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Abstract

In this report we present a model for phased array feed (PAF) and compare the model predictions
with measurements. A theory for loss-less PAF is presented first. To develop the theory we ask
the question – what is the best Tsys/ηap that can be achieved when a PAF is used on a telescope
to observe a source at an angle θs, φs from the boresight direction ? We show that a characteristic
matrix for the system (i.e. PAF+telescope+receiver) can be constructed starting from the signal-to-
noise ratio of the observations and the best Tsys/ηap can be obtained from the maximum eigenvalue
of the characteristic matrix. For constructing the characteristic matrix, we derive the open-circuit
voltage at the output of the antenna elements in the PAF due to (a) radiation from source, (b)
radiation from ground (spillover), (c) radiation from sky background and (d) noise due to the
receiver. The characteristic matrix is then obtained from the correlation matrices of these voltages.
We then describe a modeling program developed to implement the theory presented here. Finally
the model predictions are compared with results from test observations made toward Virgo A with
a prototype PAF (Kite array) on the GBT[1]. The main features of the model and summary of the
comparison are :

• We present an ab initio model for the PAF. The model is developed from Lorentz Reciprocity
theorem (see Section 3.3), which is derived from Maxwell’s equation with no further assump-
tions made, and also with the aid of first and second law of thermodynamics (see Appendices).
The result of the model is presented as a theorem (see Section 3).

• Based on the model results, we show that the receiver temperature of the PAF can be ex-
pressed as a generalization of the equation for a single antenna followed by a receiver. The
proof of this statement is given in Appendix F.

• The model well predicts the measured Tsys
η vs offset angle from boresight direction but needs

an increase in receiver temperature of about 5K to match the measured results 1. The
model also predicts the measured Tsys

η vs frequency with the additional increase in receiver
temperature mentioned above.

• The aperture and spillover efficiencies obtained from the best fit model are 65% and 98%
respectively between 1.3 and 1.7 GHz.

1In Roshi et al. (2015)[1]), we presented our preliminary model results, where the excess temperature needed is
given as 8 K. Our improved model (see Section 5) requires only 5K excess noise. Also the aperture efficiency given
in [1] is 70 %, which has been revised to 65% in this report.
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1 Introduction

Feeds consisting of dense, electrically small antenna arrays, referred to as Phased Array Feed (PAF),
are now of significant interest [2, 3, 4, 5]. These dense arrays sample the focal field pattern of the
telescope. Multiple beams are then formed by combining the signals sampled by the array elements
with complex weights that form an efficient reflector illumination. The beams formed using a
PAF can fully sample the FOV. Additionally, a PAF can be used to improve spillover efficiency
as well as the illumination of the dish. However, mutual coupling between array elements are a
major hurdle in designing a PAF. Mutual coupling modifies the element radiation patterns. It also
couples amplifier noise. Therefore, detailed electromagnetic, noise and network modeling is needed
to design a PAF for radio astronomy applications [6].

Several research groups have analyzed and modeled the noise performance[7, 8], electromagnetic
properties of PAFs[9, 10] and signal processing aspects[11]. In this report, we present details of a
new PAF model developed at NRAO starting from Lorentz Reciprocity theorem (see Section 3.3),
and also with the aid of first and second law of thermodynamics (see Appendices). The implemen-
tation of the theory using a matlab program is discussed in Section 4. The model predictions are
compared with measurements in Section 5.

2 Some basic Assumptions and Approximations

The following assumptions and approximations are made during the development of the model.

• The PAF is assumed to be loss-less and reciprocal device. This assumption implies a symmetry
in the impedance matrix of PAF, viz, zij = zji, where zij are the elements of the impedance
matrix.

• The parabolic reflector and ground are assumed to be located at the far-field of PAF. We also
neglect scattering at the edge of the reflector and in any mounting structure.

• The fields on the aperture of the antenna are computed using geometric optics approximations.

• The amplifier noise radiated from the PAF is not reflected back to the system.

3 Theory of loss-less Phased Array Feed

The performance of PAF is usually expressed as the ratio of the system temperature by aperture
efficiency (Tsys/ηap) 2 To develop the theory we ask the question :

“For a PAF installed on a telescope what is the minimum value of Tsys/ηap that can be
obtained when observing a compact source (point source) at angle (θs, φs) from the boresight
direction ?”

The answer to this question is the following theorem:

2The directly measurable quantity is the ratio
Tsys

ηapηrad
, where ηrad is the radiation efficiency of the PAF. In this

report we are considering a loss-less PAF and hence ηrad = 1.
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Figure 1: (a) Schematic showing the signal flow and processing in the PAF system. (b) PAF in
transmitting mode. (c) PAF on an off-axis parabolic reflector. Co-ordinate system used to specify
the ‘boresight’ direction and source direction are also shown (see text for details).

Theorem : Given the (spectral) impedance matrix, Z, and the embedded beam patterns, ~Ee, of
the PAF, given the amplifier noise parameters (Rn, gn, ρ) and its input impedance (Zin), and
given the telescope geometry and source position (θs, φs), one can construct a characteristics
matrix M for the system (i.e. PAF + telescope + receiver). Then the best signal-to-noise
ratio on the source is the maximum eigenvalue, emax of M .

As described below emax can be converted to Tsys/ηap from the knowledge of telescope aperture
area and source flux density. The proof of the theorem is presented below.

3.1 Schematic of PAF, Impedance Matrix and Embedded beam pattern

In this section we describe the necessary background needed on the system to prove the theorem. A
schematic of the PAF is shown in Fig. 1a. The signals from the antenna elements are brought to the
‘ports’ of the PAF through a transmission line of characteristics impedance z0. For simplicity we
consider z0 is equal to the reference impedance 50 Ω. Let the total number of ports of the PAF be
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M . The network characteristics of the PAF are specified by the impedance matrix, Z, which relates
the port voltages vi and currents ii. Another method used to specify the network characteristics is
the Scattering matrix, S, which relates the forward and reverse traveling waves at the port. The
amplitude of these waves are ai and bi respectively for the forward and reverse waves. All voltages,
currents and wave amplitudes are harmonic quantities (i.e. they are quantities per unit frequency
interval) and their values are specified as peak values. For simplicity, we omit adding the term ejωt.
The relationship between the network parameters is discussed in Appendix A.

Fig. 1a also shows schematically the signal processing done in the PAF system. Each antenna
element of the PAF is followed by a low-noise amplifier (LNA). The input impedance of the ith LNA
is Zini . The signals are further amplified and scaled with a complex weight vector wT = [w1, w2, ....].
We consider that the weights are normalized such that wHw = 1. The scaled quantities are then
added together to get the signal from a beam. The operation is also referred to as beamforming.
Multiple beams are formed by adding the signals after scaling them with different weight vectors.

In addition to the network characteristics we need to specify the radiation pattern of the PAF. In
Section 3.3 we show that it is convenient to express the radiation pattern in terms of the embedded
beam patterns. The jth embedded beam pattern, ~Eej is defined as the beam pattern of the PAF
when jth port is excited with 1 V (i.e. v0j = 1 V) and all other ports are short circuited (i.e. v0i = 0
V for i 6= j; see Fig. 1b). The source impedance for excitation is considered to be equal to z0. Thus
there are M embedded beam patterns, which are represented conveniently as a vector ~Ee,

~EeT =
[
~Ee1 , ~Ee2 , ...

]
(1)

These beam patterns are function of the position vector ~r, the origin of the coordinate system is
located at the center of the PAF (see Appendix I for further details on the coordinate system).

The beam patterns are specified at the far-field ie |~r| >> 2D2
array

λ , where Darray is the maximum
physical size of the PAF and λ is the wavelength of operation of the PAF. As described below, the
embedded beam patterns are scaled by the port voltage and summed up to get the resultant beam
pattern of the PAF for an arbitrary set of port voltages. Hence the dimension of the embedded
beam pattern is m−1. At far-field, the beam pattern can be described by an outgoing spherical
wave,

~Eei (~r) = ~Eei (θ, φ)
ej
~k.~r

r
(2)

where ~Eei is the ith embedded beam pattern, r and r̂ are the magnitude and the unit vector in the
direction of ~r respectively, ~k = 2π

λ r̂ is the propagation vector. The vector function ~Eei depends
only on the coordinates θ, φ. It should be noted that the geometric phase due to the location of
elements (or in other words the excitation current distribution) away from the co-ordinate center
is included in ~Eei . From the definition of embedded pattern it follows that ~Eei is dimensionless. As
in the case of network parameters, the field are harmonic quantities and for simplicity we omit the
term ejωt. Since the beam patterns are specified at free space the angular frequency ω and λ are
related through

c =
ω

2π
λ, (3)

where c is the velocity of light in free space. Moreover the embedded magnetic field patterns are
given by

~Hei =
k̂

zf
× ~Eei (4)
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where k̂ is the unit vector in the direction of ~k and zf is the free space impedance. The relationship
between the network parameters and embedded beam patterns are discussed in Appendix A.

