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ABSTRACT 

We outline some aspects of the observational theory and practice of calibrating and 

observing spectral polarimetry using cross-correlation, with emphasis on measuring the 

Stokes V required for Zeeman splitting. We consider two cases: (1) crosscorrelating a 

dual-linear feed, and (2) using a dual-circular feed with a hybrid and crosscorrelating 

the resulting linears. We derive the Mueller matrices for these cases; they are 

completely derivable from astronomical measurements, and we discuss the techniques 

required. We provide two catalogs of polarization results for sources that can be used 

as single-dish calibrators, one for 1420 MHz and one for the 4 —► 15 GHz region. 

With crosscorrelation, both the amplitude and phase of the system must be 

accurately calibrated with noise injection. As we discuss in sections 3.2 and 4.9, we 

require a correlated cal that can be injected in three different ways: into both channels 

simultaneously, and into each of the two channels independently. For the dual-lineax 

case it is convenient for the relative phase to be approximately the same as that of a 

linearly polarized astronomical source. For the dual-circular/hybrid case the cal phase 

should be adjusted to zero output in one of the post-hybrid linear channels. 

The injected noise is similar in character to what we are trying to measure; this 

means that it should not be turned on during an observation. Rather, it should be 

turned on briefly before and after each observation. It should be strong enough so that 

a brief integration produces accurate results. 

Polarization measurement by cross correlation requires phase stability. All local 

oscillators must be phase stable with the same requirements as used in interferometry. 

Traditionally this is not a consideration for spectrometers. We found that an oscillator 

in the spectral processor was not phase stable. 

It is almost impossible to know the polarization response of a cross-correlation 

polarimeter without a known source. For linear polarization we can use astronomical 

calibration sources. However, for circular polarization we need a local radiator, such as 

a helix; because it is used only to establish the sense of polarization, it need not have 

exquisitely high polarization purity. 
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1. INTRODUCTION 

We write this memo in terms of our interest in Zeeman splitting, whicli needs the Stokes 

V (circularly polarized) component. The traditional method for measuring Zeeman splitting 

with single-dish radio astronomy is switching between the two circular polarizations. This 

method developed historically because it is conceptually simple and can be used with almost any 

spectrometer. However it is not the optimum technique. For best performance the switch must be 

placed in front of the first amplifier, where it adds noise. Also the accuracy of the polarization 

adjustment is usually not very high. 

In radio interferometry, it is well known that the most accurate way to measure circular 

polarization is to cross correlate two orthogonal linears. This technique can also be used with 

single-dish spectroscopy if the spectrometer has the capability. While this technique eliminates 

the noisy switch, it has a basic calibration requirement: at the input to the spectrometer, one 

must know the relative phase of the two linear polarizations. This is equivalent to calibrating the 

difference in cable length for the two polarizations. 

At the GBT, feeds below 8 GHz are intrinsically linearly polarized and the straightforward 

crosscorrelation described above applies. However, above 8 GHz the feeds are intrinsically 

circularly polarized and there is no polarization switch before amplification. To generate the 

Stokes V there are two options: (1) polarization switch after amplification, or (2) generate linear 

polarizations with a hybrid and correlate these two linears. 

Method (1) has the basic technical requirement that the gains of the amplifiers before 

the switch be identical. Otherwise, a replica of the Stokes I appears in the switched Stokes V 

spectrum. Method (2) has the same requirement plus one more: the phase difference between the 

amplifiers should be zero. Stennis (1999) has investigated the stability of these amplifiers in the 

laboratory and found that both the relative gain and phase are stable. Thus either method should 

work. 

Based on our recent observing experiences, we prefer method (2). Firstly and most 

importantly, it allows one to derive Stokes V by cross correlation instead of differencing the 

two circular polarizations, which are large numbers. This means that the bandpass correction 

operates only on the Stokes V itself, which in turn means it need not be known accurately—in 

spectropolarimetry, Stokes V is weak and the errors are always dominated by noise and other 

instrumental effects. We note that the bandpass shape comes mainly from the i.f. portions 

of the system, which come after the hybrid; this means that, indeed, they do not enter the 

cross-correlation spectra except as a gain error. Secondly, method (2) provides all Stokes 

parameters and one has after-the-fact control over the polarization calibration by frequently using 

a correlated noise source. Thirdly, spectral lines can be linearly polarized, for example if they 

are in absorption against a linearly polarized radio source; if one doesn't measure this linear 

polarization and some linear leaks into the circular, then one observes pseudo-circular and has no 

idea that it might result from such leakage. Method (1) provides none of these advantages. 



This memo discusses some basic aspects of the theory and practice of these calibrations. It is 

based on our experience using the spectral processor in three observing sessions with the 140 foot 

telescope and on one extensive session at Arecibo in February 1999. Two of the 140-foot sessions 

were at 1.4 GHz (Apr 1998 and Jan 1999), crosscorrelating two linears, and one at 9.5 GHz using 

a dual-circular feed and hybrid (May 1999). We learned about small instrumental effects that can 

affect the astronomical measurements unless they are properly calibrated and equipment details 

that need to be accounted for in the calibration. We also measured the polarization properties of 

linearly polarized sources so that they can be used as calibration sources. 

We begin in section 2 with a description of the 4x4 Mueller matrices and their associated 

Jones matrices, which relate the output to the input Stokes parameters for the various elements of 

the system. Section 3 gives the Mueller matrix for a linearly polarized feed and section 4 derives it 

for a circularly polarized feed with hybrid. Section 5 discusses the practical details of calibrating 

the relative phase. Section 6 discusses the relevant hardware aspects of the spectral processor. 

Section 7 discusses our experiences and results relevant to the hardware, with emphasis on the 

problems. Section 8 presents our catalogs of calibration sources for 1.4, 4, 8, and 14 GHz, together 

with the observational and data reduction techniques. 

2. OUR SCHEME OF MUELLER MATRICES 

The key to making accurate polarization measurements is calibration of the four Stokes 

parameters. Generally, any device has a Stokes-parameter transfer function that relates the output 

parameters 5otlt to the inputs Sin. This is called the Mueller matrix M: 

Sout — M • Sj! (1) 

Here S is the usual 4-element Stokes parameter vector 

S = 

I 

Q 
u 

V 

(2) 

The Mueller matrix is a 4 X 4 matrix in which all elements may be nonzero. In the usual way, we 

write 



-4- 

M = 

mu miQ miu miv 
mqi rriQQ rriQU mqv 

mui muq mjju muv 

mvi mvQ mvu mvv 

(3) 

The matrix elements are just the partial derivatives, for example 

miQ 
61 

SQ u,v 
(4) 

The observing system consists of several distinct elements. Each has its own Mueller matrix. 

Here we consider four, which we consider in sequence as seen by the incoming radiation. We 

have the feed matrix Mp, the first-amplifier matrix Mai, possibly a hybrid matrix Mh* and the 

second-amplifier matrix Ma2' Sometimes additional matrices are required to convert measured 

quantities to the standard definitions. The system Mueller matrix is the product of them all in 

the proper sequence; for our four including the hybrid, Mtot = Ma2 * Mh * Mai • Mp. 

We derive these matrices by considering how the devices affect the amplitude and phase of 

the voltages in the two polarization channels. We represent the two complex voltages by a vector, 

and each system component has a voltage transfer function which is a 2 x 2 matrix. These are 

referred to as Jones vectors and matrices (Tinbergen 1996). Each Jones matrix has its Mueller 

matrix counterpart. It is straightforward to relate the two types of matrix, once we first define 

how we measure and calculate the Stokes parameters from the voltages in the two polarization 

channels. Below we consider the dual-linear and dual-circular cases separately. 

While discussing definitions we emphasize Stokes V. We follow the IEEE definition, namely 

V = LCP - RCP (5) 

where LCP means left-hand-circular polarization. LCP is generated by transmitting with a 

left-handed helix, so from the transmitter the E vector appears to rotate anticlockwise. From the 

receiver, LCP appears to be rotating clockwise. 

Astronomical sources don't exhibit much circular polarization so we must define the sense of 

V by radiating a calibration signal with a helical radiator, being sure to account for a reversal in 

sense upon each reflection. One sets mvv = ±1 depending on the results. 
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3. THE GET BELOW 8 GHZ: THE MUELLER MATRIX FOR AN 

INTRINSICALLY LINEAR FEED + AMPLIFIER 

3.1. The Mueller matrix 

For a good feed the Mueller matrix has important symmetries. "Good" means that we get 

acceptable accuracy with the first-order expansion of the Jones matrix (e.g. equation 8 below). 

