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Summary

It is suggested to describe the efficiency (as a function of declin-

ation D and hour angle H) in terms of those seven parameters which are

physically relevant: three structural deformation prameters h, h
x Y'

h ; the pointing angles D
o
 and H

o
 of maximum efficiency, and the rms

surface error 0' at that pointing. And the efficiency V at very long

wavelengths (but with the same illumination and taper as used now).

A way of obtaining these seven parameters from astronomical obser-

vations is also suggested.
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1. Gravitational Surface Deformations

The deformations of an alt-azimuth radio telescope, and the derivat-

ion of its best adjustment elevation, have been described in NRAO Engin-

eering Memo 152 of January 1984. For a polar mount, the results still

hold for deformations at the meridian and for the best adjustment

angle. But an extended treatment is now needed for the deformations

at non-zero hour angles.

First, we define a coordinate system, fixed in the telescope dish.

Let the telescope point at south horizon, and call:

x = elevation axis, + is east,

y = vertical, + is down, (1)

z = optical axis, + is back.

Second, we define three structural deformation parameters. Let the

telescope surface be a perfect paraboloid of revolution in the absence

of gravity. Switch on gravity in x-direction, find the best-fit para-

boloid to the deformed surface, and call h
x
 the rms deviation between

surface and paraboloid. (In this and all following procedures, the

proper illumination and taper should be used as weighting functions, in

the best-fit and also for the mean in the rms, if the procedures are

actually performed in a structural analysis.) Next, switch on gravity

in y-direction, find the best-fit paraboloid for this deformation, and

call h the rms deviation between surface and paraboloid. Finally, do

the same with gravity in z-direction for obtaining h
z

Third, we call declination D, hour angle H, elevation E, and geo-

graphical latitude B (38.4' at Green Bank). We give index zero to that

pointing (D, H E0) where the efficiency is maximum. We find the best-
° o



fit paraboloid for this pointing and call ort; the rms deviation between

surface and paraboloid. We call the maximum efficiency for the wave-

length used, and we call tm the efficiency for very long wavelenths (with

the same illumination and taper as used now).

Fourth, the components of gravity g, in system (1), can be derived

as:

= -g cos B sin H,

= g (sin B cos D - cos B sin D cos H) ( 2)

g
z
 = g (sin B sin D cos B cos D cos H).

Since the angular term in the parentheses of the last line is just

sin E, we define in a similar way

sin Y = sin B cos D - cos B sin D cos H (3)

where Y = angle of y-axis below horizon. The components (2) then read

g
x
 = -g cos B sin H,

g = g sin Y, (4)

g sin E,

where

2

•

2 (5)

Fifth, we shall assume that the telescope is almost east-west-

symmetric, meaning that H
o
 is only small. For example, with H = 0.5

hours we have cos H = 0.009 which may be neglected, but sin H

= 0.13 which may not. We then have, at optimum pointing, the gravitat-

ional components

xo
-g cos B sin H

o
,

yo 

• 

g cos E
o'

(6)

zo

• 

g sin
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At this optimum pointing the surface will have an rms deviation

07
0 from its best-fit paraboloid (the optimum or intrinsic surface error),

and at other pointings a gravitational component 9, will be added quad-
ratically (the deviation from homology), to yield the total rms devi-

ation U"' of the surface from its best-fit paraboloid at that pointing:

= Q 2
 ± cr 2 (7)

where

d' 2 h 2 cos 2 B(sinH-sinH ) 2 + h 2 ( sinY-cosE ) 2 + h 2 ( sinE-sinE ) 2 • ( 8)

2. Aperture Efficiency

Neglecting the atmospheric extinction, and any spatial correlation

of the gravitational deformations (Appendix 1), the aperture efficiency

is, according to J. Ruze (IEEE Proc. 54, 633, 1966):

- e
-A(44floriX) 2 (9)

ea

with A - 1 for a very flat dish, and A = 0.76 for our NRAO tele-

scopes of F/D = 0.43. At the optimum pointing, we have

vo 
= to e-A(4TCr/A)2 (10)

thus (9) can be written as

t0 e -A(4T/1)
2 d•g2

with d- from (8).