The radiation pattern of the PAF when excited by a set of arbitrary port voltages can be
expressed in terms of the embedded beam patterns as (see Fig. 1b and also Section 3.3)

~E(~r) =
∑
i=1,M

v0i
~Eei (~r)

= V T
0

~Ee (5)

where V0 is the vector of port voltages v0i . The radiation pattern ~E has the units V/m. At far-field,
the (θ, φ) dependence of the radiation pattern can be written in a similar fashion,

~E(θ, φ) = V T
0

~Ee. (6)

The units of ~E is V. In the report, we refer to ~Ee and ~Ee as embedded beam patterns – the ~r
dependence is implied in the usage of calligraphic symbol.

For our application, the PAF is placed at the prime focus of a (off-axis) parabolic antenna. A
schematic showing the geometry of the configuration along with the observing source direction is
shown in Fig. 1c. To specify the source direction, we consider a co-ordinate system with zb-axis
pointing toward the ‘boresight’ direction of the telescope and the xb − yb plane coinciding with
the ‘aperture plane’. The source direction is specified by the polar angle (θs, φs) with respect to
this co-ordinate system. A second co-ordinate system with the z-axis pointing towards the source
and the x− y plane coinciding with the ‘projected aperture plane’ in the direction of the source is
used to calculate the PAF field pattern on the projected aperture plane (see Section 3.3). The unit
vectors in the direction of x, y, z axes are referred to as ûx, ûy and ûz respectively.

3.2 Signal to Noise Ratio

We start the proof of the theorem by considering the signal to noise ratio (SNR) at the output
of the PAF. For a typical observation with the PAF, on-source and off-source measurements are
made. The SNR can then be written as

SNR =
Pon−source
Poff−source

(7)

where Pon−source is the increase in power spectral density at the output of a beam due to the source
relative to the off-source spectral density, Poff−source. Below, we compute this SNR using the signal
processing done in the PAF.

The output voltage per unit frequency interval after beamforming can be written as

vout = wT Ṽ (8)

where Ṽ is the voltage vector at the input of the combiner (see Fig. 1a). This voltage vector can
be written as a sum of at least four components;

Ṽ = Ṽ signal + Ṽ spill + Ṽ rec + Ṽ sky (9)

where Ṽ signal, Ṽ spill, Ṽ rec and Ṽ sky are the contributions due to source, spillover noise, receiver
noise and sky background noise. For a typical application using the PAF, the output signal power
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or power spectral density is measured. This power spectral density is proportional to 〈voutv∗out〉,
which can be written as

〈voutv∗out〉 = wH〈Ṽ Ṽ
H〉w

= wHR̃w

= wHR̃signalw + wHR̃spillw + wHR̃recw + wHR̃skyw (10)

where R̃ is the matrix of voltage correlation per unit frequency interval. Since the different voltage
components are uncorrelated, R̃ can be written as the sum of the correlations of its components, viz,
R̃signal, R̃spill, R̃rec and R̃sky which correspond to the voltage correlations due to source, spillover
noise, receiver noise and sky background noise respectively. The SNR on the source is then

SNR =
Pon−source
Poff−source

≈
wHR̃signalw

wHR̃spillw + wHR̃recw + wHR̃skyw
. (11)

The approximate sign in Eq. 11 is introduced to indicate (a) that the noise power in on-source
measurement is dominated by components other than the source and (b) that the sky and spillover
components are approximately same for the on-source and off-source positions. (We ignore the
approximate sign below for convenience.)

We wish to write Eq. 11 in terms of open circuit voltages at the output of the PAF antenna
elements. It follows from network analysis that the output voltage vector

Ṽ = GAVoc (12)

where
A = −Zin(Z + Zin)−1, (13)

Zin is the input impedance matrix, which is a diagonal matrix with elements Zini , G is the overall
system gain matrix, which again is a diagonal matrix and Voc is the open circuit voltage vector at
the output of the PAF. In terms of the open circuit voltage Eq. 11 becomes

SNR =
wH

1 Rsignalw1

wH
1 Rspillw1 + wH

1 Rrecw1 + wH
1 Rskyw1

=
wH

1 Rsignalw1

wH
1 Nw1

(14)

where
w1 = AHGHw, (15)

is the modified weights and Rsignal,Rspill,Rrec and Rsky are the open circuit voltage correlations
corresponding to source, spillover noise, receiver noise and sky background noise respectively. We
refer to Rsignal as the signal matrix, Rspill as the spillover matrix, Rrec as the receiver matrix and
Rsky as the sky matrix. Further, we define

N ≡ Rspill + Rrec + Rsky, (16)

and refer to as the noise matrix. Since N is a correlation matrix, it is Hermitian. Therefore it can
be uniquely decomposed into products of two matrices (i.e. N = NN ) using the eigen structure
of N [12]. Thus Eq. 14 can be written as

SNR =
wH

2 N −1RsignalN −1w2

wH
2 w2

(17)
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where
w2 = Nw1. (18)

We define the system characteristics matrix as

M ≡N −1RsignalN −1. (19)

From Eq. 17 the maximum SNR is given by the maximum eigenvalue, emax, of M . Using Eq. 15
and 18, the weight vector wmax that needs to be applied at the output to get the maximum SNR
is

wmax =
(
GH

)−1 (
AH

)−1 N −1w2max (20)

where w2max is the eigenvector corresponding to emax.
We now convert emax to the ratio Tsys

η . The power spectral density due to the source is propor-
tional to the antenna temperature TA, which can be written as

TA =
1
2
Ssource
kB

Aapηap (21)

where Ssource is the flux density of the source used for the measurement, Aap is the aperture area
of the antenna, kB is the Boltzmann constant and ηap = ηtapηspill is the aperture efficiency of the
system. ηtap and ηspill are the taper and spillover efficiencies respectively. The off-source power
spectral density is proportional to the system temperature Tsys. Then the SNR can be written as

SNR =
TA
Tsys

. (22)

Using Eq. 17 and 22, the best performance of PAF is

Tsys
ηap

=
SsourceAap
2kBemax

. (23)

The computation of the signal, receiver, spillover, and sky correlation matrices in order to
construct M is discussed below. We first develop the method used to compute the open circuit
voltage at the output of the array due to incident radiation, which is presented in Section 3.3.

3.3 PAF in Receiving mode

To compute the open circuit voltage at the output of the PAF in receiving mode, we start with
the Lorentz reciprocity theorem. This theorem is derived from Maxwell’s equation with no further
assumptions made. The particular form of the theorem we use is∮

A

~L · n̂ dA = 0 (24)

where
~L ≡ ~E × ~Hr − ~Er × ~H. (25)

The fields ~E , ~H, ~Er and ~Hr are two solutions to Maxwell’s equation within a source free volume
and on the enclosed surface A, n̂ is the unit vector inward to the surface normal to the elementary
area dA [13]. We consider ~E , ~H as the electric and magnetic fields, respectively, when the PAF is
in transmitting mode, ~Er, ~Hr as the electric and magnetic fields, respectively, incident on the PAF
when the array is in receiving mode. By appropriately choosing the surface, the integration can be
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Figure 2: (a) Schematic showing the enclosed source free volume for the application of Lorentz
theorem (see Section 3.3). Details of the source free surface enclosing the dipole and balun and
inside the transmission line is also shown. (b) PAF on an off-axis parabolic reflector and the
corresponding enclosed source free volume used to get the open circuit voltage due to a source.

broken up into two parts – (a) integration over the surface area, Atrans inside the transmission line
and (b) the integration over the surface, Afree outside the PAF (see Fig. 2). The integral in all
other parts of the surface close to the metal surface is zero since the tangential component of the
electric field vanishes. We consider the ports of the PAF are connected to the signal sources with
source impedance z0 during transmission, and during reception, all ports are terminated with the
impedance z0. As shown in Fig. 2, the xp, yp, zp coordinate system is located on the PAF. The axis
zp and the unit vectors ûpz along its direction are parallel to the transmission line. The field in the
wave guide for the transmission and reception cases can be written as

~E =
√
z0(ai + bi)~e(xp, yp)e−jβzp (26)

~H =
1
z0
ûpz × ~E (27)

~Er =
√
z0bri~e(xp, yp)e

jβzp (28)

