p. 51 (1981).

C. Bongers, "In the Heart of Applesoft." MICRO-the 6502 Journal, no. 33,

p. 31 (Feb. 1981).
S-C Software, P. 0. Box 5537, Richardson, TX 75080; telephone (214) 324-
"Apple 6502 Editor-Assembler" manual.
S. Keller and L. D'Addario, "Complex Math Package for Apple II Plus Compu

NRAO Internal Report No. 226, January 1982.

~-13-~

Appendix A

INTERNAL ORGANIZATION OF THE BINARY LIBRARY

The following information is provided for the benefit of those wanting to
write programs for the library or to modify it. Familiarity with 6502 assembly
language programming is assumed.

Two assemblers were evaluated for this application, the S-C Assembler II [6]
and the DOS Tool Kit Editor-Assembler [7]. Several other assemblers were considered
on the basis of their advertised features. The S-C Assembler II was selected,
primarily because of a feature that allows the various subroutines to be maintained
in separate source files but assembled together. The assembler accepts the
pseudo-op

INCLUDE filename

which causes the specified source file to be included in the assembly in place

of the pseudo-op. This assembler has the disadvantages that its editing facilities
are poor and it stores the source code in a way that is not compatible with other
editors.

To produce the library, a source file called LIBROOT was created containing
the code for the indirect entry JMP table, the version number, the pointer reset
program, and a list of .INCLUDE pseudo-ops for the subroutines to be assembled.
Also in LIBROOT is a list of label definitions ("equates" or .EQ pseudo-ops) for
addresses commonly needed by subroutines, including a large number of Applesoft
internal subroutines and zero page addresses.

The library is maintained on a disk called the 'NRAO Binary Library Master
Disk," which includes a copy of the assembler; LIBROOT; the source code for each

subroutine; and binary files with the current versions of the assembled library.

[}

p-*y..a..—l-l-h,—sr-‘-p—o-i—by—d-y—t'—"l-—l-r'l:!
et (5 I O 0SS (D
[t e 150 L £00 o T e Cad Pt b 00 el

T T

HOUR Y]

R KR IO 1 I RS T B R o B R

S S 0 S 0 S O 0D D R N

]
D B W K]
0

=
e e 0

T
!
Lo

P P P P T

BN
et

MM MmO 0 D MM T
TS

sk o ook Sk fore

I

LN) g -

D]
B
P

14—~

Appendix B

LISTING OF "LINK" SUBROUTINE

« I LTNE

* LIHE PARAMETERS FROM APPLESOFT
*

* 219331 LRO, REY 324111,
S ——

ﬁTRBLE LEL ¥19 PHRAMETER ADDRESS THBLE. THRU #1E.
PTABLEZ .EQ #FH SECOMDRREY FTHELE

LIME LI #3

.1 STH TEMP

J5R CHRGOT MEXT CHRAR OF BASIC TEXT.

BEQ .3 EMD OF BRSIC STATEMENT. EXIT.

JSR CHRGET SKIP DELIMETER CMORMALLY COMMA D,

BED .5 EMD OF BASIC STATEMENT. EXIT.

CHP #COMMA DOUBLE COMMAY

BELD .4 YES: PARHMETER HWAS OMITTED.

JSR PTRGET GET POIMTER TO PARAMETER IM (ALY M.

LOX TEMP RESTORE ®-REG (USED BY PTRGET».

STY PTHBLE+L .-

STH PTHBLE.X

-4 I
IMA
CPy #a
BMI .1
J5R DA

] RT=

LISELY

B MAAIMUM HUMBER OF PHRAMETERS IS 3
TH THBLE FULL. SKIP TO EMD 0OF S5T.

S T e T T P 0 I

(R
[T R i O o ot N T

2]
[s i)

I S 1 el

£
D]

froi

O
T e
[T R e

i

Dot e I 1

L3

[]

G i ot B i ¢ [t B o e]
=1

DA R O O]

-15-

Appendix C

LISTING OF "LIBENT" PROGRAM

S48 « [N LIBENT
IR S e e 2 R R R DR EAU P AR D SRS R ey

taie = ROUTINE TO CALL PROPER LIBRARY PROGRAM BRSED ON NAME.

1

*
*
= =lig2lé LRD
LG *

fass QI0TE (B $22
ERROR JER $D412
LIBEWMT JSR CHRGOT CHECK DELIMITER
BER .4 END OF STRTEMENT: SYMTRE ERK

1]

T
AN Y]

BT

+*
* RERD STRING FROM APPLESOFT PGM UP TO HEXT QUOTE
* AND COMPUTE ITS HASH CODE:
LOA #2 INITIALLIZE HASH CODE
STRH TEWF
1 J5R CHRGET MEXT CHARACTER
BEL .2 END OF STRTEMENMT?
CHFP #QUOTE
BER .2 YES, END OF MAME.
CLC HHEZH IT...
SBEC #48 UPFER CHZE ONMLY
HSL TEMP
HOC TEMP
STH TEMF SHUE
JHE L1 LOOP T MEST GUOTE

e

R RSN i e e e i e e

r.
i

BtIDAINA R U U i ot O o]

