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Some Fundamental and Practical Limits on 
Broadband Matching to Capacitive Devices, 
and the Implications for SIS Mixer Design 

A. R. Kerr 

ABSTRACT 

In a given frequency band, the achievable match between a capacitive 
microwave or millimeter-wave device and a resistive source is limited by the 
capacitance of the device and its series inductance.  The fundamental limit on 
the match bandwidth is examined for three circuits:  (i) parallel RC, 
(ii) parallel RC with series L, and (iii) parallel RCL with series L.  The 
broadband matching theories of Bode (1945) and Fano (1950) are used, the 
latter modified to avoid the standard low-pass to band-pass mapping in case 
(ii) because the terminals of the capacitance are not generally accessible for 
connection of the requisite parallel inductor.  The results are fundamental to 
the design of broadband mixers, multipliers, switches, and detectors using 
Schottky diodes or SIS junctions. 

Practical limitations imposed by the minimum realizable dimensions of 
millimeter-wave integrated circuits fabricated by standard photolithography 
are discussed in the context of SIS mixers with series arrays of junctions, 
and an example of a coplanar SIS mixer design is given. For a series array of 
N devices with a given total resistance, it is shown that there is an upper 
limit to N, below which the theoretical match bandwidth depends only on the RC 
product of the devices and not on the series inductance of the array. 

I.        Introduction 

Many semiconductor and superconductor devices are inherently capacitive 
and can be well described by the parallel RC circuit shown in Fig. 1(a).  This 
is true of Schottky diodes and SIS superconducting quasi-particle tunnel 
junctions at frequencies up to several hundred GHz.  In many practical cases 
the geometry of the device adds an unavoidable series inductance, as indicated 
in Fig. 1(b).  In either case, the bandwidth over which it is possible to 
couple power efficiently to the device from a resistive source can be 
increased, often considerably, by inserting a lossless matching network 
between the source and the device.  In some cases, it is possible to connect 
an inductive tuning element directly across the terminals of the intrinsic 
device, as shown in Fig. 1(c).  The purpose of the present work is to 
determine the fundamental match-bandwidth limits of these circuits. 
Specifically, in sections II-V, we determine the lowest upper bound on the 
magnitude of the reflection coefficient that can be achieved over a given 
frequency band.  This is illustrated in Fig. 2, where it is required that 
jpj < pa within the frequency band ^ < u>  < w2, but can have any value outside 
that frequency range.  The resulting minimum possible value of pa is of 
fundamental importance in the design of broadband circuits incorporating SIS 
junctions or semiconductor diodes. 
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Fig. 1. Equivalent circuits of:  (a) a capacitive device, (b) a capacitive device with series inductance, and 
(c) an inductively tuned device with series inductance. 
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Fig. 2.   j p | is required to lie below the solid curve. The minimum possible value of pa, in the given 
frequency band a)1 and w2, is to be determined. 

This work uses the well-known broadband matching theory, published in 
1945 and 1950, of Bode [1] and Fano [2].  In their work, the conditions of 
physical realizability were used to derive limits on the voltage reflection 
coefficient of a given load with an arbitrary lossless matching network.  In 
section II of this paper, Bode's match-bandwidth limit is applied to the 
circuit of Fig 1(a).  In sections III and IV, the theory of Fano is used to 
derive limits for the circuits of Fig. 1(b) and (c).  For the case of 
Fig. 1(b), this requires a slight modification to the theory to cover the case 
of band-pass matching without the use of the usual low-pass to band-pass 
mapping.  Section V presents the theoretical bandwidth limits for the three 
circuits of Fig. 1 in graphical form.  It is apparent that the series 
inductance of a device limits the bandwidth of a circuit only when it exceeds 
a certain value which depends on R and C. 

Section VI discuses the implications of the match-bandwidth limits for 
practical double-sideband mixers, using broadband SIS mixers as examples. 
Sections VII and VIII examine the practical constraints on the series 
inductance of devices and series arrays of devices in coplanar waveguide 



circuits, and give an example of a broadband coplanar SIS mixer with an array 
of junctions.  For circuits using series arrays of devices, it is shown that 
there is no trade-off between the attainable bandwidth and the number of 
devices in the array so long as the number of devices does not exceed a 
critical value. 

II. The Capacitive Device 

In the case of the simple circuit of Fig. 1(a), connected via a lossless 
matching network to a resistive source, Bode [1] showed that the reflection 
coefficient p  is constrained by the integral equation: 

J00 ln|l/p(w) | .dw < TT/RC . (1) 
o 

Inspection of (1) indicates that the lowest value of the upper bound of \p\ 
(pa in Fig. 2) within the frequency band u^ < w < c<>2 is achieved when \p\   = pa 
within that band, and \p\   - 1 at all other frequencies.  The optimum |p(w)| 
therefore coincides with the solid curve in Fig. 2.  The integral in (1) is 
then simply evaluated, giving 

ln(l/patmin) = 7r/RC(W2 - «!> . (2) 

It is apparent that pa#mln depends on the desired bandwidth (a>2 - a^) but not 
on the location of the band along the frequency axis. 