~Hr = − 1
z0
ûpz × ~Er (29)

where ai, bi are the traveling wave amplitudes in the transmission case, bri is the traveling wave
amplitude in the receiving case, ~e(xp, yp) is the normalized electric field inside the transmission line
and β is the propagation constant in the transmission line. ~e(xp, yp) is a function of the geometric
parameters of the transmission line [14]. The integral over Atrans can then be written as∫

Atrans

~L · n̂ dA = −2
∑
i=1,M

bri(ai + bi)
∫
Atrans

|~e(xp, yp)|2dA (30)
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The transmitted power in each transmission line or port can be written as

Re
1
2

∫
Atrans

~E × ~H∗ · n̂ dA =
1
2
|ai|2 +

1
2
|bi|2 (31)

Using Eq. 26 and 27, Eq. 31 can be written as

(ai + bi)(ai + bi)∗
∫
Atrans

|~e(xp, yp)|2dA = |ai|2 + |bi|2. (32)

Substituting Eq. 32 in Eq. 30, the integration over Atrans becomes∫
Atrans

~L · n̂ dA = −2
∑
i=1,M

bri(ai − bi)

= −
∑
i=1,M

vocii0i

= −V T
ocI0 (33)

where Voc is the open circuit (peak) voltage vector with elements voci , induced by the receiving field
and I0 is the excitation (peak) current vector with elements i0i , which produces the transmission
beam pattern (see Appendix A for the relationship between traveling wave amplitude and voltages
and currents). Substituting Eq. 33 in Eq. 24 we get

V T
ocI0 =

∫
Afree

~L · n̂ dA

=
∫
Afree

(
~E × ~Hr − ~Er × ~H

)
· n̂ dA (34)

The right hand side of Eq. 34 can be written as a summation analogues to the left hand side, i.e.

~E =
∑
i=1,M

v0i
~Eei

= V T
0

~Ee (35)

where the elements of the vector ~Ee are ~Eei , which are the radiation patterns of the PAF for v0i = 1V
for i = j and 0 V for i 6= j. We define the elements of the vector ~Ee as the embedded beam patterns.
Using Eq. 35 we can write Eq. 34 as

V T
ocI0 = V T

0

∫
Afree

(
~EeT × I ~Hr − I ~Er × ~He

)
· n̂ dA, (36)

where I is the identity matrix, ~He is the embedded magnetic field patterns (see Appendix J for an
explanation of the notation used in Eq. 36). Since Eq. 36 is true for arbitrary excitation voltages
it follows that

Voc = Z

∫
Afree

(
~EeT × I ~Hr − I ~Er × ~He

)
· n̂ dA, (37)

where we have made use of the relation V0 = ZI0 between the excitation voltage and current (see
Appendix A). We show in Appendix C that Eq. 37 gives the voltage correlation expected from the
first and second law of thermodynamics when the PAF is in thermal equilibrium with a black body
field. Below we evaluate the right hand side of Eq. 37 for two cases of interest here, viz (a) incident
plane wave radiation field and (b) incident radiation from a (compact) source when the PAF is on
the telescope.
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3.3.1 Plane Wave

Let the PAF be incident by a plane wave of field ~Einc = Eincp̂, where p̂ denotes a vector parallel
to the polarization of the electric field. The incident direction ~r is parallel to the propagation
vector ~kinc. The surface considered for the integration is shown in Fig. 2a. Using stationary-phase
algorithm, the integral over Afree can be written as [13]∫

Afree

~L · n̂ dA =
jkλ2rejkr

πzf
Eincp̂ · ~E (38)

where ~E is the beam pattern of the PAF for an arbitrary excitation, r = |~r|, k = |~kinc|, zf is the free
space impedance. This equation is valid for excitation that produces the embedded beam pattern
as well. Thus by writing Eq. 38 in terms of the embedded beam pattern and substituting in Eq. 37
we get (see Appendix J for an explanation of notation used in Eq. 39)

Voc =
j4πrejkr

kzf
EincZI p̂ · ~Ee. (39)

3.3.2 PAF on the telescope

We now consider the case when the PAF is placed at the prime focus of a telescope with a parabolic
reflector. An appropriate closed surface enclosing a source free region for the integration is shown in
Fig. 2b for a (off-axis) parabolic antenna (eg. Green Bank Telescope; GBT). The source is located
at an angle (θs, φs) from the boresight of the telescope. The major contribution to the integral
over the surface Afree comes from the projected aperture plane (see Fig. 2b). Although the surface
geometry of Afree has changed compared to Fig. 2a, the part (a) of the surface integral discussed
in Section 3.3 remain the same. The part of the surface close to the reflector will not contribute
to the integral because the tangential component of the field should be zero on the surface of the
metal. The phase difference between the incoming waves and the embedded beam patterns changes
rapidly in all other parts of the surface Afree so that the net contribution to the integral will be
zero. Thus ∫

Afree

~L · n̂ dA =
∫
Apap

~L · n̂ dA (40)

where Apap denotes integration over the projected aperture plane. Using Eq. 37, the open circuit
voltage due to the source is

Voc = Z

∫
Apap

(
~Ee

pap

T × I ~Hr − I ~Er × ~He
pap

)
· n̂ dA. (41)

Here ~Hr and ~Er are fields on the projected aperture plane due to the source, ~Ee
pap and ~He

pap

are embedded beam patterns propagated to the projected aperture plane after reflection from the
parabolic surface. By representing the incident field due to the source on the projected aperture
plane as ~Einc = Eincp̂ and the embedded magnetic field as ~He

pap = − 1
zf

In̂× ~Ee
pap, Eq. 41 becomes

Voc = 2
Z

zf

∫
Apap

EincI p̂ · ~Ee
papdA. (42)

Note that Einc and p̂ are in general functions of positions in the projected aperture plane.
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For the case of an astronomical source the incident field can be broken up into two orthogonal
polarizations, the directions are conveniently taken along the x and y axis, i.e.,

~Einc = Einc,xûx + Einc,yûy. (43)

Here Einc,x and Einc,y are random variables and for simplicity we assume that they are uncorrelated,
i.e., the source is unpolarized. Eq. 42 can then be written as

Voc = 2
Z

zf

∫
Apap

(
IEinc,xEe

pap,x + IEinc,yEe
pap,y

)
dA (44)

where Ee
pap,x and Ee

pap,y are vectors of the x and y components of the embedded beam patterns,
Ee

pap, respectively. We show in Appendix E that this equation gives the well known relationship
between source antenna temperature and aperture efficiency.

3.4 The Spillover matrix

The PAF placed at the prime focus of the telescope picks up thermal radiation from the ground.
These radiation are received by the PAF from the solid angles larger than the solid angle subtended
by the parabolic reflector. We refer to the total solid angle from which the ground radiation is picked
up as Ωspill. We consider the ground radiation field as a set of plane waves incident at different
directions. The open circuit voltage due to a plane wave in a direction ~r is given by Eq. 39. The
correlation of this voltage is

R1 = 〈Voc1V H
oc1〉

=
(4π)2r2

k2z2
f

〈(
EincZI p̂ · ~Ee

)(
~Ee
H · I p̂ZHE∗inc

)〉
(45)

where R1 is the correlation of open circuit voltage Voc1 due to a plane wave. For thermal radia-
tion, Einc is a stationary random variable and p̂ has random orientation. Therefore, without loss
of generality, Eincp̂ can be decomposed into two orthogonal directions of the field ~Eei . The two
polarization components of Eincp̂ are uncorrelated for the thermal radiation field. Keeping in mind
that a port of PAF is sensitive to one of the polarizations, Eq. 45 can be written as

R1 =
(4π)2r2

k2z2
f

〈EincE∗inc〉
2

Z ~Ee · ~Ee
H

ZH . (46)

In the Rayleigh-Jeans approximation the thermal field is related to the brightness temperature

1
zf
〈EincE∗inc〉 =

2kBTg
λ2

dΩ, (47)

where Tg is the physical temperature of the ground. Using Eq. 47, R1 can be written as

R1 =
4kBTgr2

zf
Z ~Ee · ~Ee

H
ZHdΩ. (48)

Since the spillover noise is due to thermal radiation from the ground, the voltages due to plane
waves from different directions are uncorrelated. The resultant voltage correlation due to spillover
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noise is then

Rspill =
∫

Ωspill

R1dΩ,

=
4kBTg
zf

Z

(∫
Ωspill

~Ee · ~Ee
H
r2dΩ

)
ZH ,

=
4kBTg
zf

Z

(∫
Ωspill

~Ee · ~Ee
H

dΩ

)
ZH , (49)

=
4kBTg
zf

ZCce1Z
H . (50)

where Ωspill is the solid angle over which the PAF embedded beam patterns are receiving radiation
from ground. We also made use of Eq. 2 to introduce the embedded beam patterns ~Ee in Eq. 49.
We define

Cce1 ≡
∫

Ωspill

~Ee · ~Ee
H

dΩ, (51)

which is the correlation matrix of the embedded beam patterns integrated over Ωspill. In Ap-
pendix D we use Eq. 50 to expressed the spillover noise in terms of a physical temperature, referred
to as spillover temperature. We also show that the derived spillover temperature gives the well
known relationship between the ground temperature and the spillover efficiency when applied to a
single port antenna.