Y]

Lo T e 050 20 00 = 0 00 £ o PO =

El&|§|

P
Foi

P A oW S R A T oy Sy S N e ol e

10 1z4
S0 *

Lesd * SEARCH TABLE OF UALID HASH CODES
i2va .2 LOX #HASHEH-HRSHTE
LOR TEMF
CHP HASHTE.R
BER .6
OE-
BHE
. LOR
Loy oL
JASE STROUT PRINMT ERR HESSAGE
LhO< #18 CODE FOR "SYHTHX ERR"
JHF ERROR

..
P

i) P
= 5 0
o A By

L]
il

el

-t
]

-]

2 CODE MOT FOUND.
)

DR

T N S T
=3 T L P el P
Dot I I o ot ot

Led ol (od G iud

iz 04
IE 4

-

4

te
of

20

— T I 10
e s

ot «HS AUrKNOWN LIB SUBR"-

* CODE FOUND, SO JMP TO APPROPRIATE ROUTINE IN JUMP THELE!
N STe TEMF

1428 LOR #J4TBL+1

1426 LoY ~JdTBL

1448 CLc

ol
ST S LN o]
AR I ko]

RN S N
ot
[3c

~-16—-

Appendix C (continued)

DEF- B 1456 AOC TEHF
IhEER 146 ADC TEMP

iLeag—
LE—
iDar-
L ORE—

T

e RO RO I f

147@ ROC TEMF 2 BYTES PER EMTRY
1456 BLC LT ‘
149G IHY

i 1588 .7 STH .8+1

o R T
- T T

T Y]

1.0 n F
LORZ— BC RE 1D 1518 STY .g+2
chFe— BL oRE 1D 1528 .8 JMPCx D

1538 «
134 = HERE 15 THE TRELE OF UWALID HASH CODES:
15568 HASHTE DA #48 *ISE ZERO FOR PROTEC
1566 LOF #1411

1576 DA #&8E&

: DR #1125

LOR #55

OH #122

LOH #2365

.OH #9

LOR #1988

L0HD—
LOAH—
i0RE-
iDRC—
i0A0—
ibHE—
10AF—
L LiEE—

iDE1-

.3‘;:

(L Y S At
Dol K

Tt
S SO wet B BEAU RO CRE SO SV ' I e o w0 A o
(i AN]

Do Wt il Pt]

[s
-] T L0 e fef P
Dot}

T

wigs— A DR #5606
ibE3— 5 E5E LOF #1d4
iUB%— H 1EE8 LLH #1GE
1hES— 4 ieve DR #79
ioEE— | lEoa «OH #2359
LBV & 15568 LOR #98
.UBE—- F i7aE LOH #2dl
LOBS— 5 1718 HHSHEN DR #8281

irae . EN

- Lad

[]

[w]

Top g
[

2ARx) S R x Al S]
SebEEELEEEE

W i

DR T R | PN R i LT

AR

bt

]

PRy WINFIRCR N LW S S Y

DAY e e R O
o S O % PG e O e P e e e T e

L mE

o [T} 8 L e

~

CIE Gl e
|

DOCE Y s A l:_"i

-4
|
o]

-

PR
O

Py
T T T

iB
=

1%

2358
1868
1@aia
16za
16384
1adi
1@5E
14
1ava
&8
1ad9a
1186
iitle
iizga
1138
1i4i
115@
iiea
117@
1184

.A
P

fod P PO i P f I P T .th..
wad P P P Do g P ‘.'.:! r::.: If_l— e o

OO T O)

T £

P R Sy e
DU oUR WY

Dot e
Doy

~17-

Appendix D

LISTING OF LOGICAL OPERATION SUBROUTINES

«In LOGICAL
B s X X
* LOGICAL OPERATIONS ON INTEGER UARIRBLES.

* LALL HOR . Z5=ki+ys

* WILL COMBINE CxX) WITH C¥%) AMD PUT RESULT IHW
+ THE OPERATION PERFORMED WILL BE 16-BIT LOGICHL
* AND IF CROR »=AMD1E., OF

* LR IF CHDR»=0R1E, OF

* HOR IF CRODR >=xOR16.

ANDiIE LDR #$31 OF CooE

STH OPERL

STH OPERZ

JMPLOGIC
OR1E LDA #£11 OF CODE FOR ORA cMa.b

STH OPER1
STH OPERZ
JHMP LOGIC

AORLIE LDA ##51 0P CODE FOR EOR <MY
5TH QPERL
STA OPERZ?

LOSIC JSR LIMK
LOY #iA
LOA CPTABLE+Z »»Y oGET LSE 0OF =.

OPER1 AND (PTHBLE+4 .Y OPERATE WIiTH LSB OF VY.
STH (PTRBLE ».Y RESULT TO LSEB OF Z.
IHY
LOR CPTRBLE+Z »»¥Y GET MSEB OF €.