III. The Capacitive Device with Series Inductance 

Fano [2] extended the work of Bode to include a more general load 
equivalent circuit for the case of low-pass matching (i.e., for o^ = 0 in 
Fig. 2).  This can be applied to the case of band-pass matching by using the 
standard low-pass to band-pass mapping, a> -*  wx(w/c<>x-wx/w) , which transforms 
all inductors and capacitors in the circuit into series or parallel LC 
resonators.  However, this transformation is not applicable to the device 
described by Fig. 1(b), as the terminals of the capacitor are not accessible 
for connection of a parallel inductor.  The procedure of Fano is applied 
below, modified slightly to avoid using a low-pass to band-pass 
transformation, to determine the lowest possible value of the upper bound of 
the magnitude of the reflection coefficient within a given frequency band, for 
the circuit of Fig. 1(b). 

The given device and its external matching circuit are depicted in 
Fig. 3.  Following Fano, the best possible match over a specified frequency 
band is deduced from consideration of the function F(s) - ln(l//J1(s)) , where 
s - a  + jw is the complex frequency variable.  Expanding F(s) as a Taylor 
series in 1/s: 

F(s) - InCl/Pi) - jA0 + Ajd/s) + Aad/s)
3 + . . . (3) 



GIVEN  DEVICE 
"i 

N" 1 N' 

REACTIVE 

ELEMENTS 

REACTIVE  MATCHING 

NETWORK ! R< r— < 
< 

-J l_ 

Source 

Pi P2 

Fig. 3. The load R and network N' are part of the given device.  Network N" contains reactive matching 
elements. 

The coefficient A0 is equal to 0 or TT, while the other An must all be real, 
since JpjJ is an even function of w and arg(/)1) is an odd function of w.  Fano 
showed [2, pp. 62-63] that, since the m transmission zeros of N' must also be 
transmission zeros of the whole circuit (N' + N"), it follows that, except in 
the degenerate case discussed below, p^  and its first (2m-1) derivatives, 
evaluated at the transmission zeros of N', are independent of the matching 
network N".  The same is true of Ind/p^ and its derivatives.  The first 2m 
Taylor coefficients, P^  - (1/n! )dnF(s)/d(l/s)n, can therefore be evaluated 
from a knowledge only of the equivalent circuit of the given device. 

If the left-hand element of N" is of the same type (L or C) and 
orientation (series or parallel) as the right-hand element of N', the circuit 
is said to be degenerate.     N' and N" then have a common transmission zero and 
only (2m-2) derivatives of p1 are independent of N" [2, pp. 71-73]. 

Now consider the circuit of Fig. 1(b), terminated on the right by an 
arbitrary resistance, as shown in Fig. 4.  For convenience, the values of the 
circuit elements are impedance-scaled to R - 1 ohm (the impedance level has no 
effect on reflection coefficient or matching bandwidth).  The network N' has 
two zeros of transmission, due to C and L, both at s — «, so m - 2.  Then, 

Z' = sL + r 
szLC + srC + 1 (4) 

and 
Z^ + 1 

s^LC + s(L+rC) + (1+r) 
szLC - s(L-rC) + (1-r) (5) 

In terms of the variable f A 1/S, 

ln[i-] ln[- g2(l+r) + g(L+rC) + LC 
|z(l-r) - £(L-rC) + LC (6) 
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Fig. 4. The network N', for the circuit of Fig. 1(b), arbitrarily terminated on the right. Values of the 
circuit elements are impedance-scaled to R = 1 ohm. 

The first 2m Taylor coefficients A^  are obtained from the derivatives of 
Ind//^) evaluated at £ - 0, and are independent of the arbitrary resistance r 
as expected: 

JA, 3* 0 and A- 1 L  
3  3    3 

LC 

3C 
(7) 

When the network N' in Fig. 3 has two transmission zeros at s = «, Fano 
showed that, in the non-degenerate case, physical realizability of the 
matching network N" requires the following integral equations to apply: 

^ ^b du> f <Ai 2 2 A .) 
ri (8) 

and J^ u>  ln| — |dw = - | (A 
2   3 

3  3   ri (9) 

where Ari = ari + jwri are the zeros of p1  that lie in the right half of the s- 
plane, and depend on both networks N' and N" in Fig. 3.  In the degenerate 
case, eq. (8) alone is required. 

