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Surmriary 

Simple approximations are presented to be used for the des gn resurfacing

or adjusting of radio telescopes. First, equations are given for the maximum

value Az
m
 (at plate center) of thermal and gravitational deformations, for

surface plates of different type and shape. Second, it is shown that for

both deformations the contribution to the telescope's error budget is ms(Az-Az),

which is only 114 to 1/3 of Az
m
 in most cases, depending on type and shape

of the plates. The approximations are checked with measurements of experi-

mental plates, and some safety margins are suggested Third, surface plates

should be manufactured with some "gravitational offset" in ho/izontal position,

having their desired shape at about 41' elevation, which reduces the error

contribution by about a factor of three without additional manufacturing costs.

Fourth, the rms(Az) resulting from corner adjustment errors is calculated for

triangular and rectangular plates; and the advantage of four versus three

degrees of freedom in best-fit adjustments is discu ssed.

For equal thermal error contribution, triangles are better than rectangles

if the simplicity of the backup structure is most cost-important. Bu

economy is more important in manufacturing, supporting and adjusting the

plates, then rectangles are better than triangles for the shapes usually used.

Finally, if adjustment errors and manufacturing tolerances of the plates are

major contributions to the error budget, then the rectangular plates are of

advantage for all shapes and sires.
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I. INTRODUCTION

Knowledge about various properties of surface plates (panels) is desired

in three cases. First, during the design phase of a new telescope, the design

of the backup structure is affected by the plate size which is limited by

specified thermal and gravitational deformations, and alsd the plate type 

must be chosen (trapezoidal, triangular). Second, resurfacing an existing

telescope leaves the choice of the new plate thickness which governs the

deformations. Third, for readjusting an existing (or adjusting a new) sur-

face, a least-squares procedure is needed for finding the best-fit adjustment 

height for the plate corners, because simply adjusting the corners to the de-

sign paraboloid would be a poor choice for plates with internal bulges and

bumps.

For the final design, the plate deformations must be calculated with a

detailed structural analysis (finite element method) and must finally be

checked by actual measurements. But for developing a conceptual design, and

during the approach to the final design, one needs simple approximations

depending only on a few variable parameters. The present paper intends to

present a set of simple equations which are accurate enough for this purpose.

They are checked with experimental measurements or a detailed analysis.

It is also important to find out which fraction of the maximum deformation

is to be used as the contribution to the total error budget of the telescope,

and how to minimize this contribution. Furthermore, one should know the

contribution resulting from corner adjustment errors, for plates of different

type.

The "Bending of a 4-Cornered Plate" was treated as a first approach

(25-Meter Memo 128, Oct. 1979), was then worked out in detail and verified
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by actual measurements of twisted  plates. These results, and a least-squares

procedure for the best-fit adjustment, will be published soon and are only

briefly mentioned here. We could not find a description of corner-supported

twisted rectangular plates in the standard engineering textbooks [Ref. I, 2,

and thus had to develop our own.

II. THERMAL AND GRAVITATIONAL DEFORMATIONS

A. Center Deformations 

Figure 1 shows several simple models which may be used as approximations

for surface plates, and we ask for the amount Az of the deformation at the

model's center or where the deformation is maximum. We omit all lengthy

derivations and just give the results, with only a few explanations  The

results are contained in equations (1) through (14), and for an easy comparison

with each other they are all combined in Table 1.

Regarding thermal deformations we assume for the truss a constant tem erature

along each member. For all other models, we assume a difference AT between

extreme fibers and a linear gradient in-between; this gives a deformation of

constant curvature, deforming the straight line of models lb and Ic into a

small part of a large circle, and the plane of models ld and le into a part

of a sphere. The maximum deformation Az then occurs at a point P which is

at equal distances from all corners (if b  2a for t ian les), at the center

of the circumscribed circle of radius R, where



TABLE 1

EQUATIONS FOR THE DEFORMATIONS OF THE MODELS OF FIGURE 1.

Azm =maximumdeformation,atcenter;C
th

 =coefficient of thermal expansion;

AT = temperature difference between upper and lower fiber; p = density; E =

modulus of elasticity; s = A /A (A = area of cross section); R = radiusskin total
 of circumscribed circle,  e  Dation (15). 

