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Correlation Function to Power Spectrum Transformations

S. Weinreb

I. Introduction

The true power spectrum, P(f), is exactly and unambiguously given as the
Fourier transform of the true autocorrelation function, R(t), which must be known
for all 1, ~ » s ¢t £ ». However, when we step from the mathematical world to the
real world the relation between N samples of an approximate spectrum, P¥(KAf),
0 £ k £ N-1, and N samples of an autocorrelation function, R(nAt), 0 £ n < N-1,
becomes somewhat arbitrary and ambiguous. (In further notation the *,Af and At
will be dropped to give P(k) and R(n) as the spectral estimate and sampled
autorcorrelation function.) One transformation gives one approximation to P(k)
and a different transformation gives a different approximation; unless a criteria

of "best" is chosen, the choice is arbitrary.

II. Transform Criteria

The criteria which will be used here to select an optimum transformation
are the following:

1) As is widely discussed in the literature (see Blackman and Tukey [1],
Weinreb [2], and Rabiner and Gold, p. 88 [3]), P(k) is a convolution of P(f) with
an equivalent filter shape function, W(f-kAf). We desire that W be as narrow and
free of spurious lobes as possible. These two criteria conflict and the compromises
are discussed in the literature. A usual procedure is to adopt a narrow W(f) by
uniform weighting of R(n) and deal with spurious lobe reduction in later processing
by combining adjacent spectral points; i.e., a new estimate P'(k) = aP(k-1) +
bP(k) + aP(k+1) is formed where a and b are selected constants.

However, with little effect on the width and lobe suppression, it is possible

to choose the transformation to meet other criteria given below.



2) Imperfections in the sampler tend to produce a large and somewhat
unstable spurious signal at zero frequency. This results from DC offsets and
leakage of the sampler clock signal or its harmonics into the sampler input. For
this reason, it is highly desirable to have spectral values P(k) for k # 0 independent
of the zero frequency signal; i.e., the window function, W(f-kAf), should have a
zero at £ = 0 for all k.

3) A convenient transformation is the Fast-Fourier-Transform, FFT, as
implemented with the Cooley-Tukey algorithm. The most widely available FFT
algorithms are for ND points equal to a power of 2. Digital correlators are
often built to also have a power of 2 number of channels. This is somewhat
unfortunate as criteria 2) is easily met with ND = 2(N-1) where N is the number
of correlator channels; i.e., a correlator with a power of two channels plus one
would be convenient. However, a remedy exists which allows ND = 2N.

y) The sampling theorem applied in the frequency domain determines the
maximum spacing of frequency points, Af = fg/2(N-1), which will preserve all
information in the autocorrelation function which is band limited to 0 £ 1 £
(N-1)/fg where fg = 1/At is the sampling frequency. The required maximum angle
argument in the FFT is then 2w (kAfk)(nAt) = 2xkn/2(N-1) = 27kn/ND. Note that
ND = 2N provides sufficiently close frequency points, ND = N does not, and

ND 2(N-1) is the minimum size transform. Also note that only N input data points

are available for a transform having ND > N; the remaining data points can either

be made zero or repeats of the first N points.

I1I. Definition of Transforms
We will compare 3 possible transform equations in the light of the above

criteria. The first of these, Py, defined below is the most obvious choice if



criteria 2) is not considered:

P1(k) =2 2§_1 R(n)cos(2mnk/2N) - R(o)
n=o
where k is an integer ranging from 0 to N-1 in all equations. Thus Pq(k) + R(o0)
is twice the real part of a 2N point DFT of the real function R(n). Since R(n) =
O for n 2 N, the upper limit in the summation could be N-1, but this would not be

in the form of a standard DFT since the angle argument necessarily contains 2N.

An equivalent reflected version of this DFT can be written as:

2N-1
P, (k) = Y R'(n)cos(2mwnk/2N)
n=0
where R'(n) = R(n) 0 <n <N
R'(n) = 0 n =N
R'(n) = R(2N-n) N+1 < n < 2N-1

Another selection of transform is suggested by Blackman and Tukey [1, p. 35]
and is given by
2N-3

P,(k) =2 Y} R(n)cos[2mnk/(2N-2)] - R(o) - R(N-1)cosmk
n=0

where the substitution N-1 = m is made in the original notation and the summation
is written in the form of a real part of a 2(N-1) point DFT of the real function
R(n) which is 0 for n > N. This transform meets criteria 2); Py(k) = 0 for all k
when R(n) is constant with n as is produced by a zero-frequency signal.