The upper bound on \p1\   is minimized if the matching network N" is 
chosen so that within the pass band, t^ < w < u>2t    I Pi I is equal to the upper 
bound pa, while outside the pass band jp^J - 1, as depicted by the solid curve 
in Fig. 2.  With this form of p1(w), the integrals in (8) and (9) can be 
evaluated, giving 

and 

(a>2   -  Wl)ln|l/pa|   -  (7r/2)(A1   -   2 2 Ari) 

(co2
3  - co^lnll/pj  => -(*/2)(3A3  -  2 E Ari

3) 

(10) 

dD 



These band-pass equations are similar to Fano's low-pass equations [2, 
eqs. (25) and (26)].  In the degenerate case, eq. (10) alone is required. 

The remaining step is to find the right half-plane zeros Ari of p1  in 
(10) and (11) that maximize ln|l/pa| (i.e., minimize pa) for a given pass 
band, Wj to w2.  Following the argument used by Fano for the non-degenerate 
low-pass case (^  -0), it is evident that to maximize ln|l/pa| the matching 
network must be selected so that S Ari

3 is as large as possible while keeping 
S Arl as small as possible.  This is accomplished by using a single real zero, 
ar [2, p. 72].  Then, from (10) and (11), 

(w2 - w^lnll/p.l - (V2)(A1 - 2<rr) (12) 

and        (a>2
3 - w^lnl l/pa| - -(ir/2)(3A3 - 2ar

3) . (13) 

Eliminating ar between these equations, and putting K = (2/7r)ln(l/pa miTI) , 
gives 

K(a>2
3   -  Wi3)  + 3A3  -   (1/4) [A!  -  K(w2   -  o>1)]

3 = 0   , (14) 

which is a cubic equation in K. 

It  is convenient at this point to change  the  frequency variables  from c^ 
and to2  to  the center frequency w0 and fractional bandwidth b.     Substituting 
wi — wo(l  " b/2)   and w2 - w0(l + b/2)   in  (14)   gives 

w0
3b3K3 -   3u>0

2bzA1Kz + u>0b   [w0
2b2 + 12a)0

2 + SA^]   K +   [12A3-A!3]   = 0   . (15) 

Substituting the values  for A1 and A3  from  (7) ,   and putting XL = w0L and 
Bc - u>0C,   gives 

K3 " bf: K2 + ro t12Bc+12 + b2Bc] K " #2 - 0 •     <16> C     b Bc b XLAC 

which can be solved for K. 

In the degenerate case, the first- element of the optimum matching 
network is inductive, thereby augmenting L.  Equation (10) alone is then 
required, for which ln|l/paj Is maximized when p1  has no right-half-plane 
zeros; i.e., S Ari = 0.  Using Aj^ =■ 2/C from (7), (10) becomes identical to 
the Bode limit of eq. (2).  In terms of K, b, and Bc, the Bode limit is given 
by: 

K = JL . (16a) 



IV.     The Inductively Tuned Device with Series Inductance 

For an inductively tuned device with series inductance, as in Fig. 1(c), 
the standard low-pass to band-pass mapping allows the fundamental limit on the 
match bandwidth to be deduced from the low-pass case.  The low-pass prototype 
is simply the circuit of Fig. 1(b).  Equations (12) and (13) are used, with 
(«)]_ «- 0, whence 

a>2K - A! - 2ar (17) 

and w2
3K 3A3 + 2ar

3 . (18) 

Eliminating ar between these equations, and substituting for A1  and A3 from 
(7), gives 

K3 ■ £5 K2 +1-0+ 41K ■ -rk -0 • (19> 
2       w«C w^C L 

which can be solved for K(ti>2) . 

We now use the low-pass to band-pass mapping 

CO 0) 

o>    - \)   [ -] , (20) 
X W     O) 

X 

where wx — l/y(L1C) is the resonant frequency of all the LC resonators in the 
transformed (band-pass) circuit.  Low-pass and band-pass circuits related by 
(20) have equal bandwidths.  Since the low-pass circuit under consideration 
has a bandwidth equal to w2 (i.e., c^ = 0 in Fig. 2), the fractional bandwidth 
of the band-pass circuit is fi  - w2/wx.  Substituting w2 = /k>x in (19) gives 

K3
 • ^rc K2

 
+ t-rb+ 4,K ■ prfV " 0 • (21) 

^x 3 w C flwCL ^    x ^    x 

The fractional bandwidth ft  used here differs in definition from the fractional 
bandwidth b used in Section III.  If the band edge frequencies are u>a and u^, 
then ft  — (u^-Wa)/^, while b - (t«>b-wa)/w0, where the mean frequencies 
u>x  - y(waWb) and w0 - (wa+wb)/2.  To facilitate comparison between results for 
the different equivalent circuits in the next section, it is necessary to 
change the variables p  and wx, in (21) to b and u)Q  using 0  = b/J(l  - b2/4) and 
wx — u>QJ(l   - b2/4) .  Writing Bc — w0C, and XL — WQL gives 