Heiles (1999) has treated this case in some detail, so here we just provide the results and a quick 

summary. 

We take the Jones matrix identical to that for a dual-circular feed in equation 8 below, with 

the exception that the subscripts (R, £), which designate the orthogonal circular polarizations, axe 

instead (X, Y"), which designate orthogonal linears. We calculate Stokes parameters as follows: 

I — Ex Ex + EyEy (6a) 

Q = ExEx — EyEy (6b) 

U = ExEy + EyEx (6c) 

iV = ExEy — EyEx (6^) 

where i = y/—T and the bar over a symbol indicates the complex conjugate. 

With astronomical measurements we cannot separate the feed from the amplifiers. Rather, 

we can only determine their product. Retaining the first-order terms only, it is 

Ma+F = MA • Mp = 

1 Ag Eecos Ecsin 

Ag 1 Aecos Aesin 

Eecos —Aecos 1 — Atp 

Ecsin — Aesin A^ 1 

(7) 

Here Ag and Aij) are the relative gain and phase difference between the amplifier chains in the 

two polarization channels; the other parameters describe the feed and are defined below after 

equation 10. Owing to gain uncertainties we cannot accurately determine the elements on the top 

row observationally. However, we can obtain the remaining elements from observation by using 

the rotation of parallactic angle as a linearly-polarized source moves across the sky and performing 

least square fits. 
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3.2. Calibrating Ma+f with noise irgection 

If the noise is injected between the feed and amplifier, then the only nonzero elements in 

Ma+f are the amplifier terms Ag and Aip. If we inject noise Teal into only one channel then it 
is equivalent to 100% linear polarization in Stokes Q so (/, Q) = (+1, +l)Tca/ for injection into X 

and (/, Q) = (+1, —1)2^/ into Y. Application of Ma+f shows that subtraction of the two cases 

for both and also Qout provides a direct measurement of Ag. Alternatively, injecting equal 

uncorrelated noise into both channels simultaneously gives (/, Q) = (+1,0)7^/ and the deflection 

of Qout again provides a direct measurement of Ag, while the deflections {U^t, V^t) provide Atj). 

To summarize, we can calibrate the amplifier terms of Ma+f with a correlated noise source 

whose output can be disconnected from each channel separately so that we can make the following 

three measurements: cal into both channels, cal into L only, cal into R only. We regard this as 

preferable to using uncorrelated noise, because it is difficult to produce equal uncorrelated noise 

in the two channels. 

4. THE GET ABOVE 8 GHZ: THE MUELLER MATRICES FOR AN 

INTRINSICALLY CIRCULAR FEED, AND A HYBRID 

4.1. A good circular feed 

Here we follow Stinebring (1982), who followed the procedure of Conway and Kronberg (1969) 

in writing the Jones matrix: 

EL,out 

ER,out 

Here the e's represent undesirable cross coupling between the two polarizations. This equation 

assumes that the device under consideration is "good", meaning that we need only retain 

first-order terms in the voltage gain (but we allow the phase to be arbitrary). 

For a dual-circular feed, the incoming sky radiation encounters a feed whose nominal outputs 

axe voltages El and Er. If we insert a hybrid, then the hybrid's output is equivalent to a 

dual linear feed and converts the voltages to their linearly polarized counterparts Ex and Ey. 

This interchanges the definitions of Stokes (U, V) in terms of the voltages (as in equation 6, 

for example). To avoid confusion, we temporarily forsake using (7, Q, U, V) and instead use 

(Sq, Si, 52, Sa), which we define 21s follows: 

1 €ie 
-*<h 1 

El,u 
(8) 

50 = EaEA + EgEs 

51 = E^Eb + EBEA 

(9a) 

(9b) 
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iS2 = EaEb — EBEa (9c) 

Sz = EaEa — EbEb • (9<i) 

As before, Sout = M • Sin. If the system components were perfect, then with the circularly 

polarized feed before the hybrid (J,Q, U, V) = (5o,5i,52,53) and after the hybrid the order is 

different, (J, Q, V, U) = (5o, Si, 5a, S3). 

With these equations, it is only a matter of a little algebra to calculate the feed's Mueller 

matrix (this could also be found by a suitable reduction and rearrangement of Stinebring's 

equation (A.5)): 

Mf 

1 Eecos Eesin 0 

Eccos 1 0 — Aecos 

Eesin 0 1 — Aesin 

0 Aecos Aesin 1 

(10) 

where Ee cos = ei cos <f>i + €2 cos fa] Ee sin = ei sin <f>i + €2 sin fa] Ae cos = €1 cos fa — €2 cos fa\ 

Aesin = ei sin fa — €2 sin fa. The good feed is described by only four independent parameters. 

One curious comment: the central 4-element submatrix is a rotation matrix that represents 

an error in position angle of linear polarization. To first order, the nondiagonal elements are 

zero, which means that the absolute position angle has no uncertainty. This is in contrast to 

the dual-linear feed, where voltage coupling between the probes makes the nondiagonal elements 

nonzero. However, any such advantage for measuring linear polarization is illusory, for two 

reasons: First, with respect to what direction is the position angle measured? Second, amplifiers 

are necessary, and they introduce phase uncertainty as discussed below. 

4.2. The first set of amplifiers 

The two polarization channels may or may not go through a hybrid, which converts dual 

circular to dual linear. However, before the hybrid each goes through the first amplifier chain with 

gains Gli,ri = (1 + 9li,ri) and phase delays —ipLi,Rii here the subscripts L and R denote the 

circular polarizations and the "1" denotes the first set of amplifiers. To characterize these we rely 

on careful calibration to make g and ^ small. Retaining only the first-order terms, the associated 

Jones matrix is 

EL,out i + gLi + tyLi 0 El,in 

ERtout 0 1 + 9Ri + ii>Ri Er^ti (") 
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1 0 0 A01 

0 1 -AV>i 0 

0 Aipi 1 0 

Api 0 0 1 

where Agi = qli — gm and A^i = V'li — tpRi', also, we have eliminated a factor (1 + Sli + 9Ri) 

from the diagonal terms because it can be taken care of by intensity calibration and when applied 

to the off-diagonal terms it is second order. 

4.3. The first-amplifier-feed combination 

We may or may not use the hybrid. In either case, the incoming signal will first go through 

the combination of the feed and the first amplifiers. We cannot separate the feed from the first 

amplifiers, so we calculate the combination. In keeping with our previous approximation of 

retaining only first-order terms, we obtain 

Mai+F = MAI • MF = 

1 He cos Eesin A^i 

Secos 1 -AV>i —Ac cos 

Eesin A^i 1 — Aesin 

Api Aecos Aesin 1 

(13) 

This matrix has only six independent parameters. It is convenient and helpful that, in this 

approximation, the matrix elements are caused either by the feed or the amplifiers, but not both. 

4.4. The hybrid 

The hybrid adds the two incoming voltages, each with a ^ phase shift. We assume, also, 

that the hybrid is imperfect and has small residual losses A and phase shifts x in each output. 

Including these imperfections to first order only makes its Jones matrix 

y/2EB,out 
1 -*'(l + *i) + Xi 

i(l + A2) - X2 1 
Ea,v 

Eb,* 
(14) 

and the associated Mueller matrix is 



^^hybrld — 

1 Ax -AA -AA 

Ax 1 Sx -EX 
-AA Sx -SA 1 

AA EX -1 -EA 

(15) 

where EA = Al ^, A A = Al~A2, Sx = Xl2X? > = Xl 2X2 • Again, we have eliminated a factor 

(1 + Al ) from the unitary elements because it can be taken care of by intensity calibration and 

when applied to the other elements it is second order. 

The last two unitary elements do not lie on the diagonal because the hybrid's function is to 

exchange dual-circular for dual-linear polarization. Note that —1 instead of +1 appears in the last 

row; we will deal with this later. 