3.5 The Signal Matrix

The open circuit voltage at the ports of the PAF when observing an astronomical source is given
by Eq. 44. The correlation of the voltage due to source, Vocs can be written as

Rsignal = 〈VocsV H
ocs〉

=
4
z2
f

Z

〈(∫
Apap

IEinc,xEe
pap,x + IEinc,yEe

pap,ydA

)
(∫

Apap

Ee
pap,x

HIE∗inc,x + Ee
pap,y

HIE∗inc,ydA
)〉

ZH (52)

=
4
zf

Ssource
2

Z

(∫
Apap

~Ee
papdA

)
·

(∫
Apap

~Ee
papdA

)H
ZH

=
2Ssource
zf

ZCIeZ
H . (53)

where we define

CIe ≡

(∫
Apap

~Ee
papdA

)
·

(∫
Apap

~Ee
papdA

)H
(54)

which is the correlation matrix of the net aperture fields due to embedded beam patterns. To arrive
at Eq. 53, we used the relationship 1

zf
〈Einc,xE∗inc,x〉 = 1

zf
〈Einc,yE∗inc,y〉 = Ssource

2 and, for simplicity,
〈Einc,xE∗inc,y〉 = 〈Einc,yE∗inc,x〉 = 0 for an unpolarized source of flux density Ssource. Note that CIe

is a function of source position θs, φs. In Appendix E we use Eq. 53 to derive an expression for the
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Figure 3: (a)Schematic showing the noise voltage and current generators to model the noise prop-
erties of a low-noise amplifier (LNA). (b) The network model of the PAF system along with the
noise voltage and current generators of the LNA. zin,i, zin,j etc are the input impedance of the
amplifier

source antenna temperature. We also show that the expression for antenna temperature reduces
to the well known relationship between source flux density, physical area of the telescope aperture,
and aperture efficiency for a single port antenna.

3.6 The Receiver Matrix

To derive the receiver matrix, we need the noise parameters, Rn, gn and ρ (defined below), of
the amplifier in addition to the impedance matrix of the PAF. It is well known that the spectral
(or spot) noise factor of noisy two-ports is equivalent to noise-free two-ports plus two (in general)
partially correlated noise generators[15]. A convenient representation is to place a noise voltage
generator (en) in series and a noise current generator (in) in parallel to the noise-free two-ports
(see Fig 3a). The noise voltage and current fluctuations per unit frequency interval, 〈e2

n〉 and 〈i2n〉
respectively, and their complex correlation coefficient per unit frequency interval ρ are expressed
in terms of the noise parameters as

〈e2
n〉 = 4kBT0Rn (55)
〈i2n〉 = 4kBT0gn (56)

ρ =
〈e∗nin〉√
〈e2
n〉〈i2n〉

(57)

where kB is the Boltzmann constant, T0 = 290 K, Rn is the noise resistance and gn is the noise
conductance.

Fig. 4b shows the network model of PAF along with the noise generators of the LNA. For
simplicity, we assume the noise contribution from the receiver stages following the LNA can be
neglected. From network analysis, the open circuit voltage vector, Vocr , due to LNA noise is

Vocr = En + ZIn, (58)

where En is a diagonal matrix with elements en,i, the noise voltage generators of the LNA, In is a
diagonal matrix with elements in,i, the noise current generators of the LNA and Z is the impedance
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matrix of the PAF. The open circuit voltage correlation is then

Rrec = 〈VocrV H
ocr〉

= 〈EnE
H
n 〉+ Z 〈InEH

n 〉+
〈EnI

H
n 〉 ZH + Z 〈InIHn 〉 ZH . (59)

Here 〈EnE
H
n 〉, 〈InIHn 〉 and 〈InEH

n 〉 are diagonal matrices of noise fluctuations and their correlations.
For identical LNAs connected to the PAF, using Eq. 55 to 57, we get

Rrec = 4kBT0

(
RnI +

√
Rngn

(
ρZ + ρ∗ZH

)
+ gnZZH

)
. (60)

In Appendix F, we use Eq. 60 to get the receiver temperature for the PAF. We also show that
the receiver temperature of PAF can be written as a generalization of the equation used to express
the receiver temperature of a single antenna followed by an LNA.

3.7 The Sky Matrix

The sky background radiation has components due to Cosmic microwave background (CMB),
galactic and extragalactic radiation. The open circuit voltage correlation due to these components
adds up since the voltages due to the different components are uncorrelated. The correlation due
to CMB can be derived by considering the PAF + telescope in a black-body radiation field with
temperature Tcmb = 2.7 K. The voltage correlation Rcmb in this case is (see Appendix B)

Rcmb = 2kBTcmb(Z + ZH). (61)

The voltage correlation due to other sky background components can be calculated from a knowl-
edge of their visibility function. In this report, we take

Rsky ≈ 2kBTsky(Z + ZH) (62)

where

Tsky = Tcmb + Tbg,ν0

(
ν

ν0

)−2.7

(63)

is the temperature of the sky background at the observed off-source position. Here Tbg,ν0 is the
galactic background radiation temperature at ν0 and ν is the frequency at which Rsky is computed.

4 PAF model

As described in Section 3, we need (1) the impedance matrix of PAF, (2) the embedded beam
pattern of the PAF, (3) the amplifier noise parameters, (4) the telescope geometry and (5) the
ground and sky background temperature for modeling. The impedance matrix and embedded
beam patterns are obtained from simulation using a commercial software package (CST). CST
package is a “software for the simulation of electromagnetic fields in arbitrary three-dimensional
structures” ( see https://en.wikipedia.org/wiki/Computer_Simulation_Technology). The
mutual coupling effects between elements in the array are included in the CST simulation. To
describe the steps involved in the modeling process we consider a 19 dual polarized dipole PAF,
shown in Fig. 4. The dipoles are referred to as kite dipoles (see Fig. 4). The dipoles are kept in
front of a ground plane. The transmission lines at the end of the dipoles are 50 Ω co-axial cable.
The mechanical dimensions of the PAF are shown in Fig. 4.
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4.1 CST simulation

A mechanical model of the PAF is created in CST first (see Fig. 5). The model is created by
importing the Autodesk Inventor (see https://en.wikipedia.org/wiki/Autodesk_Inventor)
CAD model of a dipole pair. We wrote a Visual Basic program in CST to place copies of the
dipole at the 19 locations. The ground plane is created in CST. The ground plane and dipoles are
assigned with Perfect-electric-conductor (PEC) in CST. The dielectric material in the coaxial cable
are assigned with (loss-less) teflon material. Waveguide ports are connected to the 19×2 coaxial
input of the PAF for excitation. A hexahedral mesh size of λ/20 is used for running the Transient
solver. Other details on meshing are given in Fig. 6. The solution accuracy in the solver is set to
-40 dB and the frequency range is set to 1 – 2 GHz. The solver takes about 200 hrs to provide
the results. The results of interest for the PAF modeling are (a) Scattering matrix as a function
of frequency and (b) the beam patterns as a function of frequency. The CST computes the beam
patterns when one port is excited with a 50 Ω source and all other ports are terminated with 50
Ω. This computation is repeated for all the 19 × 2 ports. We export the Scattering matrix in
TOUCHSTONE format which are normalized to 50 Ω reference impedance. The beam patterns
are exported in ‘source format’ and are sampled at 5◦ interval in θ, φ. The coordinate system
(x-y-z) used to obtain the beam patterns is shown in Fig. 5. The origin of this coordinate system is
located at the intersection of the ground plane with dipole 1. Some basic sanity checks on the CST
products are done using MATLAB programs as described in Appendix G before further proceeding
with the modeling.