Model Thermal deformation

Equ.

(1)
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( )

Gravitational deformation
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Equations (1) through (8) of Table 1 give rather similar deformations Az

for the different models of Figure 1 (for equal AT); for example, a triangle

with a = b is 227' better than a square of same len g th but covers only half

the area  The largest difference occurs for the plate construction: structures

similar to the truss give twice the deformation of a beam, honeycomb, or skin-

rib system, again for equal AT

The temperature difference AT must be determined experimentally for a

given case. It will depend on the environment: night or sun, exposed or radome.

It also depends on the type of construction: it will be smallest forskin-and-rib

because of good thermal conduction between extreme fibers. Finally, especially

for skin-and-rib, AT increases somewhat with the thickness, t. The difference

AT has two different causes: radiation and thermal lag. From experiments done

for our telescope designs at NRAO, we found for exposed telescopes and a truss-

like construction AT = 6.7 °C for full sunshine at noon, and 1.1 °C during

clear nights [4]. For telescopes inside a ventilated dome and skin-rib con-

structions (t = 7.5 cm), we found AT = 0.29 °C for sunny days and 0.19 °C during

clear nights [5]. These values may be considered fairly representative. For

aluminum, C

th 
= 23 x 10-6 /°C and 12 x 10 6 /°C for steel.-

Regarding gravitational deformations of surface plates under thei r

weight, equations (10) and (14) are taken from reference [1],and equation (13)

is just a simple interpolation between them. The other equations result from

our own derivations. We could not find any information about corner-supported

triangular plates. The governing ratio p/E = 38 x 10 cm is the same for

both aluminum and steel. It is interesting to see that the truss is gravitationally

slightly better than the beam, while it deforms twice as much thermally. The

smallest gravitational deformation is obtained for a skin-rib construction if

the skin contributes 1/3 of the total weight.

ITI
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Detailed measurements are available for the two experimental trapezoidal

surface plates which are described in [4] and [5], and a structural analysis

(498 elements) for the latter. Regarding thermal and gravitational deformations,

the difference between expected and measured values of Az 
in

is
 37% rms for the

estimates of Table 1, and 23% rms for the analysis.

B. Averages 

The telescope performance is not determined by the maximum deformation,

Azre but by the average and the ms of Az over the whole plate. Thus, the

shape of the deformation, Az(x,y), must be known or approximated. The only

gravitational case available in the literature is the beam [1]; if we noimalize

one support to be at x = -1 and the other at x = +1, we derive for the beam:
6 4Az

b
(x)/Az = 1 - x 2 	x. The simplest approximation is a parabola:5

Az (x)/Az
m
 = 1 --x 2 , and for the difference between the gravitationally deformed

beam and the parabola we obtain

Az -Az
b 

= 2.7% of Azm;

(16)
rms(Az ) rms(Az ) = 2.1% of Az.

We consider this small enough to be negligible, and we assume that the same

will hold for two dimensions, where we shall use Az(x,y) = Az
m

[1 - (x2-1--y2)/R2]

with x = y = 0 at P. This is also used for thermal deformations. They have

actually a spherical shape, and it can be shown that the difference between this

sphere and a paraboloid is completely negligible for all practical purposes,

being of the order of (Az
m

ja) 2Az . Under these assumptions, the values given
111

in Tables 2 and 3 have been calculated. The last column of Table 2 will be dis-

cussed later in Section IV.
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TABLE 2

MEAN AND RMS SURFACE DEFORMATIONS

Az
m
 = maximum (center) value of thermal or gravitational defonration,

= rms corner adjustment err

TABLE 3

THE COEFFICIENTS OF TABLE 2, FOR VARIOUS SURFACE PLATES

(The equilateral triangle has bia = 2/11T)

Shape Rectangles Triangles

b/a K
ri

Kr2 Kto ti Kt 2

0.0 1.000 1.000 1.000 1.000 1.000

0.2 0.994 0.962 1.010 1.003 0.971

.4 .980 .873 1.036 1.013 .894

.5 .973 .825 1.052 1.020 .845

.6 .967 .781 1.069 1.028 .795

.7 .963 .747 1.085 1.037 .749

.8 .960 .724 1.100 1.045 .709

.9 .958 .711 1.112 1.052 .679

1 0 .957 .707 1.120 1.057 .660

2 . 55 .958 .714 1.125 1.061 .650

1.5 .964 .758 1.101 1.042 .676

2.0 .973 .825 1.000 0.957 .707



Az(r)/Az(o) = cos a = fl (r/2F)2} 1l
a; 1 --(r/2F)