A third transform which is a 2N point DFT and meets criteria 2) can be
obtained by adding an (N+1)th point to R(n). This can be done with surprisingly

little deleterious effects (see Figure 1) by defining R(N) = R(N-2) as the extra
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The solid line in the above figure is the true spectrum consisting of a
constant plus a 40% ripple at a frequency having a Fourier component at
R(N-2). The bottom curve with + symbols is the normal DFT, P4y(f) and
the top + curve is the modified DFT with an added term, R(N) = R(N-2).
There is surprisingly little difference between the curves. The points
represented with filled squares are weighted versions of the transform
and show large attenuation of the ripple term since it is close to the
resolution limit of the system (i.e., a ripple at R(n) for n 2 N is
totally ignored).



point, and then in analogy to P,
2N-1
P3(k) =2 3 R(n)cos(2wnk/2N) ~ R(o) - R(N)cosmk
n=0
or the equivalent form,
N-1

P3(k) =2 ) R(n)cos(2mnk/2N) - R(o) + R(N)cosmk
n=o

IV. Transform Properties and Weighting

Some of the properties of these three transforms are shown in Figure 2.
Since P, requires a difficult transform, it will be dropped from further discussion.
It is also obvious from Figure 2 that weighting of the transform will be needed
in most cases to reduce spurious lobes. The weighting affects the zero frequency
response.

A unified method of describing weighting effects on both Pq and P3 can be
obtained by considering a weighting function, w(n) which multiplies R(n) defined

by two constants A and B, and the equations

w(n) = A + (1 - A)cos(wn/N) 0 $snsN-1

w(N) B

The values of A and B for Py and P3 and uniform, hanning, and Hamming weighting
are given in Table I below:

TABLE I. WEIGHTING FACTORS

Uniform Hanning Hamming
Weight Weight Weight
Normal DFT, P4
A 0 0.500 0.540
B 0 0 0]
Modified DFT, P3
A 1 0.500 0.540
B 0 0 0.0800




Fig. 2.

] P2(14),P2(15),P2(16) FREQUENCY RESPONSE .5F8

-] P3(14),P3(15),P3(16) FREQUENCY RESPONSE .5FS

Frequency response produced by the three transforms defined in the text, Pq,
P>, and P3 are shown from top to bottom, respectively. The solid line shows
the value of the transform point P (15) for an N = 32 point autocorrelation
function as the frequency of the correlated time function is varied from O

to 1/2 the sampling frequency, fq/2. The outputs of Pi(14) and Py(16) are also
shown with + and x symbols, respectively. The zero frequency response of

P1(k) is + 1/32 of the peak for all k # O while Po(k) and P3(k) are exactly
zero at zero frequency for all k # 0.
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In this formulation, where R(N-2) is unweighted, R(N) = R(N-2) for all
cases, and the transform is defined as for P3 in the previous section. Pq is
described by the same equations since R(N) will be multiplied by w(N) = B = 0 and
has no effect. For the case of P3, B is chosen to to give zero response at zero
frequency.

Note that hanning weighting gives zero DC response with the normal transform
and P3 will not give zero DC response unless B = 0; i.e., P3 = Pq, in this case.
For Hamming weighting the value of B which nulls the DC response is 0.0800 as
found by computer interation for N = 16, 32, and 64. We then note that
B =2A - 1 to give zero DC response for all three weightings of the modified DFT!
This relation has been checked for other values of A.

The response of a transform output point, Py(4), to input sinusoids of
frequencies from zero to fg/2 is shown in Figure 3 for the case of N = 32 and
various transforms. The modified DFT for A = 0.60, 0.65, and 0.70 is shown in
Figure 4.

A listing of the relevant part of a GWBASIC program used to evaluate transforms

is shown in Figure 5 with arrows on key lines.

V. Conclusions

1) For transform convenience it is desirable to construct correlators with
number of channels, N, equal to one plus a power of 2.

2) The hanning weighting is a good general purpose window for most radio
astronomy observations. It gives zero DC response for any N and has very low
spurious lobes.