4.2 MATLAB simulation

The MATLAB simulation starts with the computation of (a) the impedance matrix from the Scat-
tering matrix as described in Appendix A, and (b) the embedded beam patterns as described in
Appendix H. The embedded beam patterns are used to compute the beam correlation matrices
CCe1 (Eq. 51) and CIe (Eq. 54). These are functions of position angle of the source as well as
the geometry of the telescope. The correlation matrices are computed for 10 offset angles away
from boresight. The telescope geometry used is that of GBT. The embedded beam patterns are
propagated to the projected aperture plane using Geometric optics approximation for each offset
angle. To compute Rrec (Eq. 60), we need the amplifier noise parameters. These parameters are
taken from S. Weinreb’s design [16]. The values used for the noise parameters are Rn = 0.7 Ω,
gn = 1.3× 10−4 Ω−1, ρ = 0.1622 + j0.2040, Zopt = 72 + j15 Ω and that for the input impedance
is 50 Ω. The noise parameters are measured at 1.6 GHz and assumed to be constant over 1 to 2
GHz. The values used for other quantities needed to construct the system characteristics matrix
are Tg = 300 K, Tcmb = 2.7 K, Tbg,ν0 = 0.7 K, ν0 = 1.42 GHz and a model for Virgo A flux density.
The background temperature is the temperature at the observed off-source position obtained from
[17]. The spectral index of sky background temperature is taken as −2.7. The model used for Virgo
A flux density is 285 Jy at 1 GHz with a spectral index of −0.856. The characteristics matrix M is
then constructed using Eq. 19. The maximum eigenvalue of M is determined, which is used to get
the best Tsys

ηap
(Eq. 23). The weight vector corresponding to the best Tsys

ηap
are obtained using Eq. 20.

The gain matrix is taken as identity matrix to get the weights. The modeling program provides
Tsys
ηap

and weight vector as a function of frequency and offset positions (θs, φs = 0 ) from boresight.

4.3 Excess noise temperature

The model presented here is for loss-less PAF and thus will not take into account of antenna loss.
Any increase in receiver temperature due to change in amplifier noise parameters compared to
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Table 1: Excess noise contribution to the receiver temperature

Noise contribution included in the model
Loss in thermal transition 4 K
Excess noise due to replacement transistor 5 K
Unaccounted excess noise 5 K

Possible origin of unaccounted noise
Antenna Loss ? K
Excess noise in the down converter1 ∼ 4 K
Excess spillover noise due to scattering from feed support ? K

1 https://safe.nrao.edu/wiki/pub/Main/PafDevelop/
Test_of_PAF_Backend_Amplitude_and_Noise_Linearity.docx

the value used in the model (for example replaced amplifiers) and transmission line loss ahead
of amplifier is not accounted in the model. Some of these noise contributions are measured in
the laboratory. When comparing the model results with measurements, the open circuit voltage
correlation due to these noise contributions are assumed to be of the form given in Eq. 61 with Tcmb
replaced by the measured (frequency independent) excess noise temperature. This noise correlation
is added to the noise matrix, defined in Eq. 16, while obtaining Tsys

ηap
from the model.

5 Comparison with measurement

A set of measurements using the Kite array on the GBT was made in January 2015. The details of
the measurements are given in Roshi et al. (2015)[1]. Comparison of results from a previous version
of the model with these measurements are also presented in [1]. The two major improvements in
the model presented here are : (1) improvement in the computation of embedded beam pattern
and (2) the orientation of the Kite array on the GBT is correctly accounted for as described in
Appendix I. With these improvements, the unaccounted noise temperature needed to match the
measured Tsys

ηap
toward Virgo A with the model is 5 K compared to 8 K noted in [1]. Also the

aperture efficiency predicted by the best fit model is 65% compared to 70% noted in [1]. Below we
provide a detail comparison of January 2015 measurements and model results.

5.1 Boresight beam Tsys
ηap

measured on Virgo A

We compared Tsys
ηap

vs frequency obtained from Virgo A measurements made on 25 January 2015
(TGBT14B 913 02, scans 25 to 48; see Roshi et al. (2015)[1]) with the model predictions. In
Fig. 7, we show model Tsysηap

for 4 receiver temperatures along with measured values. The 4 receiver
temperatures at 1.5 GHz are (1) those with amplifier noise alone which is ∼ 8 K, (2) with addition
of losses in the thermal transition which gives ∼ 12 K, (3) with the excess noise due to replacement
transistor which gives ∼ 17 K and (4) with an excess noise of 5 K which give ∼ 22 K. Table 1
summarizes the additional contributions to the receiver temperature over that due to the amplifier
noise alone (see also Roshi et al. 2015[1]). A 5 K excess noise of unknown origin need to be added
to the receiver temperature (i.e. ∼ 22 K) to match model prediction with the measured value (see
Fig 7). In Table 1, we list possible origin for this excess noise temperature.

Fig 8 shows the model aperture efficiency, spillover efficiency, receiver temperature and system
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temperature vs frequency. The aperture and spillover efficiencies between 1.3 and 1.7 GHz are
about 65 % and 98 % respectively.

5.2 Off-boresight beam Tsys
ηap

at 1.7 GHz

The off-boresight beam Tsys
ηap

measurements were obtained from ‘grid’ observations toward Virgo A
at 1.7 GHz (observation made on 25 January 2015 TGBT14B 913 02, scans 49 to 489; see Roshi et
al. (2015)[1]). Fig. 9 shows the model Tsysηap

at 1.7 GHz vs offset angle along with the measurements.
The model values are obtained for receiver temperature ∼ 22 K at 1.5 GHz (see Section 5.1). As
seen in Fig. 9, the predicted values match the measured values very well for frequency 1.7 GHz.

Fig 10 shows the model aperture efficiency, spillover efficiency, receiver temperature and system
temperature vs offset angle from boresight direction. The aperture efficiency drops significantly
below 65 % beyond 6′offset angle, which, as shown in Roshi et al. (2015)[1], is due to the finite size
of the PAF.

5.3 Comparison of measured noise and signal correlations with the model

We compare the noise correlation coefficient measured at an off-source position with model values.
Fig 11 shows the noise correlation of dipole 1 with rest of the dipoles for a set of frequencies. The
modeled and measured values matched reasonably well. Fig 12 shows the noise correlation as a
function of the relative separation of the dipole in the array. These plots show all the correla-
tion coefficients between dipole pairs. There are some general agreements between modeled and
measured values.

We also compare the correlation due to signal from source between model and measurement.
Fig. 13 plots the correlation of dipole 1 with rest of the dipoles for a set of frequencies. While the
model values and measurements in general show similar trends, the measured correlation coefficients
are systematically lower than the modeled value. This difference in model and measurements needs
further investigation.
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A Impedance matrix, Scattering matrix and Embedded beam pat-
tern

A schematic of the PAF is shown in Fig. 1a. The impedance matrix Z of PAF relates the port
voltages, V T = [v1, v2, ...] and currents, IT = [i1, i2, ...],

V = ZI. (64)

This relationship can also be written in terms of the admittance matrix Y

I = Y V . (65)

It follows from Eq. 64 and Eq. 65 that Y = Z−1.
Another parameter that is used to describe network is Scattering matrix S. This matrix relates

the forward traveling wave a = [a1, a2, ...] and the reverse traveling wave b = [b1, b2, ...] (see Fig. 1a),

b = Sa. (66)

The amplitude of the traveling waves and port voltages and currents are related through

V =
√
z0 (a + b) (67)

I =
1
√
z0

(a− b) (68)

where z0 is the characteristic impedance of the transmission line. In this report we have taken z0 =
50 Ω, which is the reference impedance. Substituting these in Eq. 64 and keeping in mind that this
equation holds for arbitrary set of a we get

Z = z0 (I + S) (I − S)−1 (69)

Similarly the relationship between Y and S can be obtained as

Y =
1
z0

(I − S) (I + S)−1 (70)

In Section 3.3, we defined the embedded beam pattern ~Ee. Here we present some characteristics
of the embedded beam pattern and its relationship to impedance matrix.
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1. The embedded beam pattern ~Eei is the far-field pattern when the ith input to the array is
excited with a harmonic signal of 1 V peak value and all other inputs are short-circuited. For
a loss less antenna,

1
2zf

∫
sphere

~Eei · ~Ee∗i dA =
1

2zf

∫
4π

~Eei · ~Ee∗i dΩ

=
1
2
i20i Re{Zpini} (71)

where zf is the free space impedance, i0i is the current flowing to port i (see Fig. 1b) and
Zpini is the input impedance of port i when all other ports are short circuited. The input
impedance for this case is given by

Zpini =
1
Yii

(72)

where Yii is the ith diagonal element of the admittance matrix Y . Thus, for 1 V excitation,
i0i = Yii in amps.

2. The open circuit voltage for embedded beam excitation (i.e. v0i = 1 V and 0 V for all other
ports) can be obtained from Eq. 33 and Eq. 34 as

voci = zpini

∫
Afree

(
~Ee × ~Hr − ~Er × ~He

)
· n̂ dA. (73)

This equation is also true for any (loss-less) single port antenna, with zpini as the input
impedance of the antenna and ~Ee as the beam pattern of the antenna when excited with 1 V.