This then is the suggested description of the efficiency in terms

of physical parameters. For a given wavelength A, there are six

parameters: three structural prameters h, h, 
h. 

and the maximumx y z

efficiency 11 at optimum pointing E s , H.
0



= A(4 411 / 2

As well known, the solutions are

x.1 and

and2

-2
Yx2with s -2

x and

call

and (18)o=r7-2"
)
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But in general, for any wavelength a, we have seven parameters,
replacing / 0 by It and a- using (10).0'

3. Observational Parameter Determination

First, we ask only for Ito° and We assume that E and H
o
 do not

depend on wavelength. We presuppose that the maximum efficiency 
1 o

has been measured at many different wavelengths ( =1...n 3), and

we call 70 , ito (a i ). The logarithm of (10) is

ln = 1100 - 6.0 2 A(4T/A 1 )
2

	(12)

which shall be written in the normal form for linear regression:

Y
1
. = a + bx

1
.. (13)

For this purpose we call the two unknowns

a = 1n 1100 	and (14)

and we call the experimental data

and the correlation coefficient r is

b s /s
x y (17)

We also want the mean errors, which are not so well known. We



and fx__12
s

x

The scatter of the experimental data then is

P V717,
- 1

and the mean errors of a and b are found as

6

1 (19)

(20)

Lb E
' ( b) Pisx and E

a 
= E(a) abQ. ( 2 1 )

Finally, if for some given x we predict y(x) from (13), using a and

b from (16), then this predicted y will have the mean error

E = E(y(x}) P W. (22)

Equation (22) holds even for far-out extrapolations, provided the true

physical relation between x and y indeed is linear.

We now return to our original quantities. The rms scatter E of

the observed efficiencies is obtained from (20) and (15) in the form

E
= P V1

-7
17 ( 23)

The intrinsic surface error OF- and the long-wave efficiency 7 are
voo

= VI; and = ea (25)
Ot1

and their mean errors are

o 
= E(6-0 ) = P/(2sx 0-0) (26)

and

t = E (%) = Itoo PQ/s (27)

If we predict, for some given wavelength the maximum efficiency

7 0 from (10), using 
it and J (25), then the mean error is

E. = E(t o cl) = i/ o PW. ( 28)
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,, _
-.A 2 1n( q a) /11.)i

A (41T)2
a" 2 ( 31)

0
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If the n observations used have different accuracies, we may apply

weights. If
i
 is the estimated mean error of the observed efficiency

(to , then the mean error of y. is E ID. and all the averages in (16),

(17) and (18) should use the weights

w. ( 110./&. )21 1

The number n of observations, in equations (18) through (23), should

now be replaced by an equivalent number n of equal-weight observations

With
n
o 

= w)2/ w 2 (30)

which, for unequal weights, is smaller than n.

Second, we ask for the remaining five parametersh h h Hx' y' z' o'

and E. After IT and 0- have been calculated, we use n observations

of the efficy t i , all over the sky and at different wavelengths

(i 1...n), and we find for each one the gravitational contribution

0- from (9) and (7) as
gi

(29)

which is to be used in (8).

Unfortunately, (8) is highly nonlinear regarding H and E. As

a good approach, we suggest to estimate H and E
o
 simultaneously with0

the maximum efficiencies oi of the last section; either by eye-inspec-

tion, or by fitting a parabola to the central parts of the scans.

We insert these estimates into equation (8), which then becomes a

system of n linear equations for the three unknowns

a

l

 = h

x

2, a
2 	hy

2
'

a
3
 = h

z

2

	(31)

The matrix of the system is



M. = cos 2 B (sin H. - sin H )211 1

M. (sin Y. cos12 1
E)2 (33)

M. (sin E. - sin E )213 1

with i=1...n.
gl

	from (31), the system finally reads

3
M ii a. = v.,1 or Ma = v. (34)

We call T the transpose of M (T.. = M. .), and multiply (34) from leftJ1 1J
with T, which gives TM a = Tv. We call (TM)

-1

 the inverse of matrix TM

and obtain the solution

a = (TM)
-1

 Tv. (35)

For finding the mean errors, we use the solution a. fr om (35) and

calculate the residual

3
= v. - M. a (36)

i=1 j=i

-1The mean error of a. then is, using the diagonal elements of (TM)

(a.j) n-3 JJ
R 

( TM)

-1

.. (37)

and the mean error of h. = ra7
J J

t(ai)
t*

)
 = E-(h.)