K3 - bf: K2 + *+ *)K - -o- -0 • <22> 
C      b BC        b BCXL 



In the degenerate case, when the first element of the optimum matching 
network is inductive, the Bode limit applies and is given by the low-pass to 
band-pass mapping of eq. (2) according to eq. (20). The result is identical 
to eq. (16a), viz., 

K - db • <22a> 
V.       Results and Discussion 

It is not usually known in advance whether a particular circuit of the 
form of Fig. 1(b) or (c), connected to its optimum matching network, will be 
degenerate or not.  If degenerate, the series inductance L does not exceed 
some limiting value, Lg, below which the match bandwidth is limited only by C. 
The Bode limit then is attainable, and eq. (16a) or (22a) is applicable.  If, 
on the other hand, the optimally matched circuit is non-degenerate, then 
L > Lg, and the match bandwidth is limited by C and  L; eq. (16) or (22) is 
then appropriate.  In the present work, however, this uncertainty does not 
present an obstacle; the equations for both cases are solved, the correct 
solution being the more restrictive one as is clear from the graphical results 
below. 

The parameters XL = w0L and Bc = w0C in eqs. (16), (16a), (22), and (22a) 
apply to the circuits of Fig. 1(b) with impedances scaled to R = 1.  For the 
unsealed circuit, they become: 

\ - -r     and     Bc - uoRC • <23> 

Equations (16), (16a), (22), and (22a) have been solved for a range of 
values of XL and Bc.  As the present work was done in the context of SIS mixer 
design, values of XL and Bc appropriate to SIS mixers are used in the examples 
below.  It should be noted that Bc is not the familiar w0RNCj product of the 
SIS junction(s) , but is WQIIRFCJ' where R^  is the small signal RF input 
impedance of the mixer.  Likewise, XL — WQL/RBJ..  (For a well designed SIS 
mixer, R^p  usually lies within a factor of ~3 of RN; i.e., RN/3 < RRJ. < 3RN 
[3, 4].) 

Corresponding to a range of different devices, we have chosen 
Bc - w0RC = 2, 4, 8, and values of XL - w0L/R in the range 0 to 10.  The values 
of the lowest upper bounds, |pamin| on the reflection coefficient, and 
1/(1-|pamin|

2) on the reflection loss, versus fractional bandwidth b, are 
shown in Figs. 5 and 6 for the circuits of Figs. 1(b) and 1(c), respectively. 
The Bode limit for L=0 (i.e., the circuit of Fig. 1(a)) is indicated by the 
dashed curves.  The dotted curves, shown for comparison, are for a parallel RC 
device tuned by a parallel inductor and connected to a source resistance R, 
but with no additional matching (i.e., the circuit of Fig. 1(c) with L - 0). 
The short horizontal lines indicate the values of |p| and l/[l-|p|2] at 
frequency w0 for a parallel RC device connected to a source resistance R with 
no matching elements (i.e., the circuit of Fig. 1(a)). 

8 
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Fig. 5.  For the capacitive device with series inductance (Fig. 1(b)), the lowest upper bounds, | pafmin| 
on the reflection coefficient, and 1/(1- jpa.minl2) on the reflection loss, vs fractional bandwidth 
b, with w0RC = 2, 4, and 8, and various values of w0L/R. The Bode limit for the case L = 0 is 
indicated by the dashed curves. The dotted curves are for a parallel RC device tuned by a 
parallel inductor but with no additional matching. The short horizontal lines indicate the values of 
| p | and 1/ [ 1 -1 p |2 ] at frequency a>0 for a parallel RC device connected to a source resistance 
R with no matching. 
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Fig. 6.  For the inductively tuned capacitive device with series inductance (Fig. 1 (c)), the lowest upper 
bounds, |Pa,mini on the reflection coefficient, and 1/(1- |pa#min|

2) on the reflection loss, vs 
fractional bandwidth b, with w0RC = 2, 4, and 8, and various values of w0L/R. The Bode limit for 
the case L = 0 Is indicated by the dashed curves.  The dotted curves are for a parallel RC 
device tuned by a parallel inductor but with no additional matching. The short horizontal lines 
indicate the values of | p | and 1/[ 1-1 p j2] at frequency w0 for a parallel RC device connected 
to a source resistance R with no matching. 
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The Bode limit, indicated in Figs. 5 and 6 by the dashed curves, applies 
when L is less than the quantity Lg, whose value depends on the other elements 
of the equivalent circuit and the desired bandwidth.  When L < Lg, the match 
bandwidth is not limited by L, but only by C and R.  In this case, the first 
element of the optimum matching network is a series inductance (L^-L), 
effectively augmenting L.  This is the degenerate case discussed above.  When 
L exceeds Lg (the non-degenerate case), it too limits the attainable match 
bandwidth of the circuits, as indicated in the figures. 