3. The radiated power from the PAF for an arbitrary excitation can be written in terms of the
embedded beam pattern. The radiated power Prad is

Prad =
1

2zf

∫
sphere

~E · ~E∗ dA

=
1

2zf

∫
4π

~E · ~E∗ dΩ (74)

Using Eq. 35, Eq. 74 becomes

Prad =
1

2zf

∫
4π

V H
0

~Ee · ~EeHV0 dΩ

=
1

2zf
V H

0

(∫
4π

~Ee · ~EeH dΩ
)

V0

=
1

2zf
V H

0 CCeV0, (75)

where we define
CCe ≡

∫
4π

~Ee · ~EeH dΩ, (76)

which is the correlation matrix of embedded beam patterns integrated over 4π solid angle.
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4. For a loss-less antenna the power dissipated at the ports should be equal to the radiated
power. Thus,

1
2

(
V H

0 I0

2
+

IH0 V0

2

)
=

1
2zf

V H
0 CCeV0

1
4
V H

0

(
Z−1 +

(
Z−1

)H)
V0 =

1
2zf

V H
0 CCeV0 (77)

Since Eq. 77 holds for any V0 it follows

1
2

(
Z−1 +

(
Z−1

)H) =
1
zf

CCe

=
1
zf

∫
4π

~Ee · ~EeH dΩ (78)

B Spectral density at Thermal Equilibrium

To express the computed power spectral density in the report in terms of a physical temperature,
it is necessary to know the spectral density when the array is in equilibrium with a black body
radiation field of temperature T0 and connected with noise-less receiver system. It follows from the
first and second law of thermodynamics, that the correlation matrix of the open-circuit voltage at
the output of antenna elements in the PAF is [18]

Rt = 〈VoctV H
oct〉 = 2kBT0

(
Z + ZH

)
(79)

By applying the appropriate weights to this voltage correlation (see for example Eq. 10) we can
obtain the power spectral density when the PAF is at thermal equilibrium. From the definition of
noise figure[19], the conversion of any computed spectral density to a temperature is done by first
dividing the spectral density with that when the PAF is in thermal equilibrium and then multiply
by T0.

C Voltage correlation due to a thermal radiation field

We show here that the open circuit voltage correlation when the array is embedded in a black body
radiation computed using Eq. 37 is identical to the result given by Twiss’s theorem[18]. To do
that we follow the arguments given in Section 3.4. For the case of the array embedded in a black
body radiation field, the integral in Eq. 50 need to be extended to 4π solid angle. Thus the output
voltage correlation Rt becomes

Rt =
4kBT0

zf
Z

(∫
4π

~Ee · ~EeHdΩ
)

ZH ,

=
4kBT0

zf
ZCCeZ

H , (80)

where CCe is defined by Eq. 76. Substituting Eq. 78 in Eq. 80 gives

Rt = 2kBT0

(
Z + ZH

)
, (81)

which is the voltage correlation that follows from the laws of thermodynamics.
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D Spillover temperature

To express the spillover noise in physical temperature we follow the prescription given in Ap-
pendix B,

Tspill = T0
wH

1 Rspillw1

wH
1 Rtw1

(82)

= Tg
wH

1 Z
(∫

Ωspill
~Ee · ~Ee

H
dΩ
)

ZHw1

wH
1 Z

(∫
4π

~Ee · ~Ee
H

dΩ
)

ZHw1

(83)

= Tg
wH

1 ZCCe1Z
Hw1

wH
1 ZCCeZHw1

(84)

where we used Eq. 80 for Rt, Eq. 50 for Rspill, and Eq. 76 and Eq. 51 define CCe and CCe1

respectively. If we consider the antenna elements in the array are far apart such that Z and the
embedded beam correlations become diagonal matrices, then Tspill due to jth antenna element can
be obtained by considering the weight as 1 for jth element and zeros for all other elements. In that
case, Eq. 84 reduces to

Tspill = Tg

∫
Ωspill

~Eej · ~Eej
∗
dΩ∫

4π
~Eej · ~Eej

∗
dΩ

= Tg(1− ηspill). (85)

Here we used the usual definition of spillover efficiency ηspill[20]. An alternate method to derive
the result for a single port antenna is to start with Eq. 73 and follow the arguments in Section 3.4.

E Antenna temperature due to a source

Following the prescription given in Appendix B, the antenna temperature due to a source, TA, can
be written as

TA =
wH

1 Rsignalw1

wH
1 Rtw1

T0

=
Ssource

2kB
wH

1 ZCIeZ
Hw1

wH
1 Z

(∫
4π

~Ee · ~EeHdΩ
)

ZHw1

=
Ssource

2kB
wH

1 ZCIeZ
Hw1

wH
1 ZCCeZHw1

=
SsourceAapηap

2kB
. (86)

Here we used Eq. 53 for the signal correlation matrix Rsignal and Eq. 80 for the voltage correlation
due to a black-body field Rt. We define the aperture efficiency as

ηap ≡
1
Aap

wH
1 ZCIeZ

Hw1

wH
1 ZCCeZHw1

(87)

where Aap is the aperture area of the telescope projected in the boresight direction. For antenna
elements far apart and for weight 1 to jth element and 0 to all other elements Eq. 87 reduces to
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the usual definition[20]

ηap =

(∫
Apap

~Eeapp,jdA
)
·
(∫

Apap
~Eeapp,jdA

)∗
Aap

∫
4π

~Eej · ~Eej
∗
dΩ

(88)

We conjecture the following relationship

Z (CAe + Cce1) ZH = ZCceZ
H . (89)

where
CAe ≡

∫
Apap

~Ee
app · ~E

e
app

H
dA. (90)

Using Eq. 89, Eq. 86 can be written as

TA =
SsourceAap

2kB
wH

1 ZCIeZ
Hw1

AapwH
1 ZCAeZHw1

(
1− wH

1 ZCce1Z
Hw1

wH
1 ZCceZHw1

)
. (91)

We define the taper efficiency ηt as

ηt ≡
1
Aap

wH
1 ZCIeZ

Hw1

wH
1 ZCAeZHw1

. (92)

To get the antenna temperature for a single antenna, we increase the distance between the
elements so that matrices CIe,CAe,Cce1,Cce and Z become diagonal and use weights 1 for one of
the elements and 0 for all other elements. Eq. 91 then reduces to

TA =
SsourceAapηtηspill

2kB
(93)

where ηt and ηspill are the taper and spillover efficiencies in the usual definition[20].

F Receiver Temperature

Following the prescription in Appendix B, the receiver temperature of the PAF is

Tn = T0
wH

1 Rrecw1

wH
1 Rtw1

= T0

wH
1

(
RnI +

√
Rngn

(
ρZ + ρ∗ZH

)
+ gnZZH

)
w1

1
2wH

1 (Z + ZH) w1
(94)

where we used Eq. 60 for Rrec and Eq. 79 for Rt.
In radio astronomy instrumentation work[21] the receiver temperature Tn, versus source impedance

for a single antenna connected to receiver is usually expressed as

Tn = Tmin +NT0
(Zs − Zopt)(Zs − Zopt)∗

Re{Zs} Re{Zopt}
(95)
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where Zs is the source impedance, and Zopt is the optimum impedance. The minimum noise
temperature, Tmin, and N are Lange invariants of the amplifier. Zopt and the Lange invariants are
related to the noise parameters through expressions

Im{Zopt} =
ρi
√
Rngn
gn

(96)

Re{Zopt} =
√
Rngn
gn

√
1− ρ2

i (97)

N = Re{Zopt} gn (98)

Tmin = 2T0

(
N + ρr

√
Rngn

)
(99)

We show below that Eq. 94 can be written in terms of the Lange invariants as

Tn = Tmin +NT0
wH

1 (Z − ZoptI)(Z − ZoptI)Hw1

Re{Zopt} 1
2wH

1 (Z + ZH)w1
(100)

Eq. 100 is a generalization of Eq. 95.
Equation 94 can be rewritten as

1
2

wH
1

(
Z + ZH

)
w1

Tn
T0

= wH
1

(
RnI +

√
Rngn

(
ρZ + ρ∗ZH

)
+ gnZZH

)
w1

= wH
1

(
2
√
Rngn

(
1− ρ2

i

)
Re{Z}+

2 ρr
√
Rngn Re{Z}

)
w1 +

wH
1

(Rngn
gn

I + gnZZH − 2
√
Rngn

(
1− ρ2

i

)
Re{Z}

−2 ρi
√
Rngn Im{Z}

)
w1

= 2
(√

Rngn
(
1− ρ2

i

)
+ ρr

√
Rngn

)1
2
wH

1

(
Z + ZH

)
w1 +

wH
1

(Rngn
gn

I + gnZZH − 2
√
Rngn

(
1− ρ2

i

)
Re{Z}

−2 ρi
√
Rngn Im{Z}

)
w1

=
Tmin
T0

1
2

wH
1

(
Z + ZH

)
w1 +

wH
1

(
gn|Zopt|2I + gnZZH − 2 gn Re{Zopt} Re{Z}

−2 gn Im{Zopt} Im{Z}
)

w1

=
Tmin
T0

1
2

wH
1

(
Z + ZH

)
w1 +

gnw
H
1

(
Z − ZoptI

)(
Z − ZoptI

)H
w1

=
Tmin
T0

1
2

wH
1

(
Z + ZH

)
w1 +

N
wH

1

(
Z − ZoptI

)(
Z − ZoptI

)H
w1

Re{Zopt}
(101)
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Eq. 101 can be readily rewritten as Eq. 100.