J J

then is

(38)

In case of different accuracies, we may again use weights: we mul-

tiply M. . of (33) by w. from (29), call v. = w.0- . 2 and proceed as1J - 1 1 1 gi
described above. In (37), n must again be replaced by n

o
 from (30).

For short wavelengths, the atmospheric extinction must have been

correctedfor,and li.in (31) then is the corrected efficiency without

extinction. With the deformable Cassegrain, hz must be smaller than at prime focus,

but h
x 
and h must be equal (as long as we have no lateral tilt).
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APPENDIX:

Correlation of Gravitational Deformations

Ruze's paper which we quoted with (9) treats also the case that

the surface errors are spatially correlated over a correlation length L,

under the simplification that the errors are about constant within

circles of diameter L, but uncorrelated from one circle to the other.

Ruze's result can be written in the form:

e B u + itila(L/D)2S(B))
oo

(39)

(40)

00
m

S(B) = (41)
m m!m=1

Table 1. Phase error B and its functions in (39).

-B
B e s(B) e

_B 
S(B) 

0.1 0.905 0.103 0.093

.2 .819 .210 .172

.4 .670 .444 .294

.7 .497 .844 .419

1.0 .368 1.318 .485

1.5 .223 2.319 .517

2.0 .135 3.684 .499

3.0 .050 8.257 .411

Some values are shown in Table 1. We see that the correcting term

in (39) can be appreciable for large surface errors G and long cor-

relation lengths L. An exact treatment then would be difficult.

with the phase error

B = A (4TriX)2

and with the following function
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How large will L/D actually be? At the pointing of maximum effici-

ency, we have only the intrinsic surface error cr
' caused by the mal-o

adjustment of the surface panels and their internal bumpiness. Then L

will be about half a panel side, and with a number N of surface panels,

we expect about (L/D) 2 = 1/(4N). This will mostly be rather small, for

example 1/240 for the 60 panels of the 140-ft. Thus the correlation

term in (39) may be completely neglected for the observational deter-

mination of G— and t oo . If is the shortest wavelength used, this

neglection then will cause a relative error E of t
00

,0.012 for
s
=13.0 mm,

E i ti
ao 0.050 for

S
= 8.4 mm.

This is different for gravitational deformations which will have a

longer correlation, depending on the different modes of the deformation

(some of which have already been automatically corrected for at the

140-ft). Visualizing the form of the deformations, a rough estimate

leads to the values of Table 2:

Table 2. Deformation mode and estimated correlation.

mode corrected? correlation ( L/D)2

axial defocussing yes L = D/2 1/4

astigmatism yes L = D/2 1/4

lateral defocussing no L = D/3 1/9

higher orders no L = D/4 1/16

From the last two (uncorrected) lines we would expect for the 140-ft

at present about

(L/D) 2 = 1/12. ( 43)

For small phase errors we have about S(B) = B, and we can bring

(42)



the whole correction term of (39) into the exponent, where B then is

multiplied by a factor

- (L/D) 2 / (Z oo (44)

With our estimate (43) and about = 0.61 we have about

K = 0.86. (45)

Correlation then is taken care of, in a first-order approximation,

if A = 0.76 is left unchanged regarding the intrinsic surface error

10-
o
 but if it is replaced by A = KA = 0.66 regarding the gravitat-'

ional contribution 0". Thus (9) should be written as

-A(4 417A) 2 ( T-2 KG- 2 )
= /90e

0

(46)

and (31) as

1 i2 ln(tm
crgi 

2 = (
A(41T) 2

1 (r 2 (47)

to be used in (8).

Instead of applying these corrections, we suggest instead to omit

the correlation completely in our treatment of the data and in the deter-

mination of all parameters; this will have no effect on the quality

of the parametric descriprion of the efficiency (in first—order a pprox-

imation, that is). But we must keep only in mind that the three struc-

tural parameters h will turn out somewhat larger in a structural

analysis of the telescope model on a computer, as compared to their

observational determination:

analysis = h . ( observat i on) / - ( 48)

The structural analysis must take care of corrected and uncorrected

modes. For the present state of the 140-ft, this means that the best-
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fit paraboloid, which in general would have six degrees of freedom

(three translations each of vertex and focus), can have four degrees

only: three translations of the vertex plus a change of focal length;

with two constraints: no lateral movements perpendicular to the axis

whose direction is given by the deformed locations of vertex and feed

leg apex. And finally, the astigmatic part of the surface error must

be subtracted.


