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Introduction 

In a previously-published white paper [1], the authors introduced the concept of a point-to-point 
fiber-optic digital data link for radio astronomy receivers with minimal processing overhead on 
the transmit side. A block diagram of what this might look like is shown in Figure 1. 

Unlike conventional digital fiber-optic links, which employ power-intensive formatting, framing, 
and encoding operations at the transmitter to manage and maintain the link, the unique statistical 
characteristics of radio astronomy 'noise' renders many of these techniques unnecessary, and 
allows the maintenance of the link to be performed entirely at the receive-end using the data 
itself as the diagnostic input. 

Bit-scramblers, for example, are not needed to guarantee logic-level transitions for clock- 
recovery. The noise from the receiver alone will be sufficient to ensure transitions in the data 
with sufficient frequency. 

In this memo, we turn our attention to a somewhat more challenging problem, namely the 
detection of word boundaries in a continuous, serialized data stream. We assume the size of the 
word in bits is known a priori. 

Since all sample values are theoretically possible, albeit with varying likelihood, examination of 
a single word-length is not sufficient to reliably determine the offset of the word boundaries in 
the data. Instead, a large number of word-lengths will have to be processed in order to 
accumulate statistical certainty before a positive detection is made and the required bit-shift is 
put in place. The link may then be considered synchronous with respect to word boundaries. 
Whether re-synchronization is performed continuously, once during startup, or periodically (as in 
a routine calibration) is an operational detail that is beyond the scope of this memo. 

Assumptions 

We make two assumptions about the analog signal statistics. First, that it is noisy (random) with 
a Gaussian-distribution, and second, that it is white, guaranteeing that consecutive samples are 
uncorrelated. Together, these conditions provide a mathematical basis on which to design word- 
detection strategies and then to evaluate their performance. 



It is worth acknowledging briefly that neither of these conditions is strictly true in an exact sense. 
The spectrum will inevitably include non-Gaussian components at some level, and there will 
always be some variation in noise power across the receiver's instantaneous bandwidth due to 
band-limiting filters, RFI, and the astronomical signal of interest. The impact of these effects 
needs to be investigated with numerical experiments, but the present analysis is believed to be 
sufficiently accurate for the great majority of real-world cases to be encountered. 

Under these assumptions, the probability distribution of the analog signal voltage for any sample 
is given by 

where v is the instantaneous analog voltage, \i is the mean value, and a2 is the variance. The 
probability that the signal will fall between vi and V2 at any one instant is given by 

Qr>mv = 7y:^P(-^.)dv (2a) 
=-kfMe~t2dt (2b) 
=^Me~t2dt (2b) 

These probabilities have been tabulated in Figure 2 for 32 bins using the normalization 

_ Vmax-Vmin _ PQZ* _ Vfi2N""L .^ 
""       2<rV2 2<rV2~    ffV2 V* 

where Vmax- Vmin is the analog input range of the sampler, vo is the threshold voltage for each 
level, and N is the number of bits per sample. It has further been assumed that there is no offset 
from center. Small offset errors, less than one sampler threshold, should not affect the statistics 
appreciably. On the right side of the figure are the 5-bit binary representations of the sampler 
output in several binary formats. This diagram is for illustration only, as we make no 
assumptions at this stage about the number of bits per word. 

Finally, we assume without loss of generality that the data is serialized in "little-endian" fashion, 
meaning that the least significant bit in each word, bo, is transmitted first, followed by the other 
bits, bi...bN-i, in order of increasing significance. This is the most common convention for digital 
serial links, however the analysis that follows applies equally-well to "big-endian" data streams, 
provided the bits are processed in the reverse order, and where the text makes reference to the 
"preceding" or "following" word in a sequence, the opposite sense is understood instead. 