G CST Far-field pattern, Scattering Matrix and Energy Balance

As described in Section 4.1 the Scattering matrix and Far-field pattern of the PAF are obtained
using CST software package. The Scattering matrix when exported in TOUCHSTONE format is
normalized to a reference impedance of 50 Ω. CST computes the far-field pattern by exciting the
ith array element and keeping all other ports terminated with the transmission line impedance,
which in our case is 50 Ω. These field patterns, referred to as ~E′i, depends only on (θ, φ) and are
in units of V. The field values are provided for a (default) reference distance r of 1 m. Since all
array elements are not located at the co-ordinate origin, a geometric phase will be present in the
far-field pattern. The field patterns ~E′i provided by CST includes this geometric phase factor.

We check here whether the simulation results satisfies the energy balance. The peak power used
in CST simulation is 1 W, which corresponds to a RMS (root mean square) power, Pstim of 0.5 W
for sinusoidal excitation. The amplitude of traveling waves a when jth port is excited is

ai =
√

2Pstim for i = j

= 0 for i 6= j (102)

where ai are elements of vector a. The reflected wave vector b is given by Eq. 66. The total
reflected power Preflect, which is dissipated in the port impedance, is

Preflect =
1
2

bHb =
1
2

aHSHSa (103)

The total radiated power Prad is

Prad =
1

2zf

∫
4π

~E′i ~E′
∗
i dΩ (104)

A plot of Prad + Preflect for the 38 dipoles and for frequencies in the range 1.0 to 2.0 GHz is
shown in Fig. 14. As seen from the plot, the calculated total power is equal to 0.5 W.

H Embedded beam patterns from CST far-field patterns

CST provides far-field pattern when jth port is excited and all other ports are terminated with port
impedance (i.e. 50 Ω). Using Eq. 35,

~E′j =
∑
i=1,M

qij ~E
e
i , (105)

here qij = v0i are the port voltages under the excitation condition said above. These voltages can
be computed using the Scattering Matrix. The elements of wave amplitude vector for the excitation
is

ai =
√

2Pstim for i = j

= 0 for i 6= j (106)

25



The wave amplitude vector b is then

b = aj



S1j

S2j...
Sjj...
SMj

 , (107)

where aj is the jth element of the vector a, Sij , i = 1 to M is the jth column of S. The port voltage
is then

qij =
√
z0(ai + bi)

=
√
z0(1 + Sjj)aj for i = j

=
√
z0Sijaj for i 6= j (108)

The set of far-field patterns provided by CST along with the port voltage can be used to obtain
the embedded beam pattern. Eq. 105 for the set of far-field patterns can be concisely written as

~E
′

= Q ~Ee, (109)

where the elements of Q are qij . This equation is valid for each θ, φ. Using Eq. 108 Q can be
written as

Q =
√

2 z0 Pstim (I + S). (110)

The embedded beam patterns are then given by

~Ee = Q−1 ~E
′
, (111)

Fig. 15 shows some example plots of CST far-field patterns and the computed embedded beam
patterns.

Some sanity checks on the computed embedded beam patterns are done below. We computed
the radiated power using the embedded beam pattern (Eq. 75) and compared with those obtained
using Eq. 104. The two radiated powers have identical values.

Second we check whether the embedded beam pattern satisfy the energy conservation. By
definition of embedded beam pattern we excite the array with 1 V peak at port j and short circuit
all other ports. Thus

v0i = 1 for i = j (112)
= 0 for i 6= j. (113)

The wave amplitudes are then
√
z0(ai + bi) = 1 for i = j (114)
√
z0(ai + bi) = 0 for i 6= j (115)

(116)

The vector a can be written as

a = −b +
1√
z0



0
0...
1...
0

 (117)
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where the non-zero element (which is 1) is located at jth row. Substituting in Eq. 66 and re-
arranging we get

b =
1√
z0

(I + S)−1



S1j

S2j...
Sjj...
SMj

 . (118)

Power dissipated at the jth port is

Pdis =
1
2

(aja∗j − bjb∗j ) (119)

=
1

2
√
z0

(
1
√
z0
− (bj + b∗j )) (120)

Another method to get Pdis is by using Eq. 71 and Eq. 72;

Pdis =
1
2

Re{Yjj} (121)

The radiated power computed from embedded beam patterns are found to be equal to Pdis (see
Fig. 16).

I Computation of spillover integral, aperture field and aperture
field integral

The integrals in Eq. 51 and Eq. 54 are evaluated using the coordinate system described here. We
also briefly describe the computation of aperture field for the evaluation of Eq. 54.

The geometry of the GBT is discussed in [22], [23]. The GBT surface is cut from a parent
symmetric paraboloid of diameter 208 m and f/D of 0.29. Here f = 60 m is the focal length and D
= 208 m is the diameter of the parent paraboloid. The equation of the parent paraboloid is

zpp = f −
x2
pp + ypp2

4f
. (122)

The coordinate system xpp − ypp − zpp is shown in Fig. 17. The GBT surface is obtained by the
intersection of a plane at ∼ 24◦ with the parent paraboloid. The coordinates in m of the intersection
of the plane at xpp = 0 are (0, −4.0, 59.933) and (0, −104, 14.933) corresponding to the top and
bottom end of the GBT surface respectively.

The PAF field patterns are obtained with respect to the coordinate system xp − yp − zp, which
is same as the x− y − z coordinated in the CST (see Fig. 5). The xp − yp are rotated by 45◦with
respect to the X − Y axis shown in Fig. 4 as well as the u− v co-ordinates of the CST. The x and
y polarization dipoles are aligned along the xp and yp axis respectively (see Fig. 4). The PAF is
mounted on the GBT such that zp passes through the projected center of the aperture plane on
the GBT surface. The co-ordinates of the projected center are (0, −54.0, 47.85) in m. The angle
between zpp and zp is 48.46◦, which is referred to as the feed angle β. Since the X axis shown in
Fig. 4 is parallel to elevation axle, the orientation of the xp− yp− zp with respect to xpp− ypp− zpp
is obtained first by rotating the xp− yp by 45◦clockwise with respect to xpp− ypp and then rotating
the zp axis by angle β with respect to zpp.
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The boresight coordinates xb − yb − zb and xpp − ypp − zpp coordinates are related through the
transformation

PP2B =

 cos(π/4),−sin(π/4), 0
−sin(π/4),−cos(π/4), 0

0, 0,−1

 . (123)

The rotation of the xb − yb coordinates by 45◦ will essentially align the x and y polarization
of the aperture field with these coordinate axes. The source coordinates are rotated by θs, φs
with respect to the boresight coordinates. The coordinates of the projected aperture plane in
the direction of source are obtained by defining a plane perpendicular to the unit vector ûz =
cos(φs)sin(θs)̂ib+sin(φs)sin(θs)ĵb+cos(θs)k̂b, where îb, ĵb, k̂b are the unit vectors along the xb, yb, zb
axes.

The aperture field is obtained using Geometric optics. We also assume that the GBT surface
is a perfect conductor. The boundary condition during reflection is that the tangential component
of the field at the surface is zero,

~Ee(i)i − r̂n · ~Ee(i)i r̂n = −~Ee(r)i + r̂n · ~Ee(r)i r̂n, (124)

where ~Ee(i)i and ~Ee(r)i are the incident and reflected fields respectively and r̂n is the unit normal to
the surface element where reflection is taking place. Since the surface is assumed to be loss-less
|~Ee(i)i | = |~E

e(r)
i |. Applying Snell’s law it follows that

~Ee(r)i = 2r̂n · ~Ee(i)i r̂n − ~Ee(i)i (125)

The unit normal is given by

r̂n = −
~rθ × ~rφ
|~rθ × ~rφ|

= −cos(θpp/2)r̂pp + sin(θpp/2)θ̂pp, (126)

where ~rθ = ∂~rpp
∂θpp

, ~rφ = ∂~rpp
∂φpp

and (|~rpp|r̂pp, θppθ̂pp, φppφ̂pp) are spherical coordinates of the GBT
surface in the xpp − ypp − zpp system. The incident fields are the beam patterns provided by the
CST scaled by the distance from the focus to the reflector. The reflected field is propagated to the

source coordinate to get the aperture field, which is given by ~Ee(r)i e−
j2π(2f+zsb )

λ , where zsb is the z
component of the project aperture plane in the boresight coordinates.