2
 . (17)
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Thermal and gravitational deformations were measured at 60 points each

of the two experimental plates mentioned. The difference between expected

and measured values of Az/Az
m'

 rms(Az)/Az
m'

 and rms(Az-Az)/Az
m
 is 17% rms

for the estimates from Tables 2 and 3, and 7% for the structural analysis.

III. CONTRIBUTIONS TO ERROR BUDGET

If the Az were the same for all surface plates, then also the Az would

be the same for all plates. This, regarded by itself, was just a parallel

shift of the average su/face, which, as a homologous deformation, does not

affect the performance. What matters, then, is the deviation from this average,

rms(Az-Az), as given in Table 2. Furthermore, if the deformations were not

the same but would follow a parabolic shape, Az(r)/z(o) = 1 - Ar 2 , with some

constant A and axial distance r, then the addition of this parabolic term to

the original telescope paraboloid yields still only a homologous deformation,

and again it is rms(Az-Az) which is to be used for the error budget. Obviously,

Az(r) will not be constant; but how close to a parabolic shape will it be?

A. Gravitational Deformations

Regarding gravitational deformations, the worst case for surface plates

is gravity in z-direction (axial). Calling a the surface slope, with tan a =

dz/dr = /2F, the gravitational deformations are proportional to cos a. The

exact value and its first Taylor approximation are

Neglecting illumination taper, the worst case is at the rim, r = D/2. Calling

the focal ratio F/D = (I), we have at the rim with gravity in z-direction:

Az(rim)/Az(0) = 11 + (4) -2 1 fb 1 - 1/(32 1) 2 ). (18)
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For example, for 60
0 illumination angle, 0.43, the exact value and its

parabolic approximation are

The difference between the two is only 3.4% of e central value, and less than

half of that if averaged over the whole surface with so ination taper.

We call this negligible. The approximation of (17) _hen is satisfactory,

which means that the deformation caused by Az is parabolic and homologous, and

only the deviations from it matter. The gravitational contribu ion to the

error budget thus is rms(Az-Az) from Table 2, with the coefficients from Table 3.

Error Budget

Which direction of gravity should be used for the error budget? The

central deformations Az
m
 from Table 1 assume gravity perpendicular to the

surface. If nothing else is specified, the plates are manufactured to the

desired parabolic shape in horizontal position, thus Az of Table I is their

ce tral deformation in vertical position, which means when the telescope would

point at the horizon. At other elevations E, the central deformation is only

Az = (1 - sin E)Az
m

. Since observations at sh'rt wavelengths are limited by

the Earth's atmosphere, they are seldom done below elevations of 30° and

almost never below 20°. Considering these lower as the worst ca

the central deformations from Table 1 are then reduced by the factor

AzIn 	- sin E 0.500, 30°

0.577 250 (17)

0.658 20°

The optimum procedure, however, would be to order from the manufacturer

the plates with a certain "gravitational offset", such that they have the desired



parabolic shape at some specified angle E
o
 from the horizontal. The shape to

be manufactured in horizontal position can easily be calculated; it is only

slightly different from a paraboloid but not any more difficult to produce.

This, actually, is just the same as adjusting the whole telescope surface not

for zenith pointing, as it was mostly done in the past, but for an adjustment

angle of about 45°, as it is mostly done or planned nowadays. If a plate is

shaped for an elevation E
o
 the central deviation from the telescope paraboloid

then is for any other elevation E, with Az from Table 3,

Az
E
 = (sin E - sin E) Az0

m
(18)

Let us demand that the deteriorations are equal for zenith (E = 90°),

and for a lower atmospheric limit of E = 20°, as the worst cases. The adjust-

ment angle Eo then follows from (18) as Eo = 42,1°, and the reduction is quite

considerable, being for the worst cases

Az 20 = Az 90 = 0.330 Az . (19)