VI.     Application to Mixers 

Some caution is required in interpreting the results of Figs. 5 and 6 in 
the context of matching to double sideband mixers.  While the |p| curves in 
these figures indicate the range of variation of the source impedance seen by 
the intrinsic mixing device (R in Fig. 1), the loss (1/[1-Jp|2]) curves should 
not be regarded simply as part of the conversion loss of the mixer which can 
be eliminated by tuning.  This is because the signal frequency input impedance 
of a mixer depends in part on the image frequency embedding impedance.  If the 
signal and image circuits of the mixer are physically the same, tuning the 
circuit changes the image termination and therefore the signal frequency input 
impedance of the mixer.  In effect, the device resistance R at the signal 
frequency becomes a function of the matching circuit, and the minimum 
conversion loss does not, in general, occur for a matched input. 

The dependence of the performance of a typical 230 GHz double sideband 
SIS mixer receiver on embedding admittance is indicated in Fig. 7, which shows 
contour plots of the mixer and receiver parameters plotted on Smith charts of 
RF embedding admittance  (i.e.,   in the (-p)-plane) normalized to the optimum 
source conductance l/Rstopt (^s.opt ^s  defined in the Appendix).  The receiver 
includes an IF amplifier with TIF - 4 K, and an IF isolator at 4 K.  The IF 
load impedance ZIF is fixed and equal to Rs>0pt.  Note that the source 
(embedding) admittance is defined to include the capacitance of the 
junction(s), and is assumed equal at the upper and lower sideband frequencies. 
The mixer gain and receiver noise temperature are shown as single-sideband 
(SSB) quantities.  Further details of the mixer and the method of analysis are 
given in the Appendix. 

Fig. 7 clearly demonstrates three quantum characteristics of SIS mixers 
that are not possible in classical diode mixers:  (i) the (SSB) conversion 
loss is less than the 3 dB classical limit for a DSB mixer, (ii) the contours 
are asymmetrical about the real axis, an effect caused by the quantum 
susceptance of the SIS junction, and (iii) the output resistance can be 
negative, which is impossible in classical resistive mixers.  The significance 
of the negative output resistance is discussed further below. 

11 



Fig. 7. Contour plots of mixer gain, receiver noise temperature, input return loss, IF VSWR, and signal-to-image conversion gain, for a 230 GHz 
SIS receiver. The contours are plotted on Smith charts of RF source admittance (I.e., in the -p plane). The dotted circles are 
|p| - 0.2 and | p |  - 0.4. The receiver includes an IF amplifier with TIF - 4 K, and an IF isolator at 4 K. The mixer gain and 
receiver noise temperature are shown as SSB quantities.  (See text for further details.) 



The table below summarizes the range of variation of the receiver 
parameters in Fig. 7 when the embedding admittance falls within the circles 
|p| — 0.2 and 0.4 (shown dotted in the figure) over the frequency band of 
interest.  Analysis at other frequencies indicates that the 230 GHz results in 
the table above are typical of SIS receivers of similar design using Nb 
junctions at frequencies from 70 to at least 350 GHz.  It is clear from the 
table that even an SIS mixer whose embedding admittance is designed for |p| < 
0.4 should have acceptable performance across the intended frequency band for 
most practical applications. 

|P| < 0.2 |P| < 0.4 

Mixer conversion gain (SSB) -0.5 -*  -1.5 dB +0.5 - -4.0 dB 
Receiver noise temp (SSB) 12 - 15 K 12 - 20 K 
Input return loss > 8 dB > 5 dB 
Signal-to-image conv. loss 9 -+  11 dB 9 - 13 dB 

Negative Output Resistance in SIS Mixers 

On the contour plot of Rout/^iF in Fig- 7, the transition of the output 
impedance from a large positive value to a large negative value is quite 
sudden.  However, if the contours were re-plotted as output conductance,   the 
transition from positive, through zero, to negative would be quite smooth and 
continuous, and there is no reason to expect any sudden change in receiver 
performance as this occurs.  Indeed, when tuning a receiver, this transition 
can often be observed on the pumped I-V curve as the differential conductance 
at the bias point goes from positive, through zero, to negative.  However, 
under certain conditions, the presence of negative output resistance can have 
two possibly adverse effects:  (i) it can cause (small-signal) instability and 
oscillation in the RF, IF, or bias circuits, and (ii) in a series array of 
junctions, negative DC differential resistance can cause instability in the 
biasing of the junctions and the division of the LO voltage between them. 
These will be discussed further below.  A third possible concern is that noise 
from the IF amplifier or isolator, incident on the IF port of the mixer, will 
be reflected with gain back into the amplifier from the negative output 
resistance of the mixer.  This, however, is taken into account in the analysis 
used to generate Fig. 7. 