3) If the 65% increase in equivalent filter half-power width due to hanning
is not tolerable, then the modified DFT, P3, with zero DC response can be used.

4) Functions which give an intermediate trade—-off of resolution vs spurious

lobe level are the modified DFT with A = 0.60, 0.65, and 0.70.
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Fig. 3.

transforms are shown at left, hanning weight of Py

P3 is shown at bottom-right.

Response of various transforms to input sinusoidal signals at frequencies from 0 to fg/2.
= P3 is shown at top-right, and Hamming weight of
The number of autocorrelation points is 32; i.e., lags from O to 31.

The unweighted
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Fig. 4. Response of modified DFT, P3(Y4), to frequencies from 0 to
fg/2 for weighting factors 0.60, 0.65, and 0.70 which gives
increasingly narrow resolution and higher spurious lobe level.
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REM DFTABC 2721786
DIM R{128),P{4,128) ,RU{128)
LPRINT CHR#$(27);"L888" ;CHR$(27)>;"E"; :REM LEFT MARGIN AND ELITE
PI=3.141592454
SCREEN @,1: COLOR 12,9 :CLS
PRINT * K F P<1,FD pi2,F)"
VIEW PRINT 2 TO 24
REM MAIN PROGRAME XXX XXX XXX XE XXX F XXX AR R XX C XA XX XARF XX R XXX R XXX R XXX E XX
AlL1)=,65:A(2)=.73
Ki=4:NP=32 :Fl=8:F2=,5:JF=128
DF={F2-F1)/JF
FOR J=8 TO JF:F=F1+J%DF
GOSUB 1888: REM GEN R{(N) FOR F
FOR L=1 TO 2 :AlW=A(L)
GOSUB 19588: REM WEIGHTED DFT
NEXT L
NEXT J
GOSUB 2888: REM PRINT TABLE
INPUT "SELECT K=1,2,0R 3 FOR PLOT OR K=8 TO HALT";K
IF K=8 THEN LIST S88-788
IF K=1 THEN GOSUB 22@8
IF K=2 THEN GOSUB 2228
IF K=3 THEN GOSUB 23@@
GOTO 488
END
REM GENERATE R{N) FOR NORMALIZED FREQUENCY F XX%¥X%XXXEXXEXXXXXXXXXEXXXXXENR
B=2%Pl *F
FOR N=8 TO NP-1:R{(N)=COS(B*N> :NEXT
R{NP)I=R{(NP-2)
RETURN
REM REFLECT R{N) #X¥XXAXXEXFAXXXXXREAXERXXEXCER XXX XXX R XXX XX AR RE XXX XXX X%
Ri{NP)=8
FOR N=NP+1 T0 2#NP-1: R(N)=R{2¥NP-N): NEXT
RETURN
REM GENERATE R(N) FOR WHITE NOISE ****XXXEXEXEXEXXXXAXRXEXXXXAXRXEXEXXXXXRRXE R XX
R{B)=1
FOR N=1 TO NP-1: R{N)=8: NEXT
R{NP)=R{NP-2)
RETURN
REM WEIGHT RIN) ¥ XXX XXX EXEXEXXXEEX XXX XXX XX XXX XXX R X XXX XXX XXX XXX XXX RX XXX XX
B=PI./NP P
FOR N=8 TO NP
RW{NI=R{N) *{Al+(1-AlW) *COS{BxN))
NEXT
RETURN
REM 2%NP TRANSFORM FOR Pl AND P3 * XXX XX XEXXXAXXAXAXFAXXXXAERRCX R XXX RXRXRRR
GOSUB 1388: REM WEIGHT
A=2%P1/(2%NP)
K=K1
SUM=8 :AK=Ax*K
FOR N=8 TO NP
SUM=SUM+RW{N) *COS{AK*N)
NEXT N
P{L,J)=2%SUM -RW{8B)-RW{NP)*COS(PI*K)
IF L=2 THEN PRINT USING "##.H#### ";K,F,P(1,J),PL2,D
IF PC(L,J)>PMAX{L) THEN PMAX{L)=P{(L,J)
IF J=JF THEN FOR JK=8 T0 JF:P(L,JK)=P{L,JK)/PMAX{L3 :NEXT JK
RETURN

Fig. 5. GBBASIC program used to evaluate transforms.
Printing and plotting subroutines are not shown.
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