Algorithm 

The algorithm is as follows. The incoming serialized data stream is divided up into N-bit chunks, 
where N is the number of bits per word. These usually will not represent actual samples, since 
the word boundaries have not yet been detected. The goal of the algorithm is to determine the 
offset of the actual N-bit samples within the N-bit chunks. For each bit position within a chunk, a 
score is given. The bit position receives 1 point if a specified logical test is TRUE, and 0 points 
if the test result is FALSE. The test will depend on the binary format used. The score is then 
tallied over some large number of chunks, M, and the bit position with the highest score is 
declared the most significant bit (MSB) of the actual samples. 

The performance of the above algorithm can be evaluated by first considering the probability that 
a given bit will yield a TRUE in the logical test defined for the given binary format. Denote this 
probability for bit k in the actual samples as pk. 

The point awarded to bit k in chunk i is then a Bernoulli Distributed random variable, X^, with 
mean and variance given by 

£{*£*} = Pk (4a) 
Var{Xiik} = pka-pk) (4b) 

(Note that the index k refers to the significance of the bit in the actual samples, where k=0 
corresponds to the least significant bit and k=N-l corresponds to the most significant bit. The 
position of these bits within chunk, i, is unknown until completion of the algorithm.) 

The score, Yk, for bit position k after tallying M chunks is 

By the Central Limit Theorem, we know that for large M the probability distribution of Y is 
Gaussian, with mean and variance given by 

E{Yk} = Mpk (6a) 
Var{Yk} = Mpk(l-pk) (6b) 

The probability of the algorithm failing, Pf, is the probability that the score for the MSB is 
smaller than for one of the other bits, 

Pf = PVN-I <Yk\k<N-l} = iEK2erfcf ,/^"^   J (7a) 

= ISH erfc L ^Os-i-Pj ] (7b) 
\J2(pjv_1(l-pjv_1)+pfc(l-pfc)) J 



The approximation holds when the probability of failure is small, and is conservative (that is, it 
overestimates the probability of failure by double-counting the cases where more than one wrong 
bit has a higher score than the most significant bit.) A usefiil upper bound for the complementary 
error function is 

erfc(*) <    Z6"*2    v' * > 0 (8) 

We now evaluate the performance of this algorithm for three common binary formats — sign- 
magnitude, straight binary, and two's complement. 

Sign-Magnitude 

Although sign-magnitude notation is rarely used in this context, it is a fairly simple case to 
analyze, so it will be treated here for completeness. 

First, we must define a logical test that preferentially results in TRUE when applied to the sign 
bit (which is considered the most significant for the purposes of this analysis). 

It is evident from inspection of Figure 2 that the most significant bit after the sign bit is almost 
always zero near the center of the voltage scale, in the sample words with the highest probability 
of occurrence. The latter bits take on the value zero with lesser frequency. We might then decide 
to use "bk-i=0" as our logical test for scoring each bit, however since all the high order bits 
assume a value of zero with high probability, that test doesn't discriminate between them very 
well, especially at low analog power levels where only the inner most sample codes are ever 
used. Several bit positions could easily end up with almost identical scores. Instead, we add to 
the test the criterion that the current bit, bk, must be one. Although the sign bit fails this test 
roughly half the time, it fails the first few high order bits with greater regularity. Therefore, 

ysm _ P»    bk = 1, bk-! = 0 
Xi'k "" 10, else (9) 

where the superscript "sm" refers to the sign-magnitude format. Throughout this document, 
subscripts shall be understood to be cyclic, so that 

**<o = bk+N (10) 

The bits which pass the test in Equation (9) are shaded in the figure, red if the bit pattern is 
contained within the word, and blue if it crosses over a word boundary. The probability of a 
given bit receiving a point is 

pr = p{bk = o} (ii) 

and can be read off of Figure 2 for particular cases as follows 



pri = ierf(fa) (12a) 
P^2 = erf(f«)-erf(fa) (12b) 

P™3 = erfga) - erf(ia) + erf(|a) - erfga) (12c) 

By recognizing the above pattern, we can write a formula for the more general case as 

P^l-5 = \ 

f ierf(|a) s = 0 

2?;i
1[erf(2-s(2i - |)a) - erf(2-s(2i - l)a)]        1 < s < N - 2   (13) 

U - f 2f=r[erf(2-iV(4i - 2)a) - erf(2-iV(4i - 4)a)]       5 = tf - 1 

where the first case, s=0, corresponds to the sign bit. This is plotted in Figure 3 as a function of 
signal strength. 