4.5. The second set of amplifiers 

After the hybrid the two polarization channels again go through amplifier chains, and these 

have transfer matrices that are identical to those of the first set of amplifiers. Thus the associated 

Mueller matrix for the second set is 

Ma2 = 

1 0 0 A02 
0 1 -Afa 0 

0 AV>2 1 0 

A<72 0 0 1 

(16) 

4.6. The Mueller matrix for the whole system with hybrid 

The Mueller matrix for the combination of feed, first amplifier, hybrid, and second amplifier 

is the product of the individual matrices: 

Mtot = Ma2 • Mhybrid * Mai+F • (17) 

Even though the hybrid matrix is complicated, retaining first-order terms only makes things fairly 

simple: 
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Mtot — 

1 FH —G2 Gj 

FH 1 _$2 

Gx *2 HF 1 

G2 *1 -1 HF 

(18) 

where 

Gi = A^i — A A (gain diff of amp 1) (19a) 

G2 = Ag2 + AA - Eesin (gain diff of amp 2) (19b) 

+ Sx (phase diff of amp 1) (19c) 

#2 = AV>2 + + Ac cos (phase diff of amp 2) (19d) 

FH = Secos+Ax (feed gain + hybrid phase) (19e) 

HF = —EA + Aesin (hybrid gain + feed phase) (19f) 

We have endeavored to make the notation meaningful, using G and $ for terms containing 

amplifier gain and phase differences, F and H for feed and hybrid coupling and phase. We have 

made the amplifier terms prominent with boldface and large Greek letters; they will probably 

dominate because they are active components and can change with time. 

We emphasize that this matrix applies to the Stokes parameter set S in equation 9 and 

because of the hybrid they are not in their usual order. To be explicit, for equation 18 the ordering 

is 

lout " lin 

Sout — 
Q out 

Vout 

Uout 

— Mtot 
Qin 

Uin 
Vin 

(20) 

Note that Mtot is characterized by six independent elements, the same number that 

characterizes a feed/amplifier combination without a hybrid. Even though this is a more 

complicated system, this fact is not so remarkable because the total system is characterized by its 

own Jones matrix and, after all, the total system is equivalent to a linear feed plus amplifier. 
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4.7. Summary: a conventional writing of the total system Mueller matrix 

As astronomers, we prefer to ignore the details of which component is responsible for which 

matrix element in equation 18 and, moreover, to write it in the more conventional form in which 

the Stokes parameters are in the usual order (equation 2). This requires interchanging S2 and S3 

above, so we designate the resulting total system matrix as Mtot with the subscript in capital 

letters. Specifically, then, we define 

lout " Tin 

Qout 

Uout 
= Mtot 

Qin 
Uin 

. v^t Vin 

where the primes indicate the measured values and the unprimed parameters the astronomical 

ones. This is also where we fix the —1 in equation 18: 

Mtot = 

1 0 0 0 

0 1 0 0 

0 0 0 -1 

0 0 1 0 

Mtot (22) 

Carrying out the multiplication, we obtain 

Mtot = 

1 FH -G2 Gi 
FH 1 -*2 

—G2 _$i 1 -HF 

Gi *2 HF 1 

(23) 

This matrix Mtot has exactly the same form as the Mueller matrix in equation 7, which 

is for a dual-linear feed plus amplifiers. This identity of form is not surprising because we can 

consider the combination of the dual-circular feed, first amplifiers, and hybrid as a dual-linear 

feed; we add the second amplifiers and the system is conceptually identical. This similarity is 

fortunate, because just as without the hybrid, all of the elements of the total system matrix can 

be determined observationally and there is no advantage in trying to determine the elements of 

each system component separately. There is one difference between this case and the dual-linear 

feed. Here, Stokes Q is derived from the voltage products and U from the power differences; the 

opposite is true for the dual-linear feed. 
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4.8. Interpretive discussion of Mtot* practical effects of nonzero matrix elements 

In real life the largest terms in Mtot will normally be the ones associated with the amplifiers, 

G and 1$r. 

Zeeman splitting produces weak circular polarization, a weak Stokes V. Matrix elements in 

the last row are relevant here, and the first two are large because they are associated with the 

amplifiers. Of these, the term Gi is most serious because it represents coupling between Stokes 

I and V, and of course I > V. The term $2 represents coupling between linear polarization and 

V; even if $2 is large, it won't affect V much because spectral lines exhibit little if any linear 

polarization. 

During our May99 run, we found Gi ~ 0.08. This is large, and would be fatal except for 

the fact that Zeeman splitting produces a Stokes V that looks like the frequency derivative of 

the line seen in Stokes I—the famous "S-curve". It is easy, reliable, and accurate to separate 

the derivative from the line itself in a least squares fit, because the two are nearly orthogonal. 

The major deleterious effect of nonzero Gi is an increase in noise, which arises because the noisy 

bandpass shape appears in the replica of Stokes I that appears in V; the bandpass shape gets 

removed with the least squares fit, but the noise remains. 

If one wanted to measure linear polarization of a spectral line, then there are several important 

terms arising from the amplifiers. These terms are greatly simplified by eliminating the hybrid. 

4.9. Calibrating Mtot with noise injection 

If the noise is injected between the feed and amplifier, then only nonzero elements in Mtot 

are the amplifier terms (61,62) and ($1, ^2)- We can calibrate these terms by suitable injection 

of correlated and uncorrelated noise. We consider several cases: 

(1) If we inject equal amounts of uncorrelated noise into both channels, then all Stokes 

parameters except I are zero. Application of Mtot shows that the deflections of (Uout, Vout) 

provide direct measurements of (G2, Gi). 

(2) If we inject noise 2^/ into only one channel then it is equivalent to 100% circular 

polarization in Stokes V so (/, V) = (+l,+l)Tca/ for injection into channel L and 

{I,Q) = (+1,—1)7^/ for channel R. Application of Mtot shows that for either case 

Uout provides G2 and Qout provides ^2 (doing both cases is not necessary). Also, the deflections 
of (lout 1 Vout) are identical and subtraction of the two cases provides Gi. In summary, doing both 

cases provides measurements of (Gi, G2, ^2) but not $1. 

(3) If we inject equal amounts of correlated noise into both channels, then this is equivalent 

to linear polarization with a position angle that depends on the relative phase. In our May99 run, 

this cal phase was adjusted to give Q = 0 and (/, U) = (+1, +l)Teo/. Application of Mtot shows 
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that the deflection Qout provides and provides Gj. Note that this scheme with Qout is the 

only way to obtain $1. However, in the final analysis $1 determines position angle on the sky and 

its absolute value must be determined astronomically. 

In summary, we can use cases (1) and (2) to calibrate the amplifier terms of Mtot> 1-e- use 

a correlated noise source whose output can be disconnected from each channel separately so that 

we can make the following three measurements: cal into both channels, cal into L only, cal into R 

only. We regard this as preferable to case (1) because it is difficult to produce equal uncorrelated 

noise in the two channels. 

4.10. Calibrating the noise source and the complete Mueller matrix using 

astronomical sources 

The above section describes the calibration procedure injecting noise just after the feed. 

However, the noise source is not a primary calibration standard. Furthermore, it cannot calibrate 

the properties of the feed. These aspects require calibration using astronomical observations. 

These are fully discussed by Heiles (1999); below we give a brief summary. 

5. PRACTICAL CONSIDERATIONS 

5.1. Observational determination of the Mueller Matrices 

The elements on the top row of the Mueller matrix are not easily measurable because they 

reflect the imperfections in the system that convert polarized intensity, which is small, to total 

intensity, which is large. Moreover, as we track a source the zenith angle changes. The effective 

telescope gain depends on zenith angle, at least because of atmospheric attenuation and possibly 

because of variations in telescope gain because of time, temperature, or gravitational distortion; 

even if they are small, these effects are likely to be at least comparable to the imperfections of 

cross-polarization coupling. The resulting covariance between parallactic angle and telescope gain 

makes the top-row elements underivable directly from observations. 

This gain uncertainty has one additional ramification. It affects not only Stokes J but the 

other Stokes parameters as well—they all scale directly with the telescope gain. These gain 

variations would affect the least square fits. This effect is probably not important in practice, but 

we can easily avoid this problem by using the Stokes parameters expressed in units of 7, i.e. using 

fractional polarization. 

To measure the elements of the Mueller matrices one follows the prescription of Heiles (1999) 

in detail; here we provide the briefest of summaries. One selects a sample of linearly polarized 

calibration sources and does ON-OFF measurements from horizon to horizon, which maximizes 
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the position angle coverage by paraUactic angle. One assumes the sources have zero circular 

polarization. By performing least square fits, one determines the measured polarization of each 

source. 