DPERZ HAND (PTRBLE+4 2,%Y OFERATE WITH MSE OF Y.
STH CPTRBLE 2% RESULT TO MSB OF £.
RTS DHE .

NATIONAL RADIO ASTRONOMY OBSERVATORY

Addition to EDIR No. 225
A Library of Binary Subroutines for Apple II Plus

NRAO BINARY LIBRARY VERSIONS 3.0 and 3.1

L. R. D'Addario

May 3, 1982

I. NRAO Binary Library Versions 3.0 and 3.1

Versions 3.0 and 3.1 of the NRAO Binary Library are now current. Changes
from véréions 2.0 and 2.1, described in EDIR #225, are as follows:

1. LIMK has been exten&ed to allow passing up to six parameters instead
of three. The addresses of the 4th, 5th, and 6th parameters are stored
beginning at PTABLE2=$FA.

2. Errors in CMUL and CDIV have been corrected. The original versions
did not handle properly the case where the result used the same variable as
an operand.

3. POLAR has been changed to conform to the description in EDIR #225.

4. To save space, some code common to CMUL, CDIV, POLAR, and RECT has been
moved to a subroutine called LINKC; the latter calculates the addresses of
imaginary parts of passed parametérs.

5. The new routines for handling the ADIOS module (see addition to EDIR #224,
dated March 30, 1982) have been incorporated. The old routines ADIOS and ADOUT
have been deleted.

6. The hash code table used by LIBENT has been moved to LIBROOT for
convenience in maintaining the library.

Changes 1 through 4 have also been incorporated in versions 2.2 and 2.3,

which should be compatible with 2.0 and 2.1.

Persons desiring copies of the library object code or the source code of

any subroutine should contact Stowe Keller or Larry D'Addario. Notices of fut:

revisions will be sent only to known users within NRAO and persons requesting.

to be put on a mailing list.

From the attached listing one can determine the entry points of each
routine (direct and indirect), the name used to access each routine through

LIBENT, and the memory occupied by the library.

HSH
G R R AR s EE Lk o T EE TR SRS
1818 * HRAO BINARY LIBRARY
1328 =
1838 ¢ 228325 UERSIOH 3.8 SK
1848 = .
1958 LR #1480
186E .TF LIE 3.8
1488- 1978 LIBRARY .EQ *
18986 =

1898 + LIMKS TO SUBROUTIMES:
1480— 4C 11 15 1188 JTEL JMP LORDER

1483- 4C 36 15 1118 < JMP LIHK
1486- 4C BA 16 1128 JMP RINIT
1483- 4C 34 15 1138 JHMP HSERU
148C- 4C 10 17 1148 JMP AND1E
148F- 4C 23 17 1158 JMP OR1B
1412- 4C 33 17 1166 JMP XOR16
141353- 4C 4E 17 1179 JMP CROD
1418- 4C 8F 17 1188 - JHP CHMUL
141B- 4C FB 17 1158 JHP COIU
141E- 4C AR 15 12848 - JMF POLRR
1421- 4C 45 13 1218 JMP RECT
1424- 4C 84 19 1228 JHP ML INK
1427- 4C C9 13 12358 JMP ROD2K2

ZH— 4C 18 1R 12448 JMP SUBZ=xZ
$20—- 4C 67 1A 1258 JMP MULZXZ
1436— 4C 37 1C 1266 JMP INUZ2RZ
1433- 4C F3 1D 1270 JHP LIBENMT
1436- 128 .BS LIBRARY+$FF—%
14FF- 1E 1238 UERS .OH #3983 UERSION HUMBER

1333 * HERE IS THE TRBLE OF UALID HASH CODES FOR LIBENT:

1588- 03 1318 HASHTE .DA #8 *JSE ZERO FOR PROTECTED ROUTINES
1581- 38D 1328 - <OR #141 "LIMEY
1562- 33 1331 DA #137 "RIMIT®
1583- C9 1348 .DA #2681 "HSERU*
1564 3B 1358 .DA #3539 "AHD1B"
1585~ 7A 1364 L0H #1227 "OR1E"
1586- EC 1378 .0A #236 "XOR1B"
1587- B39 13548 -0H #3 “CROD"
1568- B4 1330 .0A #1688 "CHUL"
1589- 32 1463 .DA #3538 “cpIu
158H- 38 1418 .DH #1444 "POLAR"
1588- AR 1428 .0R #1686 "RECT"
158C- 4F 1438 .OH #73 UMLIMK®
1580- 1D 1448 .DA #29 "ADD2¥2"
150E- B2 1458 DR #33 "SuBz2R2"
1568F- F1 1468 .0R #241 “MULZ2KZ"
1318- 51 1478 HASHEN .DA #31 "INUZH2"
1E58- 2708 LASTLEB .EQ *

E53— 2718 LIBEND .EQ =
2720 -EN