Note that when the signal strength is very high, the probability of the sign bit scoring a point 
drops off rapidly. This corresponds to the saturation of the sampler, in which case the outermost 
sample codes begin to occur even more frequently than those in die center. The algorithm will 
fail in that situation. This is not a useful operating point for the sampler, however, and should 
almost never occur in practice. The nominal signal strength for radio astronomy is usually 
optimized for quantization noise, which in most cases will put the operating point on the left side 
of the plot, well below the saturation crossover point, where there is a strong statistical bias for 
the sign bit. A notable exception is two-bit sampling (N=2), which will be discussed later. 

Straight Binary 

Let us now consider serialized data streams in straight binary (or offset binary) format, shown in 
the second column of Figure 2. The patterns of O's and I's have odd symmetry about the center of 
the probability distribution, so any bit, no matter what it's significance, will assume both values 
with equal probability. Therefore, the method described above for the sign-magnitude case will 
not apply. 

Instead, we note that in the most likely sampler outputs, those in the center of the sampler range, 
the two most significant bits differ, whereas the next few bits are the same. Therefore, the logical 
test we use for die straight binary case is that the current bit differs from the preceding bit, 

ysb _ (1' 
u " 10, 

1.    h * h-i 
bk = bk-i 

(14) 

As above, the probability of given bit scoring a point can be read off the figure 

PSNb-i = erf(fa) (15a) 
pSfc-2 = erfga)-erf(ia) (15b) 

pjf_3 = erf(|a) - erf(fa) + erfga) - erf(|a) (15c) 



or in other words, 

ri?-w = ZtU-l)1-1 erf((l - 2-s(i - i)) a) (16) 

where 

0 < s < N - 2. (17) 

When s=N-l, the two bits being compared extend over a word boundary between the current 
word and the previous word (using little-endian bit order). The probability of a the two bits 
differing in this case is simply one half, owing to the fact that O's and I's are equally likely in all 
bit positions and subsequent words in the data stream are uncorrelated. Therefore, 

&« = te"1)'"1 erf ((1 - 2"*(' - 9) a)    O^s^"-2 (18) 
I 0.5 s = N-l 

PN 

This is plotted in Figure 4, which clearly shows a strong statistical bias for the most significant 
bit (k=N-l) to the left of the saturation crossover point. 

Two's Complement 

The sample codes for two's complement notation are shown in the final column of Figure 2. 
Unlike straight binary, the first two bits are equal in the most common samples rather than 
different. In fact, that is the only difference between the straight binary and two's complement 
sample codes. Our logical test for two's complement then will be that the current bit matches the 
preceding bit, and does not match the following bit, 

rtc _ f 1* 
^ " lo. 

bk = &k-i * fcfc+i 
else (19) 

Once again, the probability of a bit scoring is easiest to read off the figure. 

Pi5rc-i=ierf(fa) (20a) 
p^-2 = l- erfga) (20b) 

PN-3 = erf(|a)-erf(|a) (20c) 
riP-4 = erf(Ha) - erf(£z) + erfga) - erf(^a) (20d) 

The general equation for s>2 is, 

-*      =j2?ri2[erf(2-s(4i-f)a)-erf(2-(4i-f)a)]      2<s<Ar-2 
Uz£1"3[erf(2-N(8i-2)a)-erf(2-w(8i-6)a)]       S = N_1 



These probabilities are plotted in Figure 5. 