For the intrinsically linear feed, the system's linear polarization directions are determined by 

the mechanical mounting of the feed and a cross-coupling term. These should be small, so unless 

one is interested in highly accurate absolute position angles one can neglect these corrections 

and avoid relying on previously-determined source position angles; with this, the calibration is 

completely internal. However, for the intrinsically circular feed the system's directions depend 

on the relative phase difference between the two circulars. Therefore, proper calibration requires 

knowledge of the calibration source position angles of linear polarization. Apart from this 

difference, the details of the fitting axe similar to those for the intrinsically linear case, and we 

won't take the space to describe them here but instead refer to Heiles (1999). 

One must take care to include all Mueller matrices that describe the various components of 

the complete system. For example, at Arecibo the definition of Stokes parameters in the on-line 

datataking software differed from the conventional one and we had to define an additional matrix 

in which one of the elements is —1. It is important to obtain final Stokes parameters that axe 

defined conventionally, and it is best to incorporate all corrections into the final matrix so that no 

additional ad-hoc corrections are required. 

5.2. Deriving the relative phase using astronomical sources 

In this section we describe how to derive the relative phase of a correlated signal. We assume 

linear polarizations, but the discussion applies equally for circulars. 

We denote the signals from the two orthogonally linearly polarized feeds by X and Y. The 

spectral processor provides the Fourier transform-derived cross product power spectrum. This 

consists of the real and imaginary portions of the cross power spectrum, which are precisely 90 

degrees out of phase; we denote these by Re(XY) and Im(XY). We need Re(XY) to correspond 

to Stokes U and Im(XY) to Stokes V. In this case, linear polarization would produce output only 

in Re(XY) and circular in Im(XY). This is exactly the condition we need to attain by calibration. 

To perform this calibration, we use a source of correlated noise in the two channels—a correlated 

noise source, or CCAL. 

If we observed an unpolarized continuum radio source, then XY = 0. Some continuum 

sources have significant linear polarization; in this case, XY is nonzero. If we observe a selection 

of linearly polarized sources and plot the results in the [Re(XY), Im(XY)] plane, we obtain 

something like Figure 1, which are actual observations for three sources each observed at 12 

position angles over a range of 360°, during our Jan99 run. These data exhibit a well-defined slope 

and go through zero (almost). Note in particular that the slope is independent of the position 

angle of the source polarization and also of the feed. The slope depends only on the relative phase 
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between X and Y as they enter the spectral processor, and because the correlated signal from the 

linearly-polarized source hits the two feeds at the same time no matter what the position angles 

are, the phase difference between X and Y is constant. 

PHASE-UNCALIBRATED Im(XY) vs Re(XY) FOR 3 SOURCES ond CCAL 
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Fig. 1.— Im(XY) versus Re(XY) for three linearly polarized sources (3C227, 3C270, 3C273) and 

also for the CCAL. Each source was observed at 12 different feed position angles that covered a 

range of 360°. Squares and dotted lines are for IFl, pluses and dashed lines are for IFO. The phase 

differences A<f> for IFO and IFl are —10.0° and —9.5°, which are equal to within the uncertainties, 

and the angles <f>sRC are 0.3° and 40.8°; the small value of <f>sRC for IFO is pure happenstance. 

In Mueller matrix terms, the slope is tan-1 mvu a-nd the zero offset caused by mvi, tuvq, rnui- 

The slope does not depend on the details of source polarization or feed position angle, as long as 

the polarization is linear. Rather, the slope depends on the relative phase delay between the feeds 

and the spectral processor, which depends on the difference in cable length. It is this relative phase 

delay that we need to calibrate. The data in Figure 1 are sufficient to calibrate this relative delay. 

These astronomical data are primary calibration data because they are absolute measurements of 

astronomical sources and sufficient, in themselves, for this calibration. 
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Although these sources provide primary calibration data, using them for system calibration 

on a routine basis is inconvenient. From the practical standpoint, we always prefer to calibrate 

with a noise source that can be turned on and off because it is quick and convenient. To calibrate 

the phase difference, it is dear that we need a source of correlated noise at the feed. This is a 

secondary calibrator because it must be calibrated by comparison with astronomical sources. 

5.3. Deriving the relative phase using the correlated cal 

If we inject correlated noise into the two channels with the CCAL, then there is perfect 

correlation and XY is large. If the relative phase of this correlated noise, as injected into the 

system, were the same as the relative phase of correlated noise from linearly polarized astronomical 

sources, then it would produce points that lie on the slope defined by those sources. However, such 

a zero-difference condition is difficult to achieve. Thus the CCAL points define a different slope. 

In Figure 1, we show independent results for identical observations with the two IF channels 

IF1 and IFO. For each IF, the CCAL points form an angle <f>ccAL and the source points 4>src< 

The difference between these two angles A<f> = <I>src — <t>ccAL is the same for the two IF's because 

it depends only on the details of how the CCAL is injected, for example the exact cable lengths 

connecting the CCAL to the two system inputs. If these details are unchanged, then should 

remain constant (and indeed we found it to be constant, both at Green Bank and Arecibo). 

Suppose we determine this angle accurately by an extensive series of observations of linearly 

polarized sources. Then we can calibrate the system with the CCAL, because when we determine 

4>ccal ^ is the same as determining (fisRC- 

5.4. A practical point: least square fitting the points in Figure 1 

It is conceptually easy to fit the source points in Figure 1 with a straight line and determine 

their slope, and then do the same for the CCAL points; this provides the necessary quantity 

A<f>. However, the details of the least square fitting process do not favor this particular method. 

One reason is that the least-square fitting process regards the points on the horizontal axis as 

the independent variable, measured with high accuracy, and those on the vertical axis as the 

dependent variable, measured with low accuracy; it does not treat the two sets of data impartially. 

Moreover, suppose for example that <f>sRC ~ 90°; then the least square process, which assumes 

that the points on the horizontal axis are the well-known independent variable, breaks down 

completely. 

A simple alternative that works well is to transform the variables and plot the difference 

D = [Re(XY) — Im(XY)] versus the sum 5 = [Re(XY) -f Im(XY)]. In this space, the angle of 

the points from the horizontal axis never exceeds 45° and, moreover, neither Re(XY) nor Im(XY) 

is favored. If the slope of the least-square fitted line of D versus S is B, then it is clear that the 
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corresponding angle in Figure 1 is given by 

2 27 

5.5. Phase variation across the observing band 

The system phase varies across the observing band. Figure 2 shows the CCAL deflection over 

a 10 MHz bandwidth for two scans near the beginning and end of the Jam99 observing run. The 

phase variation in the two scans is nearly identical apart from a constant offset. The phase changes 

slowly with channel number by a total of about 40°. This change is mainly linear with frequency. 

Such a linear phase change is produced by different cable lengths in the two polarization channels. 

For spectral line observations it is crucial to account for this in the bandpass calibration. For 

continuum observations at wide bandwidth, the cable lengths must be made sufficiently identical 

to avoid cancellation of the correlated signals within the band. 

PHASE OF THE CCAL DEFLECTION, UCAL OFF 

100 

-100 

0 128 256 384 512 
SPECTRAL CHANNEL NUMBER 

Fig. 2.— Frequency dependence of CCAL phase 4>ccal in IF1 for 10 MHz bandwidth versus 

spectral channel number for two scans near the beginning and end of the week's observing run. 

The small spike in channel 128 comes from a polarized calibration signal radiated from a vertex 

antenna. 
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There also seems to be a nonlinear aspect to the phase variation with frequency. This appears 

to mimic the bandpass shape in that it changes most rapidly at the edges, so it probably occurs 

within the spectral processor, presumably because of small differences between the filters in the 

two channels. 

5.6. Another practical point: a robust least square fit of the phase versus frequency 

Mostly, the phase varies linearly with frequency, and one wants to determine and remove this 

slope. Here we are discussing <f>sRC and <t>ccAL, not their difference A<£, which should be almost 

independent of frequency. To determine this slope, the knee-jerk response is to linearly fit <f>ccAL 

to frequency. However, this isn't straightforward because <f>ccAL suffers sudden wraparound jumps 

of 27r when it crosses the boundaries — tt or tt. We offer the following robust prescription. 

First, from Figure 1 realize that 

"Im(XY) 
<t>CCAL = tan 1 

LRe(XY)J ' 

which means that sinfacAL = Im(XY) and cos 4>ccal — Re(XY). We write 

(25) 

<t>ccAL = A + Bf (26) 

where / is the r.f. frequency and (A, B) are the constants we need to determine. Write 

cos(>l + Bf) = C cos(Bf) + D sm(Bf) (27a) 

sin(yl 4- Bf) = C' cos(Bf) + D' sin(5/) (27b) 

and determine (5, C, D, C", D'). Including B in a standard least-squares is distasteful for two 

reasons: firstly, it's a nonlinear least-squares fit; secondly, B is likely to be indeterminate because 

Bf probably won't change much across the observing band. 