J Symbols and Notations used in this report

The bold letters represent m×n, 1×n and m×1 matrices (example M). The 1×n and m×1 matrices
are referred to as vectors. Transpose of a matrix is represented, for example, by MT and Hermitian
transpose is represented, for example, by MH . Complex conjugate of variable say v is denoted by
v∗. Vectors in real space are represented with an arrow on the top of non-bold symbol (example
~E). An arrow on top of a bold symbol is used to represent a matrix or vector of real space vectors
(example ~E). For example,

~EeT =
[
~Ee1 , ~Ee2 , ...

]
The calligraphic symbols are used to represent electromagnetic fields which depends on the position
vector ~r (example ~Ee) and Latin symbols are used for electromagnetic fields which depends on the
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angular coordinates θ, φ (example ~Ee). The operation ~EeT × I ~Hr can be expanded as

[
~Ee1 , ~Ee2 , ...~EeM

]
×


1, 0, 0, ...
0, 1, 0, ......

..0, 1

 ~Hr =


~Ee1 × ~Hr
~Ee2 × ~Hr...
~EeM × ~Hr


Similarly the operation ZI p̂ · ~Ee can be expanded as

Z


p̂, 0, 0, ...
0, p̂, 0, ......

..0, p̂

 ·

~Ee1
~Ee2...
~EeM

 =


z11, z12, ..., z1M

z21, z22, ..., z2M...
zM1, zM2, ..., zMM



~Ee1 · p̂
~Ee2 · p̂...
~EeM · p̂


ηap Aperture efficiency
ηtap Taper efficiency
ηspill Spillover efficiency
λ Free space wavelength of radiation
θs, φs Source position in the sky w.r.t the boresight coordinate system
ai, bi,a, b Traveling wave amplitudes in the transmission line
A Matrix that transform open-circuit voltage to ‘loaded’ voltage
A Enclose area in Lorentz integral (Eq. 24)
Aap Physical area of the telescope aperture projected in the boresight direction
Atrans Cross section area in the transmission line (see Fig. 2)
Afree Surface area away from the metallic surface of the PAF (see Fig. 2)
c Velocity of light in free space
Darray Maximum physical size of the PAF
~Ee, ~Ee Embedded electric field patterns
~Ee, ~Ee Set of M embedded electric field patterns
~Ee

pap Set of M embedded electric field patterns propagated
to the aperture plane projected in the direction of the source

~Ee
pap,x,

~Ee
pap,y x and y components of ~Ee

pap

emax Maximum eigenvalue of system characteristics matrix
G Gain matrix of the system (diagonal)
~He, ~He Embedded magnetic field patterns
~He, ~He Set of M embedded magnetic field patterns
~He

pap Set of M embedded magnetic field patterns propagated
to the aperture plane projected in the direction of the source

i0i , I0 Excitation current for the PAF (source impedance = z0)
I Identity matrix
k Wave vector of spherical waves of radiation pattern
kB Boltzmann constant
kinc Wave vector of the incident radiation field (plane wave and also arbitrary wave front)
M number of elements in the PAF
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M Characteristics matrix of the system (i.e. PAF+telescope+receiver)
N Open-circuit voltage correlation matrix of the total noise at the output

of the antenna array
p̂ Unit vector along the polarization of an incident radiation
Prad Power radiated by the PAF
Preflect Power reflected from the ports of the PAF
Pstim Excitation power used by CST 1 W peak-peak
~r, r Position vector and its magnitude
Rn, gn, ρ Noise resistance, conductance of the low-noise amplifier and

their correlation coefficient
R̃ Correlation of ‘loaded’ voltages
R Correlation of open-circuit voltages
Rt Correlation of open-circuit voltages at the output of the antenna

array when it is enclosed in a black body radiation field
S Scattering matrix
Ssource Flux density of source
SNR signal-to-noise ratio
TA Antenna temperature
Tsys System temperature
Tg Physical temperature of the ground
T0 Reference temperature 290 K
Tcmb Cosmic microwave background temperature
Tsky Brightness temperature of sky background radiation at the

frequency of interest
v0i ,V0 Excitation voltage for the PAF (source impedance = z0)
Ṽ ‘Loaded’ voltage at the input of the beamformer or combiner
Voc Open-circuit voltage at the output of the antenna array
w,w1,w2 Weight vectors
xb, yb, zb Boresight coordinate system
xp, yp, zp Coordinate system on the PAF which is used to obtain

the radiation pattern. In Fig. 5, this is shown as the u-v-w coordinates.
x, y, z Coordinate system with z-axis pointing towards the source
Y Admittance matrix of the PAF
z0 Reference impedance 50 Ω, also characteristic impedance of

the transmission line
zf Free space impedance
Z Impedance matrix of the PAF
Zin input impedance of the low-noise amplifier
Zin input impedance (diagonal) matrix
Zpini Input impedance of a port of the PAF when all other ports

are short circuited
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Figure 4: 19-element Kite Array and the Kite dipole are shown on the top. The physical dimensions
of the PAF are given on the bottom.
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Figure 5: 19-element Kite Array Mode in CST. The far-field patterns are computed with respect
to the x-y-z co-ordinate system. The origin of this system is located at the intersection of ground
plane and dipole 1.
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Figure 6: Mesh parameters used for the simulation in CST.
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Figure 7: Tsys
η vs frequency from Virgo A observations (solid line) and PAF model (dotted line).

The model Tsys
η is calculated for different receiver temperature (see text for details). The receiver

temperature of each set of models at 1.5 GHz is marked on the plot.
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Figure 8: Model aperture efficiency (top right), spillover efficiency (top left), receiver temperature
(bottom right) and system temperature (bottom left) vs frequency. The receiver temperature of
each set of models at 1.5 GHz is marked on the plot.
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Figure 9: Tsys
ηap

vs offset from boresight direction from Virgo A ‘grid’ observations (+ & x points) and

PAF model (dotted line). The model Tsysηap
is calculated for receiver temperature ∼ 22 K at 1.5 GHz.

The model values are plotted for different frequencies as marked on the plot. The measurements
are made at 1.7 GHz.
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Figure 10: Model aperture efficiency (top right), spillover efficiency (top left), receiver temperature
(bottom right) and system temperature (bottom left) vs offset from boresight direction. The
receiver temperature for the models is ∼ 22 K at 1.5 GHz. Model values for different frequencies
are plotted as marked on the plots
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Figure 11: Model noise correlations (blue) and measured correlations (black) between dipole 1
and other dipoles. Dipoles 1 to 19 correspond to X polarization and 20 to 38 correspond to Y
polarization. The frequencies at which the correlations are obtained are marked on the plot.
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Figure 12: Model noise correlations (blue) and measured correlations (black) between dipoles vs
relative separation of dipoles in PAF. The correlations from X polarization dipole are shown on
the right and those from Y polarization dipole are shown on the left. The frequencies at which the
correlations are obtained are marked on the plot.
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Figure 13: Model signal correlations (blue) and measured correlations due to source (black) between
dipole1 and other dipoles. The measured signal correlations are obtained from the difference of
on-source and off-source correlation matrices when the Virgo A is at the boresight. Dipoles 1 to 19
correspond to X polarization and dipoles 20 to 38 correspond to Y polarization.
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Figure 14: The sum of radiated and reflected power for different dipoles in the array. These powers
are obtained using the Scattering matrix and radiation pattern provided by CST. The powers are
computed for frequencies shown on the plot. As seen in the plot the sum of the radiated and
reflected power is about 0.5 W, which is the RMS excitation power used by CST.
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Figure 15: Plots of far-field pattern from the CST software package (blue) and the computed
embedded beam patterns at 1.5 GHz (red).
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Figure 16: The radiated power computed with embedded pattern is compared with power dissipated
at the excitation port. The dissipated powers are computed using Eq. 120 (marked as Pdis wave) and
Eq. 121 (marked as Pdis circuit). As seen in the figure the radiated power is equal to the dissipated
power.
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Figure 17: Coordinate system used for the computation of Eq. 51 and Eq. 54 (see text for details).
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