Reliability 

The algorithm works reliably so long as the logical tests provide a strong statistical bias for the 
MSB, which is always the case for nominal signal levels in radio astronomy. As an example, the 
probability distributions of scores for 8-bit, two's-complement data, with a=5vo, and M=255 
words counted are shown in Figure 6. The bell curve for the MSB (k=7) is well to the right of all 
the others. In this case, the chances of failure, as calculated using Equation (7), are less than 
TxlO'7. 

The reliability improves exponentially with the number of words counted, as shown in Figure 7 
for a number of common-use cases. In all of these cases, the nominal signal level for optimum 
quantization noise is well below the saturation cross-over point. 

The only case in radio astronomy which comes close to saturating the sampler is when two-bit 
sampling is used. The probability of bits scoring for N=2 is shown in Figure 8. This plot is 
exactly die same for all binary formats. The optimum level for quantization noise using two-bit 
sampling is approximately a=vo (on the plot, a/2vo = 0.5). The algorithm will work in this 
situation, but die statistical margin has been reduced relative to all the cases discussed so far, so a 
somewhat larger number of samples will have to be counted to achieve the same level of 
reliability. 

Figure 8 shows that as the signal level increases beyond that point, the long tail of the Gaussian 
curve for the analog signal builds up the probability of occurrence of the outer two sample codes 
until they become even more likely to occur than the innermost codes. These codes are identical 
to the innermost codes except shifted by 1 bit. Under these conditions, the algorithm will fail by 
locking on the wrong bit. 

In practice, if there is any fear of the sampler being in saturation when the word-boundary 
detection algorithm is running, an easy fix would be to simply bias down the front-end LNAs 
before doing so, dropping the gain of the system and pushing the analog signal level to the far 
left side of the plot. Once word-lock is established, the gain could be turned back on. 

Validation 

To validate the theory, as well demonstrate the effects of RFI and other non-Gaussian, non-white 
effects on the algorithm, actual data from laboratory receivers was analyzed. The data was scored 
according to the logical tests prescribed by the algorithm and the results averaged for each bit. 
Multiple signal levels were simulated from the same data set by clipping the waveform and 
truncating the bits. The results are shown in Figure 9 through Figure 12. Each data point 
represents the average over 100,000 samples. 



Figure 9 is the scoring probability for the data without any CW components, as shown in the 
spectrum in the upper-right comer. The markers, representing real data, fall on top of the 
theoretical curves over most of the dynamic range of the plot. Only the k=0 bit deviates slightly 
at the right side of the plot where the waveform is beginning to clip. This is the bit for which the 
logical test (bk^bk-i) crosses over a word boundary. The theoretical curve for k=0 is based on the 
assumption that the noise is white, so there is no correlation between successive samples. The 
deviation we see in the measurement is probably due to the "color" of the spectrum, or in other 
words the gain slope at the high end of die band. With the higher-frequency components 
dropping off in amplitude, the correlation between adjacent samples is small but positive (so the 
chances of a 'mismatch' across the word boundary are less). 

Figure 10 shows the scoring probability for a spectrum which contains a strong, high-frequency, 
CW tone. The strength of the CW tone roughly doubles the total integrated power in the 
spectrum. In this case, the k=0 bit has a higher probability of scoring at large signal levels than 
predicted, due to the small but negative correlation between adjacent samples. The remaining 
bits also drop off in scoring probability at the far right of the plot somewhat faster than expected, 
but overall the agreement between measurement and theory is quite good. 

Figure 11 shows the scoring probability for a spectrum which contains a strong, low-frequency 
CW tone. Again, the strength of the CW tone is roughly equal to the noise power in the 
spectrum, and therefore doubles the total integrated power in the data stream. Here, the strong 
low-frequency component creates a positive correlation coefficient between successive samples, 
and the k=0 bit deviates toward lower-probability at high signal levels. 