To deal with this in a robust way perform the following steps in sequence: 

(1) Estimate an approximate value for B. This parameter depends on cable length differences 

and should remain constant with time. For a well-constructed system it is small. If <j>ccAL doesn't 

change much over the observing band, such as in Figure 2, it's OK to use 5 = 0. 

(2) Using this estimated value for JB, fit for (C, DjC', D') in equation 27. Note that these are 

linear least squares fits. 

(3) Use the fit to equation 27 to define the residuals 
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P-A t.n-x [Ccos(Bf) + D'sm(Bfy <f>CCAL [ c C0S(Bf) + D sin(5/) 

R contains a residual slope that reflects the error in your estimate of B. These residuals are 

centered on R = 0 and should all lie well within the range — tt —> tt. Because there are no sudden 

jumps from wraparound, the slope can be obtained from a linear least squares fit. 

(28) 

6. THE SPECTRAL PROCESSOR 

0.1. DESCRIPTION 

The Green Bank spectral processor is a Fourier-transform spectrometer whose digital 

hardware computes real-time FFT's on the baseband voltage samples of any receiver's IF signal. 

The spectral processor contains two FFT engines with a common dock and timing circuitry. Each 

FFT engine can accept 1, 2, or 4 sampled IF inputs to produce spectra with 1024, 512, or 256 

frequency points, respectively, from each IF. The complex voltage spectra from the two FFT 

engines may be cross multiplied as shown in Figure 3. 

Fig. 3.— Spectral Processor block diagram 

When only the self-products are computed (A*A and B*B in Figure 3) the total FFT 

bandwidth of each engine is 40 MHz (80 real mega-samples per second) which may be divided 

between the 1, 2, or 4 IF inputs. In other words, if 4 IF samples are being accepted by one FFT 

engine, the maximum bandwidth of each IF spectrum is 10 MHz. If both self- and cross-products 

are computed, the total bandwidth must be 20 MHz or less. 
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Our polaxization measurement tests used 2 IF's on each FFT engine (Al, A2, Bl, and B2), 

each with a bandwidth of 10 MHz, and all products were computed and stored. The signal from 

one linear polarization was split and sent to inputs Al and A2, and the other polarization was 

sent to Bl and B2. Both spectrum pairs, Al/Bl and A2/B2 were centered at the same frequency 

as a redundancy check on the independent IF components and samplers. 

Let g be the ratio of the gain of channel A to the gain of channel B as a function of frequency 

across the spectrum. Then, if A and B are connected to orthogonal, linearly polarized feed 

outputs, the Stokes parameters may be computed from the spectral processor output spectra as 

follows: 

I = A*A + gB*B (29) 

Q = A * A — gB * B (30) 

U — 2y/gRe\A * B\ (31) 

V = -2y/gIm\A*B\ (32) 

There are a number of calibrations and corrections that must be applied to the data before these 

equations are valid. Those corrections are the subject of other sections of this report. 

At the two FFT outputs, the relative phase of the signal that is correlated between channels 

A and B is given by 
ImlAtBl . 

Phase = arctan-—7-—— (33) 
Re\A*B\ v ' 

This phase depends on the cable lengths, relative phases of the synchronous or common LO's, and 

the filter phase shifts in the two IF channels. This instrumental phase must be measured with a 

common noise signal injected into the input to the two receiver channels. 

A mystery that has been with the spectral processor since its inception is that, for a correlated 

input signal, the amplitude of the correlated output is almost always less that the sum of the 

self-products of the same signal in channels A and B. A typical loss is a few percent, but it 

can be as high as 10%. This loss is corrected in the calibration procedures, but its existence is 

bothersome. At various times during the life of the spectral processor attempts have been made to 

associate the loss of correlation with input signal level, combinations of IF modules, input signal 

phase, and other variables, but the puzzle remains. 

0.2. INTERNAL L.O. AND ELECTRONICS PHASE STABILITY 

There are two local oscillators in each IF converter section of the spectral processor. The first 

is a tunable LO (230 to 660 MHz) that converts an input signal with a frequency anywhere between 

70 and 500 MHz to an intermediate IF that is either the upper or lower sideband of 160 MHz. 

The second LO is fixed at 160 MHz and converts the signal to baseband with a single-sideband 

mixer. Both of these LO's use a 5 MHz signal from the site maser as a phase reference. 
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Any phase noise in either of these LO signals will cause a loss of coherence between two IF 

channels so we suspected this as the source of coherence loss mentioned above. To test this we 

injected a common CW signal into the input of two IF sections at a frequency that converted to 

100 kHz at baseband. The two 100 kHz signals were then compared with an oscilloscope. The 

largest peak-to-peak phase noise between any two IF sections was 40 degrees or about 8 degrees 

rms. This would explain only about 1% loss of coherence so it does not appear to be the major 

cause of correlation loss. When a common LO signal was substituted for the internal variable 

oscillators the phase noise dropped to less than 5 degrees peak-to-peak. This indicates that most 

of the phase noise is coming from the internal variable LO's. 

During our first observations in April 1998 we saw a number of substantial phase calibration 

jumps of as much as 40 degrees from one day to the next. To determine whether these phase 

changes were happening in the spectral processor electronics we measured the relative phase of 

a common noise signal through channels A1 and B1 and channels A2 and B2 over about two 

hours while the temperature of all or part of the electronics was varied by opening and closing 

rack drawers and covering individual IF drawer vents. No relative phase changes greater than 1.6 

degrees were measured. 

On the first day of the January 1999 observations a substantial phase jump was seen in the 

calibration of the Al/Bl IF pair as measured with the correlated noise cal. The phase of IF pair 

A2/B2, which was connected to the same IF signals at the same frequency, was stable during this 

period. For second and following days of this run and for the May 1999 run we used a common 

external oscillator for the variable LO of IF channels A1 and Bl. No further phase jumps were 

seen. 

6.3. TRANSFER CHARACTERISTICS 

To check the linearity of the samplers (six-bit A/D's) in the spectral processor we took a 

series of spectrum measurements at different input power levels to the samplers while the telescope 

was looking at cold sky. The input power level was varied by changing the IF attenuators in the IF 

to Baseband Converter modules. These attenuators have nominally 1 dB steps and are accurate 

to about 0.1 dB. The input power levels were varied from about 6 dB below the normal operating 

level to about 6 dB above. The measured power transfer functions for the four IF channels are 

shown in Figure 4. 

The horizontal axis in Figure 4 is the log of the relative input power to each sampler as 

determined by the attenuator setting. The points for the four IF channels are arbitrarily offset 

in the horizontal direction for so that they are not confused in the plot. The vertical axis is the 

log of the output power of the FFT as measure by the median power of the 512 channels in each 

spectrum. The straight line associated with each set of measurements has a slope of one and is 

adjusted to have a zero average vertical deviation from the plotted points. To the extent that 
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Log of Input power (arbitrary zero) 

Fig. 4.— Spectrum output power as a function of input noise power. The normal operating point 

for the A/D's is at log(outputpower) « 6.55 on this graph. 

we can rely on the attenuation values, all samplers appear to be linear over the measured range 

except at the lowest input power. 

During the sampler linearity measurements the uncorrelated receiver noise calibration signals 

were switched at a 1 Hz rate, and separate spectra were recorded with the cal on and off. From 

these two spectra and the laboratory value of the calibration signals for each receiver channel 

we can compute the system temperature for each of the 512 channels in each spectrum. The 

median system temperature for each IF channel as a function of spectral output power is shown 

in Figure 5. The horizontal axis in Figure 5 is the same as the vertical axis in Figure 4. 

As one would expect from the non-linearity at the lowest power points in Figure 4, the 

measured system temperature is significantly higher for the lowest sampler input power. A weak 

dependence of system temperature on sampler input power is seen at higher powers which indicate 

a change in the slope of the transfer function of about 0.2% per dB of input power change. This 

did not affect our polarization measurements significantly. 