(i) A device with negative (differential) resistance is potentially 
unstable.  Depending on the device, it may be stable with a high impedance 
load or with a low impedance, as can be demonstrated by considering series and 
parallel LRC circuits with negative resistance.  (Analysis of the time-domain 
differential equations describing these circuits shows that the former is 
stabilized by a high resistance load, and the latter by a low resistance 
load.)  In general, to determine the stability of a negative resistance device 
connected to a load, the complex impedance of the device and load must be 
known at all frequencies.     It is possible, however, to make some general 
observations about the nature of the stability of mixers with negative 
resistance.  With no LO power applied, an SIS junction (or array) is stable, 
regardless of the embedding impedance Ze(w), and the reflection coefficient of 
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the junction (or array) with respect to the embedding impedance, 
|PJ(W)| - IZj-Z/l/IZj+Zj ^1  [1], where Z^w) is the (small signal) 
impedance of the junction.  As the LO power is Increased, it is possible that 
at some frequency (*>„, |pj| will become infinite; i.e., Zj(wxx) + Ze(wxx) -+ 0. 
Under this condition the circuit is on the point of oscillation, and an 
impulsive excitation of the junction will cause undamped ringing at frequency 

<J>XX.     Because of the mixing action of the junction, this incipient instability 
occurs simultaneously at w^ and at all the related sideband frequencies 
nwLQ + cd^, -« < n < «o, at each of which |pj| -* «>.  Clearly, as the LO power is 
increased from zero, instability is preceded by high reflection gain and 
conversion gain at a complete set of related sideband frequencies, but not 
necessarily within the normal  signal, image, and IF bands.  In practice, one 
can only ensure that, as the LO power is increased from zero to the operating 
level (usually a « 1), the gain does not become large within the normal IF 
band, for which the signal, image, and IF embedding impedances are known.  In 
the region of negative IF output resistance in Fig. 7, for example, the 
magnitude of |Rout/ziFl ^1-9 almost to the edge of the Smith chart, and no 
instability would be expected at frequencies where the IF load impedance ZIF 
remains near its nominal value.  Instability could occur far above the IF band 
if the bias-T, circulator, or amplifier exhibited a resonance which would 
allow Zj(a>xlc) + Ze(o)xx)  = 0 to be satisfied.  For the broadband SIS mixers 
reported to date, this has not, apparently, been a problem. 

(ii)  The second and least predictable effect of negative resistance has 
been observed in fixed-tuned SIS mixers using series arrays of SIS junctions 
[4].  It is suspected that negative DC differential resistance in a series 
array can cause an unstable situation in which the individual junctions become 
unequally biased and unequally driven by the LO.  Ultimately, a stable dynamic 
state is reached in which the junctions remain unequally biased and driven. 
As this instability appears to be avoided in mechanically tunable mixers using 
arrays of SIS junctions with integrated tuning circuits, similar to those used 
in [4], we surmise that it can be avoided by appropriate design of the 
embedding impedance as a function of frequency. 

VII.     Practical Constraints on the Series Inductance 

For integrated circuits, such as mixers, multipliers, switches, and 
modulators, in the -100-400 GHz range, several basic circuit configurations 
are possible.  These include waveguide mounts, microstrip with conductors on 
one or both sides of the substrate, suspended stripline, and coplanar 
waveguide circuits.  Of these, coplanar waveguide has two major advantages: 
(i) it allows the use of a relatively thick substrate (e.g., 0.0035" for a 
200-300 GHz mixer [4]), and (ii) with the center conductor and ground-plane on 
the same side of the substrate, transmission line dimensions can be kept small 
to minimize the parasitic inductance and capacitance associated with a series 
array of devices, which can ultimately limit the bandwidth of the circuit.  A 
broadband transducer from coplanar waveguide to rectangular waveguide can be 
made using an intermediate section of suspended stripline, as described in 
[5]. 

In practical applications, a series array of devices may be preferable 
to a single device for two reasons.  Firstly, for a given overall impedance 
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level, an array has greater power handling capacity and dynamic range than a 
single device.  This can be an important benefit in frequency multipliers and 
mixers.  Secondly, the devices in a series array are larger than a single 
device of the same impedance as the array.  This can substantially reduce the 
difficulty of fabrication and result in better quality devices.  The 
(theoretical) match bandwidth of an array of devices is only lower than that 
of the equivalent single device if the array is so long that the series 
inductance of the array exceeds the value 1^ mentioned above; otherwise, the 
Bode limit predicts equal maximum bandwidths for the single device and the 
array.  The SIS mixer examples below assume the simple coplanar array of 
junctions shown in Fig. 8, with physical dimensions chosen to give the lowest 
series inductance consistent with reproducible fabrication using standard 
photolithography. 