Finally, Figure 12 shows the theoretical and measured scoring probability for two's complement 
data streams taken from a number of different spectra, including some with low-, mid-, and high- 
band CW injected tones, and some using the L-Band front-end on the Green Bank Telescope for 
which high levels of broadband RFI are present. In all of these cases, however, the non-ideal 
components were too weak to cause a statistically significant deviation from the theoretical 
prediction. 

Overall, despite some measurable effects due to very strong non-Gaussian components and non- 
white bandpass shape, the agreement between measurement and theory is excellent, especially 
over the dynamic range for which the algorithm operates. 

Conclusions 

In summary, an algorithm has been presented which can reliably detect the word boundaries in 
serialized, Gaussian-distributed, white-noise data using any of sign-magnitude, straight-binary, 
or two's-complement formats. The algorithm consists of scoring the bits in the data stream with a 
periodicity of N, where N is the word-length in bits, and then selecting as the most significant bit 
the one which receives the highest score after some large number of samples. The condition 
under which bit bk receives a point depends on the binary format, and is as follows, 

sign-magnitude: bk= 1, bk-i=0 
straight binary: bk^bk-i 



two's complement: bk- bk-i^bk+i 

The algorithm has been tested using real-world data and was found to be robust in the presence 
of very strong non-idealities, such as large CW tones, gain slope, and RFI. 
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Figure 1. Simplified block diagram of a minimal-transmit-overhead photonic link for radio astronomy receivers. 
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Figure 2. Diagram of the probability distribution for an analog signal and the corresponding 5-bit sampled output words 
using sign-magnitude, straight binary, and two's complement format. 
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Figure 3. Plot of the scoring probability for sign-magnitude format. N=8 bits. The abscissa may be interpreted as the 
average voltage swing of the signal (2o) divided by the full-scale range of the sampler (2Nv0). 
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Figure 4. Plot of the scoring probability for straight binary format. N is arbitrary. The abscissa may be interpreted as the 
average voltage swing of the signal (2a) divided by the full-scale range of the sampler (2Nv0). 

Figure 5. Plot of the scoring probability for two's complement format N=8 bits. The abscissa may be interpreted as the 
average voltage swing of the signal (2a) divided by the full-scale range of the sampler (2Nv0). 
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Figure 6. Probability distributions of scores for 8-bit, two's-complement data using the described algorithm with o=5v0 

and M=255 words counted. 

400 600 

Number of samples, M 

Figure 7. Probability of the algorithm failing (locking onto the incorrect bit) as a function of samples counted, M, for a 
number of common use cases in two's-complement format. 
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Figure 8. Plot of the scoring probability when N=2. The result is the same for all binary formats. The insets show the 
Gaussian distribution of the analog signal at different power levels and the corresponding probabilities in the four 
sampler bins. 
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Figure 9. Theoretical (lines) and measured (markers) scoring probability for straight-binary data with no CW 
components. The spectrum of the data stream used for the measurement is shown in the upper-right corner. Multiple 
signal levels were simulated numerically by clipping the waveform and truncating the bits. 
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Figure 10. Theoretical (lines) and measured (markers) scoring probability for straight binary data with a high-band CW 
component. The spectrum of the data stream used for the measurement is shown in the upper-right corner. Multiple 
signal levels were simulated numerically by clipping the waveform and truncating the bits. 
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Figure 11.Theoretical (lines) and measured (markers) scoring probability for straight binary data with a low-band CW 
component. The spectrum of the data stream used for the measurement is shown in the upper-right corner. Multiple 
signal levels were simulated numerically by clipping the waveform and truncating the bits. 
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Figure 12. Theoretical (lines) and measured (markers) scoring probability for two's-complement data. Data points were 
taken from multiple spectra, including some with low-band, mid-band, and high-band CW tones injected, as well as from 
the L-Band front-end on the Green Bank Telescope in which significant levels of RFI were present. Some of the spectra 
are shown across the top of the plot. Multiple signal levels were simulated numerically by clipping the waveform and 
truncating the bits. 