7. SUBTLE SYSTEM PROBLEMS AND/OR SURPRISES 

7.1. INTERACTION BETWEEN THE CCAL AND UCAL 

At 1.4 GHz, our 140-foot system had both an uncorrelated and a correlated cal, i.e. a UCAL 

and a CAL. The idea was to use the UCAL for amplitude calibration and the CCAL for phase 
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Fig. 5.— Measure system temperature as a function of spectrum output power. The normal 

operating point for the A/D's is at log(outputpower) « 6.55 on this graph. 

calibration. However, these cals interacted. Both the apparent amplitude and phase of the CCAL 

were affected by the UCAL being turned on (Here, "phase of the CCAL" means the relative 

phase between the two polarization channels X and Y.). Figure 6 shows this dependence in one 

of the IF's. Here, the solid line at the top is the CCAL deflection with the UCAL off and the 

dashed line just below is the CCAL deflection with the UCAL on; this difference is about 3.3%. 

At the bottom, the solid line is the UCAL deflection with the CCAL off and the dashed line is the 

UCAL deflection with the CCAL on; this difference is about 15%. The ratio of these percentage 

differences is roughly equal to the ratio of the "other" cal intensities. This suggests a saturation 

effect; however, the middle sawtooth shows the system temperature changing on and off three 

astronomical sources. The sources have zero effect on the cal deflections, and the largest source 

raises the system temperature by 14 K—about 2.5 times larger than the CCAL. Thus it is not a 

saturation effect. 

Not only does the UCAL affect the amplitude of the CCAL, but Figure 7 shows that it also 

affects the phase. The phase of the CCAL changes by 0.9 degrees when the UCAL is turned on. 

The phase is unaffected by a simple increase in system temperature from an astronomical source. 

It is not easy to understand the reason for this interdependence. However, it exists. Given this 

inescapable fact for this particular system, we cannot be confident of an absence of interdependence 

in any future system. 

This need not be a problem. As we discussed in sections 3.2 and 4.9, there is no reason to 

use two different cals. At Arecibo we used only a CCAL. The phase of the CCAL was adjusted 
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INTERACTIONS OF CCAL AND UCAL 

Fig. 6.— CCAL and UCAL deflections with the other cai both on and off for IFO, versus scan 

number (with arbitrary zero subtracted). The left-hand vertical axis is for the upper and lower 

pairs of solid and dashed lines, which show the CCAL and UCAL deflections with both the other 

cal both on and off. The right-hand vertical axis is the total system temperature: While these 

measurements were going on, the telescope was moving on and off continuum sources and the total 

system temperature was changing, shown by the solid sawtooth. 

to provide approximate linear polarization, with A<f) = <f>sRC — <f>ccAL ~ 2°. This turned out to 

be a very convenient situation because it made the Mueller matrix elements mvui rnuv small and 

thereby simplified the calibration. We note, however, that making A<£ small is not essential. 

One more point. The interaction between GB's CCAL and UCAL underscores the desirability 

of following the basic philosophical tenet in astronomical measurements, to wit: never measure 

more than one signal at a time. Thus, when calibrating, use only one calibrator at a time. And 

more importantly, when observing, never inject the extraneous calibration signal. Injecting excess 

noise for calibration purposes not only increases the system temperature, but it also puts the 

system slightly off balance, moving it away from the operating point at which it was calibrated. In 
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PHASE OF CCAL WITH UCAL BOTH ON AND OFF—IFO 

Fig. 7.— CCAL phase with the UCAL both on and off for IFO. The left-hand vertical axis is for the 

solid and dashed lines, almost superposed, which show the CCAL phases with the UCAL both on 

and off. The right-hand axis is for the phase difference between these states, shown by the wiggly 

solid line. The arbitrary scan numbers are the same as those in Figure 6, and the constancy of the 

CCAL phase difference indicates that it is unaffected by system temperature variations. 

other words, one should compare the source deflection 5 with the cal deflection C. This departs 

from the past NRAO practice, used in the 140-foot 1024-channel autocorrelator, of comparing 

S + C with C. 

7.2. NONZERO XY FOR AN UNPOLARIZED SOURCE 

As discussed in section 8.1, the Ajj coefficient of the least square fit for the position angle 

variation of the Stokes U in equation 36b represents the Mueller matrix element mui- One uses a 

similar equation to find my/. 

These imperfections impact spectral polarimetry measurements, as most easily illustrated 
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with the absorption spectrum of a strong unpolarized source. Figure 8 shows the example of the 

21-cm line absorption spectrum against Cas A. Cas A is polarized to only a very small degree—we 

measured it to be ~ 0.19% db 0.06% polarized during our continuum source survey. However, in 

the spectral measurement there axe much larger ~ 1% replicas of the absorption line in the XY 

spectra. In the Re(XY) spectrum the source goes positive (mui), making the absorption line look 

negative, and the Im(XY) spectrum is the other way around (my/). 

XY PRODUCTS, CALS OFF, ON CAS A 

0 128 256 384 512 
SPECTRAL CHANNEL NUMBER 

Fig. 8.— 21-cm line absorption against Cas A, 1.25 MHz bandwidth. The left-hand vertical scale 

is for the XY products and the right-hand scale for XX + YY. 

When observing Zeeman splitting, classically one removes the effect for the line alone in a 

least-square fitting process. There axe two advantages of knowing and correcting for the Mueller 

matrix. Firstly, this after-the-fact empirical correction becomes much smaller. Secondly, correcting 

for the matrix elements removes artifacts from not only the line but also the continuum. For 

example, Figure 8, shows that there axe nonzero XY products lying outside the line whose spectral 

shape mimics the shape of the spectral processor's input filters. These axe mostly removed with 

the Mueller matrix correction. 



-27- 

7.3. NONZERO XY WHEN NO SOURCE IS BEING OBSERVED 

Nonzero XY products also occur when observing no source whatsoever, at the ~ 1% level. 

Figure 9 shows the normalized XY spectra of these nonzero products with 10 MHz bandwidth. 

Here the amplitudes of the two XY products follow the bandpass shape quite closely, particularly 

at the ends, and also the phase varies much more rapidly with frequency than does the CCAL 

deflection. Again, these rapid frequency variations strongly imply that this residual correlation 

occurs within the spectral processor itself. 

XY PRODUCTS, CALS OFF, BLANK SKY 

100 

0.00 

-0.02 

DOTTED IS RE(XY), DASHED IS Im(XY) 

-100 

128 256 384 
SPECTRAL CHANNEL NUMBER 

512 

Fig. 9.— XY spectra of system noise, with no correlated input noise, for 10 MHz bandwidth. The 

two XY products are normalized to the sum XX + YY and are shown by dotted and dashed lines. 

The left-hand vertical axis gives the scale for the intensity of the two products and the right hand 

their relative phase, which is shown by the solid line. The spike at channel 128 is the correlated 

signal from the vertex radiator. 

This effect has no obvious ramifications for observing except that the astronomer should do 

on-off measurements to subtract it away—and one needs to subtract it away. It is important to be 

aware of this because otherwise one might be tempted to rely on the cross-correlation being good 

enough to eliminate the necessity for an "off". 
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7.4. LOSS OF CORRELATION FOR CORRELATED SIGNALS IN THE 

SPECTRAL PROCESSOR 

The spectral processor is known to lose some correlation on correlated signals. This means 

that the XY outputs are smaller than they should be. In Mueller matrix terms, this means that 

{muut'W'Vv) < 1* 

We noticed this effect on our survey of linear polarization of astronomical sources. We derived 

the lineaxly polarized flux by least squares fitting observations at twelve different position angles 

(covering a range of 360°, spaced by 30°). We used two different data sets: one was the difference 

between the source deflections in the orthogonally polarized feeds and the other was the deflection 

of the correlated signal of the two feeds. Both sets should measure the same thing, except that the 

position angles on the sky differ by 45°. However, the polarized fluxes from the correlated signal 

were systematically smaller than from the difference. This is evident in Table 1, which lists our 

results: for sources with two listings observed during Jan99, the first line shows results derived 

from the difference and the second from the cross product. 

For a straight average of the 18 sources having significant polarized flux, the cross product 

polarized fluxes were systematically smaller than the difference fluxes by 8.3% ± 1.5%. In other 

words, (muuimvv) ~ 0.92. From the practical standpoint of astronomical measurements, this 

is an unfortunate but not terribly serious effect. All polarized fluxes should be increased by this 

amount and the signal/noise is degraded somewhat. 