For the circuit of Fig. 8, the series inductance depends on the number 
Nj of junctions.  Fig. 9 shows the normalized series reactance wL/R of the 
circuit as a function of the number of junctions in the array, with frequency 
as parameter.  The resistance R - NJRJ is the small-signal RF resistance of 
the array.  A quartz substrate, with €r - 3.8, is assumed.  At higher 
frequencies, and for larger numbers of junctions, the electrical length of the 
coplanar line becomes significant, as indicated by the curvature of the upper 
curves in Fig. 9, and the circuit can no longer be characterized accurately as 
an array of RC devices in series with a frequency-independent inductance.  The 
values of wL/R in Fig. 9 can be used with Fig. 5 to determine the upper 
(Bode/Fano) limit of the RF match bandwidth of this circuit.  The horizontal 
dashed lines in Fig. 9 indicate the values of wL/R above which the inductance 
of the array limits the achievable bandwidth, for wRC = CORJCJ = 2, 4, and 8. 
For a given frequency of operation, the intersection of the appropriate solid 
curve with the dashed curve, corresponding to the given value of wRC, 
indicates the cross-over from the Bode limit (due only to R and C) to the Fano 
limit. These intersections also indicate  the maximum number of junctions  that 
can be used for a given  wRC without limiting the RF bandwidth.     If a smaller 
number of junctions is used, the first element of the optimum matching network 
is an additional inductance, and the Bode limit can, in principle, be 
attained. 

For the circuit of Fig. 8, with only one or two junctions, it is 
possible to use inductive tuners on the individual junctions [6] to tune out 
their capacitance, as indicated in Fig., 10.  In this case, the bandwidth 
limits of Fig. 6 apply.  It is clear that, for |p| < 0.2 or 0.4, the series 
inductance does not limit the achievable bandwidth, and the Bode limit applies 
in most practical cases.  Mixers described in [7-12] have successfully used 
one or two individually tuned junctions, though not in a coplanar transmission 
line circuit.  The use of individual inductive tuners with more than two 
junctions is not possible for this simple coplanar circuit configuration 
without orienting the additional tuners perpendicular to the center conductor. 
This would introduce unacceptable capacitance between the tuners and the 
ground plane.  To avoid this, the ground plane can be removed in the vicinity 
of the tuners.  Such an approach has been successfully used in SIS mixers for 
75-110 GHz [5] and 200-300 GHz [4], but the equivalent circuit is much more 
complicated [13], and this configuration will not be discussed further here. 
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Fig. 8.  Series array of SiS junctions in coplanar waveguide, and its equivalent circuit. The dimensions 
(shown in fxm) are chosen to give the lowest series inductance consistent with reproducible 
fabrication using standard photolithography. The physical length of such an array of Nj 
junctions is (8Nj+2) pm. 
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Fig. 9.  Normalized series reactance wL/R of arrays of SIS junctions in a coplanar waveguide with the 
dimensions shown in Fig. 8. A quartz substrate is assumed, with €r = 3.8. The RF resistance 
of the array, R, is assumed to be 50 Q. The curvature of the lines for larger arrays at higher 
frequencies is a result of the significant electrical length of the array. The horizontal dashed lines 
indicate the values of wL/R above which the inductance of the array limits the achievable match- 
bandwidth, for wRC = 2,4,  and 8. 
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Fig. 10. A two-junction SIS mixer in coplanar waveguide, with inductive tuners on each junction. 

The choice of the number of junctions in series, Nj, to use in an SIS 
mixer depends on two main factors: the desired dynamic range (or saturation 
power level), and the smallest size of junction that can be made with 
sufficient quality and reproducibility.  For a given embedding impedance and 
critical current density Jc, the required junction area is proportional to Nj, 
so several minimum size junctions in series may be required to reach the 
desired embedding impedance level.  The saturation power of an SIS mixer is 
proportional to wNj2 [14], which may therefore govern the minimum value of Nj. 
As the series inductance of the SIS array increases with Nj, it follows that 
the designer may in some cases be faced with a trade-off between bandwidth and 
dynamic range:  using more junctions in series to increase the saturation 
power will reduce the available RF bandwidth of the mixer if the series 
inductance of the array exceeds the value Lg. 

VIII.   An Example 

Although the question of how closely the Bode and Fano bandwidth limits 
can be approached using practical circuits is outside the scope of the present 
work, it is informative to examine a realistic example.  We choose a 250 GHz 
mixer with a coplanar array of SIS junctions, and a matching circuit of 
moderate complexity.  A four junction coplanar array, as shown in Fig. 8, is 
connected to a matching network containing a series capacitor and four 
transmission lines in series, similar, except for the capacitor, to the tuning 
circuit described in [7].  The complete circuit is shown in Fig. 11.  Note 
that the electrical length of the array of junctions is small, and the 
equivalent circuit of Fig. 1(b) is applicable.  The capacitor CA was initially 
adjusted to make the impedance of the SIS array real at the center frequency, 
lines 1, 2, and 3 were set to a quarter wavelength, and the fourth line set to 
half a wavelength.  The microwave circuit design program MMICAD [15] was then 
used to optimize the elements of the matching network to give |p| < 0.4 over 
the widest possible bandwidth.  The resulting embedding admittance is shown in 
Fig. 12 on an admittance Smith chart ((-p)-plane).  The optimized values of 
the elements in the matching network are:  CA - 75 fF, Z01 = 2.48 0, 
:02 - 2.34 0, Z03 - 16.5 fi, Z04 - 61.2 0, ^ - 0.265 Ag0, 12 = 0.246 Ag0, 
13 - 0.254 Ag0: and 1A - 0.516 Ag0 
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COPLANAR SIS  ARRAY MATCHING  NETWORK 
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Fig. 11. Circuit of the 250 GHz SIS mixer used in the example. The coplanar SIS array is the same 
as in Fig. 8, and has four junctions of RF small-signal resistance Rj = 12.5 ft, and wRC = 
WRJCJ - 4. The matching network contains a capacitor CA in series with four transmission 
fine matching sections. The source resistance Rg - 50 ft. 