As an example, we consider a rectangular plate with bia = 1/2. From

Table 2 we have rms(Az-Az)/Az = 0.298 K , and from Table 3 we find K
m

=r2- r2
0.825, with 0.298 x 0.825 = 0.246. If the plate was manufactured for E = 42°,

we have from (19) a reduction factor of 0.330, with 0.246 x 0.330 = 0.081. At

the worst pointings, at zenith and at 20° elevation, we thus have for the

error budget

gravitational contribution = 0.330 rms(Az-Az) = 0.081 Az
m
	(20)

For a practical application, one must add some safety margins. We suggest

to add to (20) about 20% if rms(Az-Az) was measured (in horizontal position),
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o add 50% if Az was estimated
In

or to add 30% if only Azm was measured, o

from Table 1.

C. Thermal Contribution

Regarding thermal deformations, we consider two extreme cases. First,

sunshine or some other radiation in z-direction, parallel to the axis. Its

intensity as projected onto the plates then is proportional to cos a, and so

is the deformation. Thus all conclusions are the same as they were for the

gravitational deformations, and it is again rms(Az-Az) which is to be 'used.

Second, one might think that the worst case could be a radiation coming at such

an angle that half of the surface lies in its own shadow. This lack of over-

all symmetry indeed increases the relative rms, but the Az
m
 of the illuminated

part is so much reduced by the skew illumination angle that the total

deterioration of the whole telescope is about 30% smaller than in the first

case of axial radiation, which thus is the one

Since radiation may work both ways (sky being warm in daytime and cold at

night), we cannot manufacture "thermallyoffset" plates,  and there is no

equivalent to (19). For our example of a rectangular plate with b/a = 1/2,

we thus have from axial radiation as the worst case for t he error budget

thermal contribution (A Az 0.246 Az, (21)

and we suggest to add the same safety margins as described for the gravitational

case.

Iv. CORNER ADJUSTMENT ERROR

Adjusting or readjusting a telescope surface will be done with errors

from two causes: from the surface measurement errors, and from the actual

turning and setting of the adjustment nuts on their bolts. For the total of
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both, we call c
o
 the rms adjustment error of a single corner of a plate,

assuming all corner errors to be uncorrelated. Regarding the whole plate,

a single corner error c
o
 will introduce a deviation Az(x,y), and if this

shape is known we can integrate Az 2 and obtain rms(Az). If there are n

corners, then the total rms deviation c resulting from n independent errors

i s

rms ( Az ) (22)

For comparison we start with the simplest case, a beam (n = 2) of length b.

Here, Az(x) = (x/b) co , yielding rms(Az)
o

/IT'a- , and multiplied by 47- we have

cic = ir27i as entered in the last column of Table 2.

For a triangle (n = 3) with the two corners of its base at Az = 0 on the

x-axis, and the third corner at y - a, lifted by Az = c
o' 

we have Az(x,Y)

(y/a) c
o' 

with rms(Az) = c
0/1

/-6- as can be shown. Multiplication by 1/]! then

gives

Cl c = 1/VT, for triangles. (23)

Next, we consider a rectangle (n = 4), two sides coinciding with the

coordinate axes and their three corners at Az = 0 at coordinates (0, 0),

(0, a) and (b, 0); the fourth corner (b, a) at height Az = c
o

. The simplest

possible twisted shape, which turned out to be already quite satisfactory,

is

Az(x,y) = (x/b) (y/a) co;

an integration of Az 2 yields rms(Az) = c
o
/3, and multiplied by A-- we obtain

c/c
o
 = 2/3, for rectangles. (25)

Finally, one should avoid cantilvering_ plates. The effect of adjustment

errors is smallest for corner adjustments, and for most telescopes the adjustment
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errors are an important contribution to the total error budget (difficulty

of good surface measurements). For example, consider an equilateral tri-

angular plate. If it is supported and adjusted at its three corners, then

= 1/1/
2
- from (23). But if the same plate is •suppo ted and adjusted at

three side centers, then c/c
o
 = 1, as can be shown. This means that he

rm" surface error has increased by a factor of /I,. or by 417. And this result

completely independent of the size or the shape (b f the plates.