8. A SURVEY OF LINEAR POLARIZED SOURCES AT 1420 MHZ 

8.1. THE LEAST SQUARES FIT TO POSITION ANGLE 

Suppose a linearly polarized source has polarized intensity P8 and position angle Og. Then the 

two linear-polarized Stokes parameters are 

If we observe this source with our orthogonally linearly polarized feeds oriented at angle PA, 

then it is clear that the observed Q and U are 

Qa = Pe cos(208) (34a) 

UB = P5sin(20,). (34b) 

Qobs = Qs cos(2PA) + Ua sm(2PA) (35a) 
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Uobg = — Qe sm(2PA) + Ua cos(2PA) . (35b) 

Here, Qoba is obtained from the difference between intensity (XX — YY) and Uobt from XY. 

If we do least squares fits as follows: 

Qoba — Aq + Bq cos(2PA) + Cq sm(2PA) (36a) 

Uoba = Au + Bu cos(2PA) + Cu sin(2iM.) , (36b) 

then by simple identification on a term-by-term basis we have 

Qa = Bq = -Cu (37a) 

U^Cq^Bu. (37b) 

In the ideal world, Aq = Au = 0. In the real world, they are nonzero. For a dual-linear feed, 

the departure of Aq from zero (a nonzero rag/) is a simple scale error in the relative calibration 

of XX and YY. The departure of Au from zero (a nonzero mui) indicates a residual XY 

correlation. 

8.2. DERIVING Pa AND 0a: PROPAGATION OF ERRORS 

This is basic statistical analysis; for an arbitrary result R(b,C) the fundamental equation is 

a{R)2 = [|§2o'(-S)2 + %§2<7(C)2]- So firstly, for the source's polarized intensity Pa = (B2 + C2)1/2, 

we have 

2 _ bMB? + cMc? 

^ ' ~ (B1 + C2) *■ ' 

and for the particular special case in which <?(B) = O'(C), then we have 

W = a(Bf . 

Secondly, for the position angle given by tan(20,) = we have 

(39) 
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(40) 

and, for the same special case with cr(B) = cr(C), we have 

mm v - 17(8)2 

" '> ~ (B2 + C2) ' 
(41) 
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Table 1. POLARIZATION RESULTS: SOME SINGLE-DISH CALIBRATORS AT 1420 

MHZ 

Source Of 1950 6l950 5, Jy P., Jy %Pol 0. 

3C27 
3C27 

00 52 44.9 
00 52 44.9 

68 06 06 
68 06 06 

6.65 
6.65 

0.93 
0.82 

7.02 ± 0.03 
6.15 ±0.35 

131.9 ±0.5 
131.8 ±1.8 

3C27 sp 00 52 44.9 68 06 06 6.65 0.52 3.9± 122.3± 

3C29 
3C29 

00 55 00.7 
00 55 00.7 

-01 40 30 
-01 40 30 

5.21 
5.21 

1.15 
1.10 

11.01 ±0.65 
10.52 ±0.28 

171.6 ±0.4 
171.6 ±0.4 

3C33 
3C33 

01 06 14.2 
01 06 14.2 

13 03 37 
13 03 37 

12.53 
12.53 

1.81 
1.76 

7.09 ± 0.42* 
6.92 ± 0.35* 

68.6 ±0.9* 
67.4 ±0.7* 

3C41 AO 01 23 54.7 32 57 36 3.5 0.42 6.0 48.9 

3C98 
3C98 

03 56 11.0 
03 56 11.0 

10 17 41 
10 17 41 

10.25 
10.25 

1.05 
0.96 

5.10 ±0.15 
4.70 ±0.10 

72.0 ±0.8 
71.0 ±0.6 

3C123 
3C123 

04 33 55.2 
04 33 55.2 

29 34 14 
29 34 14 

45.16 
45.16 

0.45 
0.33 

0.50 ±0.19* 
0.36 ±0.13* 

140.2 ± 5.5* 
153.4 ±5.1* 

3C138 
3C138 

05 18 16.5 
05 18 16.5 

16 35 26 
16 35 26 

8.88 
8.88 

1.11 
1.05 

6.81 ±0.41 
6.48 ±0.11 

176.2 ±1.1 
176.9 ± 0.3 

3C144-TAU 
3C144-TAU 

05 31 31.0 
05 31 31.0 

21 59.17 
21 59 17 

895.50 
895.50 

14.68 
13.92 

0.82 ± 0.08 
0.75 ± 0.09 

87.9 ± 1.6 
86.0 ±2.5 

ORION-A 
ORION-A 

05 32 44.0 
05 32 44.0 

-05 24 54 
-05 24 54 

389.65 
389.65 

0.86 
0.94 

0.11 ±0.10 
0.12 ±0.14 

3C147.1 
3C147.1 

05 39 11.0 
05 39 11.0 

-01 55 36 
-01 55 36 

57.78 
57.78 

0.69 
0.68 

0.60 ± 0.30* 
0.59 ±0.10* 

84.0 ± 7.2* 
84.5 ± 2.4* 

P0736+01 AO 07 36 42.6 01 44 00 2.9 0.48 8.2 103.4 

3C227 
3C227 

09 45 07.8 
09 45 07.8 

07 39 09 
07 39 09 

7.18 
7.18 

0.74 
0.66 

5.14 ±0.37 
4.56 ± 0.06 

142.4 ± 1.0 
144.8 ± 0.7 

3C227 sp 09 45 07.8 07 39 09 7.18 0.47 3.3± 146.7± 
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Table 1—Continued 

Source <*1960 £l950 S, Jy P; Jy %Pol e. 

3C270 
3C270 

12 16 51.2 
12 16 51.2 

06 06 13 
06 06 13 

17.20 
17.20 

2.62 
2.63 

7.62 ±0.30 
7.63 ±0.17 

122.1 ±2.3 
122.3 ± 1.5 

3C270 sp 12 16 51.2 06 06 13 17.20 2.22 6.3± ••• 128.1± ••• 

3C273 
3C273 

12 26 32.9 
12 26 32.9 

02 19 39 
02 19 39 

49.77 
49.77 

1.23 
1.17 

1.24 ±0.04 
1.17 ±0.06 

149.7 ±0.9 
151.0 ±0.7 

3C274 
3C274 

12 28 17.8 
12 28 17.8 

12 39 50 
12 39 50 

213.56 
213.56 

4.27 
3.89 

1.00 ±0.05 
0.91 ±0.09 

144.5 ± 5.6 
144.5 ± 6.3 

3C274.1 
3C274.1 
3C274.1 AO 

12 32 57.0 
12 32 57.0 
12 32 57.0 

21 37 06 
21 37 06 
21 37 06 

2.64 
2.64 
2.64 

0.77 
0.61 
0.67 

14.52 ± 1.70* 
11.61 ±0.37* 

12.8 

149.9 ± 1.7* 
152.6 ±0.5* 

158.6 

3C286 
3C286 
3C286 AO 

13 28 49.7 
13 28 49.7 
13 28 49.7 

30 46 02 
30 46 02 
30 46 02 

14.78 
14.78 
14.78 

2.74 
2.60 
2.86 

9.52 ±0.16 
9.04 ± 0.13 

9.7 

27.4 ±0.1 
27.4 ± 0.2 

28.8 

3C286 sp 13 28 49.7 30 46 02 14.78 2.34 7.9± ••• 34.3± •. 

P1414+11 
P1414+11 

14 14 27.3 
14 14 27.3 

11 02 16 
11 02 16 

4.14 
4.14 

0.82 
0.78 

9.89 ±0.22 
9.45 ±0.15 

25.4 ±3.1 
26.4 ±0.2 

3C336 AO 16 22 33.5 23 52 06 2.7 0.15 2.7 29.1 

3C348 
3C348 

16 48 40.1 
16 48 40.1 

05 04 28 
05 04 28 

43.69 
43.69 

1.37 
1.27 

1.57 ±0.17* 
1.45 ±0.09* 

57.0 ± 1.5* 
57.1 ±0.8* 

3C348 sp 16 48 40.1 05 04 28 43.69 1.31 1.5± ... 68.1± ... 

M17 
M17 

18 17 33.0 
18 17 33.0 

40 35 02 
40 35 02 

558.25 
558.25 

9.60 
8.49 

0.86 ±0.02 
0.76 ±0.02 

81.4 ±1.3 
82.8 ±0.7 

W43 
W43 

18 44 57.0 
18 44 57.0 

-01 56 36 
-01 56 36 

140.50 
140.50 

3.04 
2.78 

1.08 ±0.15* 
0.99 ±0.12* 

85.1 ± 1.9* 
86.5 ± 1.7* 

3C399.1 AO 19 14 00.0 30 14 23 2.7 0.56 10.3 53.6 

3C405-CYG 
3C405-CYG 

19 57 44.5 
19 57 44.5 

40 35 02 
40 35 02 

1654.90 
1654.90 

16.88 
17.54 

0.51 ± 0.05 
0.53 ± 0.06 

175.7 ±6.3 
178.3 ± 1.5 



-33- 

Table 1—Continued 

Source <¥1960 6l960 5, Jy P; Jy %Pol 8. 