Fig. 12. Embedding admittance of the SIS mixer in Fig. 11 after optimizing the matching network to give 
the widest possible bandwidth with | p |  < 0.4. Admittances are normalized to the RF 
conductance of the array 1/R - l/4Rj. The dotted circle is at | p |  -0.4. 

The magnitude of the reflection coefficient |p| < 0.4 from 206-296 GHz, 
giving a fractional bandwidth b - 0.36.  For comparison, the Fano bandwidth 
limit for the same mixer can be deduced from Fig. 5, using wRC = 4 and 
wL/R - 0.4 (from Fig. 9), and is bFano =» 0.55.  The Bode limit for SIS 
junctions with wRC — 4 is bBode — 0.85.  The bandwidth for an inductively 
shunted junction (i.e., with a parallel tuning inductor and no other matching 
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elements) and the same value of wRC, is biSj - 0.22.  These numbers are listed 
in decreasing order in the table below: 

Circuit b 

IX.      Conclusion 

The theoretical limit on the match bandwidth of the circuit of Fig. 1(b) 
was derived by Fano for the low-pass case, and thence for the band-pass case 
via the standard low-pass to band-pass mapping in which the inductors and 
capacitors are transformed into series and parallel LC resonators.  When the 
terminals of the intrinsic device are not accessible, it is not possible to 
connect an inductor in parallel with C, and the low-pass to band-pass mapping 
cannot be used.  Here, Fano's analysis has been extended to determine the 
theoretical limit on the match bandwidth of the circuit of Fig. 1(b) without 
using the frequency mapping.  For the circuit of Fig. 1(c), the theory of Fano 
has been used, with the low-pass to band-pass frequency mapping, to determine 
the match bandwidth.  For the circuit of Fig. 1(a), the theory of Bode was 
used. 

For the equivalent circuits of Figs. 1(b) and (c), it is found that the 
series inductance L limits the match bandwidth only when it exceeds a value 
Lg, dependent on the other circuit elements.  For values of L less than 1^, 
Bode's bandwidth limit is theoretically attainable, and there is no 
fundamental reason to make L smaller than Lg when designing a broadband 
circuit.  We conclude that using a series array of Nj devices imposes no 
restriction on the theoretically attainable bandwidth of the circuit as long 
as Nj does not exceed the number for which the series inductance of the array 
is equal to Lg. 

In circuits using series arrays of devices, the power handling capacity 
or saturation level depends on Nj2.  It is possible that in designing a 
broadband circuit, there will a conflict between power handling (requiring 
more devices) and bandwidth (requiring fewer devices) if the series inductance 
of the array exceeds Lg. 

The relevance of the (RF) input match to the overall performance of 
double sideband mixer receivers is discussed using the example of a 250 GHz 
SIS mixer with typical niobium junctions.  It is found that acceptable 
performance results if the input reflection coefficient |p| < 0.4. When the 
mixer is realized in a coplanar waveguide circuit, it is shown that a useful 
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bandwidth of 36% (comparable to a standard waveguide bandwidth) is achievable 
without the use of inductive tuning circuits on the individual junctions. 
A mixer with a simple inductively tuned junction (parallel RCL), but with no 
other matching elements, would have a bandwidth of 22%.  These figures are to 
be compared to the maximum theoretical bandwidth of 55%. 
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APPENDIX:  Details of the "Typical" SIS Mixer Used in the Simulations 

in [16] 
The mixer is assumed to be designed according to the procedure described 

16], modified as in [4], in which the optimum signal and image source and 
where R, N IF load impedances are all equal to Rs.opt - (RN/2.4) (100/f (GHz) )0-72 

is the normal resistance of the junction (or array of junctions).  The mixer 
is analyzed using the quasi five-frequency approximation [17] to Tucker's 
theory, and the I-V curve, shown in Fig. A-l, for four Nb/Al-A^Og/Nb 
junctions in series. The pumping parameter a - BVLQ/^WLQ - 
bias voltage is at the mid-point of the first photon step 
230 GHz. 
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Fig. A-1. I-V curve used in the analysis (from [16]). 
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