V. TRIANGULAR VERSUS RECTANGULAR PLATES

The type of surface plate most frequently used on telescopes is the

trapezoidal plate in a polar grid, suppo7ted at its four corneis. The mip est

alternative is the triangular plate, again corner supported. The followiig

will give a comparison between the two. The trapezoid is replaced by a

rectangle for simplicity, but we consider both triangles a- d rectangles of

various shape ratios, bia, see Fig. 1.

Regarding thermal deformations, £o cach of the two p ,te types we ask

for that size, a, which yields the same thermal eiLor contibition,

assuming the same temperature difference AT, the same E1ecernes ratio a

and the same construction (using the plate cqutios in the f lowl ).

The shape ratio b/d is coasidered a iriable par ame ter, but -he same for both

types, triangle and rectangle.

We call C'the combination of i1l constants:,

a 2 
AT —t 31/5

and we call, for rectangle and triangles,

[1 -4- (b/ )21 Kr2
= H

t
/H

r
. (27)

H
t
 = [1 (b/2a) 21Kt2

(26)
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The thermal error contribution then is, for a plate of size a,

rms(Az-Az) = C a H,

and for a given error contribution, the size then is

a c°0 1/H. (29)

Various comparison criteria are summarized in Table 4, where a number

smaller than one moans that the triangle is Of advantage.,- while the rectangle

is better if the number- is larger than one. Assuming a polar grid in all

cases, the number of rings needed in the backup structure (for supporting the

plates)equals the telescope radius divided by the plate size; thus the number

of such rings needed for triangular plates equals Q- times the number of rectangular

plates.

TABLE 4

COMPARISON BETWEEN TRIANGLES AND RECTANGLES

All figures given are the ratio: (triangular value)t(rectangular value).

Fizires lager than one mean that  the rectangJe is of advantagp...

Number of
Shape

rms surface error
resulting from 

Adjustments

(3/2) Q2

adjustments bumpiness

0.0 1.000 2.000 2.000

0.2 .980 1. 960 1.922

.4 .918 1.836 1.686

.5 .871 1. 741 1.516

.6 .816 1.632 1.331

.8 .693 1.385 .960

1.0 .584 1.167 .681

1.500

1.441

1.264

1.137

.998

.720

.511

Rings Molds Plates

bla 2Q 2Q2

1.038



We see from Table 4 that triangles are advantageous regarding the backup

structure for all b/a 0. But if identical plates are manufactured using

the same mold, the cost increases with the number of molds needed, and

rectangular plates are cheaper, needing fewer _li pids, because in each ring

there is only one kind of rectangular plate but two kinds of triangles.

Because the area of a rectangle is ab, that of a triangle only ab/2, the

total number of triangular plates is 2Q 2 times the number of rectangular

plates, which means we need fewer rectangular plates as long as bia < 0.8.

Since a triangle needs three corners to be adjusted while a rectangle needs

four, the ratio triangle/rectangle is 3/4 times the number ratio, or

(3/4) 2Q 2 = (3/2) Q 2 , where rectangles are better as long as b/a < 0.6.

In summary, for equal thermal error contributions, triangles are better

if the simplicity of the backup structure is most important regarding costs. But

if cost-saving is more important in manufacturing, supporting and adjusting the

plates, then the rectangles are better, at least for the shape ratios mostly used

Thermal errors are not the only ones. Unfortunately, we cannot make a

similar comparison for the gravitational deformations because they are not

known for corner-supported triangular plates, but we expect similar results.

The two remaining error contributions can be compared. Regarding the rms(Az)

resulting from adjustment errors, we find from (23) and (25) that triangles

are worse by a factor (1,0T)/(2/3) = 1.0607 for all bia, as entered in Table 4.

Finally, regarding the internal bumpiness of the plates, the triangle has

three degrees of freedom for a best-fit adjustment (a lift and two rotations),

whereas the rectangle has four (internal twist in addition). Measurements

with several experimental surface plates at NRAO gave the result that using

the best-fit twist improved the surface accuracy by 3.8% in the average
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(which will depend on the type of bumpiness but not on b/a). This is also

entered in Table 4. Thus, if adjustment error and manufacturing tolerance of

the surface plates are major contributions to the error budget, as it is

frequently the case, then the rectangular plates are of advantage for all

shapes and sizes.
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