3C433 sp 21 21 30.6 24 51 18 11.68 1.67 7.1± ••• 136.0± ... 

CTA102 sp 22 30 07.7 11 28 23 6.37 0.65 5.1± ... 105.3± ... 

3C452 sun 22 43 33.0 39 25 28 14.40 2.74 9.52 ±0.16 27.4 ±0.1 
3C452 sun 22 43 33.0 39 25 28 14.40 2.60 9.04 ±0.13 27.4 ± 0.2 

3C452 sp 22 43 33.0 39 25 28 9.71 1.22 6.3± .. 13.9± ... 

3C454.3 22 51 29.4 15 52 56 13.56 2.09 7.69 ±0.55* 67.8 ± 1.0* 
3C454.3 22 51 29.4 15 52 56 13.56 1.81 6.67 ± 0.22* 68.0 ±0.5* 
3C454.3 AO 22 51 29.4 15 52 56 13.56 1.57 5.8 70.6 

CAS-A 23 21 07.0 58 33 48 2032.00 10.97 0.27 ±0.18 4.2 ±8.8 
CAS-A 23 21 07.0 58 33 48 2032.00 7.72 0.19 ± 0.06 4.5 ± 2.7 

Note. — Column 1 is the source name, column 2 and 3 the 1950 equatorial coordinates, column 4 the flux 
density 5 in Jy (S = •Sto^e' f), column 5 the polarized flux density P» = (Q^ + Ug)1^ in Jy, column 6 the percent 
polarization (defined as 10

2
0^''), column 7 the position angle. 

Note. — Sources listed twice were observed during Jan 99. The first listing was derived from the Stokes Q 
(the difference between orthogonal linear polarizations) and the second from the Stokes U (the cross-correlation 
of the two linears). The letters "sp" means that the source was observed during the Spring 1998 observing 
period; uncertainties are not available and the data somewhat less accurate than in Jan 1999. "sun" means that 
the observations were severely affected by the Sun and should not be trusted, and in particular that the errors 
are almost certainly underestimates. 

Note. — Most results were derived from at least two 12 position angle datasets at the 140-foot telescope. For 
them, the quoted errors are derived from the differences among those datasets. For results whose errors have 
the superscript * there was only a single 12 position angle dataset and the quoted errors are too small. 

Note. — Sources followed by "AO" were observed at Arecibo during Feb99; their results should be more 
accurate than the 140-foot results. 
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Table 2. SOME SINGLE-DISH CALIBRATORS AT 4.8, 8.0, and 14.5 GHZ 

Source <*1850 6l9fi0 Si.6 Ss.o S14.4 iVs iYo •Pu.6 04.8 08.0 014.6 

NRA05 00 03 40.3 -06 40 17 2.2 2.7 2.3 3.5 3.5 5.0 40 20 20 
3C48 01 34 49.8 32 54 21 5.40 3.56 1.84 4.02 5.17 6.62 104.0 113.7 115.2 
3C58 02 01 52.0 64 35 06 29.3 28.0 23.1 5.6 5.5 5.5 163 177 7 
3C66B 02 20 01.9 42 45 54 3.26 1.78 0.81 3.63 3.6 2.5 70.5 79. 94. 
P0218+35.7 02 18 04.1 35 42 32 1.3 1.2 1.2 2.5 2.0 7.0 20 40 50 
3C10 02 22 32.0 63 51 42 15.5 8.0 1.7 0.5 1.0 2.5 110 140 110? 
3C83.1 03 15 00.0 41 41 12 1.8 1.1 0.6 5.5 6.0 6.5 110 115 120 
3C84 03 16 29.6 41 19 52 22 21 19 0.05 0.05 0.05 — — — 
NRAO140 03 33 22.6 32 08 37 1.6 1.4 1.7 4.0 4.5 3.0 60 45 50 
3C93 03 40 51.6 04 48 22 0.87 0.59 0.32 7.5 7.4 10.6 139.2 131. 134. 
4C76.03 04 03 58.6 76 48 54 2.8 2.2 1.5 0.5 2? 3.0 0 100? 50 
3C138 05 18 16.5 16 35 27 3.8 2.8 1.5 10.5 11.0 11.0 170 170 170 
P0521-36.5 05 21 12.9 -36 30 17 8.0 7.5 5.0 3.5 2.2 2.0 75 70 70 
3C144 05 31 31.0 21 59 17 596 560 430 5.0 6.8 9.9 141 146 152 
3C147 05 38 43.5 49 49 43 7.5 5.5 2.8 0.3 1.0 3.0 0 150 50 
3C153 06 05 44.5 48 04 49 1.32 0.81 0.40 3.94 5.1 5.2 52.3 50. 54. 
3C196 08 09 59.4 48 22 07 4.3 2.6 1.2 2.3 2.0 2.0 120 150 160 
P0836+71.0 08 36 21.5 71 04 22 2.3 2.6 2.3 7.0 4.8 4.0 100 105 125 
3C207 08 38 01.8 13 23 06 1.3 1.3 1.3 3.0 3.0 2.0 25 20 15 
3C216 09 06 17.3 43 05 59 1.6 1.3 1.1 1.5 1.5 2.0 90 0 150 
3C219 09 17 50.7 45 51 44 2.4 1.4 0.8 3.0 4.0 2.5 145 140 130 
3C245 10 40 06.1 12 19 15 1.61 1.33 0.98 8.38 7.00 5.10 33.0 27.9 29.4 
P1127-14.5 11 27 35.7 -14 32 55 3.8 3.3 2.6 3.5 3.5 3.0 160 160 160 
3C273 12 26 33.2 02 19 43 37 44 48 3.3 3.5 3.0 170 155 148 
3C274 12 28 17.6 12 40 02 71 49 29 0.48 1.6 2.9 40 87 53 
3C280 12 54 41.4 47 36 32 1.66 1.07 0.54 7.64 8.2 11.2 44.2 51.2 53.2 
3C286 13 28 49.7 30 45 59 7.37 5.53 3.53 11.09 11.46 11.82 33.21 33.13 35.21 
3C330 16 09 16.2 66 04 30 2.24 1.32 0.64 3.59 4.2 4.0 131.5 132. 108. 
MK-501 16 52 11.8 39 50 25 1.6 1.6 1.3 2.7 3.0 3.0 10 5 0 
3C353 17 17 55.6 -00 55 54 22.2 15.5 — 5.2 4.4 — 87 79 — 
3C390.3 18 45 45.5 79 42 45 4.4 3.1 1.5 6.0 '7.0 4.0 25 25 25 
3C395 19 01 02.2 31 55 12 1.5 1.5 1.3 4.0 3.5 3.5 65 45 30 
P2005+40.3 20 04 13.1 40 20 34 2.7 2.2 1.8 4.5 2.5 2.5 20 50 60 
P2014-1-37.0 20 14 34.6 37 05 03 3.5 2.5 0.9 7.0 7.0 7.0 103 125 135 
3C452 22 43 32.8 39 25 28 3.14 1.82 0.63 7.14 7.0 5.9 121.4 159.6 173. 

Note. — Column 1 is the source name, column 2 and 3 the 1950 equatorial coordinates, column 4-6 the flux density 
in Jy (S = Sto^e* J)) columns 7-9 the percentage polarization (defined as 100*P<,Un»«d »a««n«iiy ^ columns 10-12 the 
position angle in degrees. Subscripts indicate frequency in GHz. 

Note. — We perused the University of Michigan catalog (Aller et al 1996) and include all reasonably strong sources 
whose polarization properties have not varied terribly much over the period 1990 —» 1999.0. Sources with names in 
boldface are stable and have typical uncertainties equal to a few or less in the last quoted decimal place; these values 
were kindly provided by Hugh Aller. For the others, values were estimated by eye from graphs and uncertainties are 
at least a few 0.1% in S, a few 0.1% in P, a few degrees in 0; some sources exhibit distinct time variability and the 
user should check with recent observations. Most positions are from Kuhr et al (1981); some are from BDFL and 
Simb&d. The Michigan database is on the web: http://wwv>.astro.Isa.umtch edu:80/obs/radiotel/radiotcl.html 


