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Summary 

We suggest adjusting the 140-ft for a best performance at 45° elevation

due south; transformation of the zenith measurements of the stepping method to

the 45° pointing is discussed. It is advisable to use weighted averages in

all procedures, and an easy approximation for the weight as a radial function

is developed.

The paraboloid to which all panels shall be adjusted is partly fixed; its

axis must intersect the (deformed) joint of the feed legs, and the (deformed)

vertex of the surface, since these are our equipment locations. The focal

length F should be obtained from a least-squares fit to the internal curvatures

of all panels, completely independent of their present adjustments. A, procedure

for finding F and its mean error is given.

The panels which have four adjustment screws allow four degrees of freedom

for their adjustment: parallel lift, radial tilt, tangential tilt, and internal

twist. We suggest to use all four, and a procedure is given for obtaining the

adjustments from the measurements.

The internal gravitational deformations of the single panels can be

neglected. But their internal thermal deformations would be serious in sunshine,

amounting to Az = 1.8 mm at the panel center; and the telescope backup structure

will deform, too. This means that the measurements should be done only at night

(or with completely overcast sky).



• Best-Fit Paraboloid

n generaThe surface should be adjusted to a paraboloid of revolution0

this has six parameters: the location xv , yv , zv of its vertex, two angles
aa' a for its axial direction and its focal length F. In our case, we will

have four structurally fixed parameters, and only two free ones.

Above the middle of the declination shaft is an instrument mount, the

center of which defines x and y . About 20 ft outwards with 90' between each

other and about 6° upwards, there are four punchmarks on strong points of the

backup structure; these marks yield a best-fit plane, and the axial direction

a a' ) is defined as being perpendicular to that plane. The central telescopea

axis defined in this way was actually used for fixing (at the prime focus) the

axial direction for the Sterling mount and the x,y-location for its center, and

for fixing (at the vertex) the x,y-location for the center of the ring of

Cassegrain feeds, as well as their axial directions. Thus, any future surface

paraboloid must use this same axis.

This leaves two free parameters, to be defined by best-fit procedures from

the surface measurements. The focal length F should be found from the internal

curvature of each single panel (just its curvature, independent of this panel's

present height and tilt), then averaged over all panels. And the vertex height zv

may be chosen for minimum total adjustment: same average surface height before

and after adjustment.

This paraboloid, with its four fixed and two optimized parameters is the

one to which each individual panel then must be adjusted for a best fit. The

12 panels of the first (inner) ring have three adjustment screws each; thus

their adjustment can be described by three terms: height, radial tilt, and



tangential tilt. The 48 Panels of the second and third ring have four screws

each, which provides one more term: an internal twist. These terms and their

resulting screw movements are to be obtained from the surface measurements

and the demand of best fit (least squares) to the paraboloid.

. Surface Measurements

As to the measurements, FindlaY's stepping method will be applied in

October this year. It will yield, for zenith pointing, the height z and radial

distance R for 33 points along each of 72 radii, with a total of 2376 points.

First and last Points of each radius are measured by conventional means in

the structurally defined coordinate system as described above, while the

stepping method proceeds along each radius with respect to gravity. The

difference between gravity and the structural axis (a, 	) can either bea

measured at the instrument mount, or it can be reduced to zero by talking from

the mount over the intercom to the telescope operator. Either way, it should

be repeated in intervals of some few hours, especially during stronger thermal

changes. The final data should be given in the structurally defined system.

Independent measurements with a two-feed method are planned for next spring.

This will yield the deviation Az of the surface from a paraboloid of revolution

whose axis intersects the phase center of the reference feed and is perpendicular

to the plane of movement of the scanning feed. Any difference between this

measuring axis and the structural axis (aa
 a 

as well as x y) must be care-' v v

fully measured, for each pointing, and all final data must be reduced to the

structural system. This method can be applied for any telescope pointing but

it will be somewhat less accurate than the stepping method and it has much less

spatial resolution, yielding only 150-200 independent surface points.

After both methods have been applied, we must check whether they agree within

their errors in zenith position. If not we would have a problem which must be

solved before proceeding.



The best adjustment angle for the 140-ft is not at zenith but on the

south meridian at about 45° elevation, or about zero declination (von Hoerner

and Wong, IEEE Trans. AP-23, 689, 1975). We now have two independent means

for obtaining the amounts 
Aza,45 

of adjustment needed for the 45° pointing.

First, we find the adjustments Az 
a, 

needed for the zenith pointing from thez
stepping method. We then use W. Y. Wong's computer model of the 140-ft, and

apply structural analysis for both zenith and 45° pointing under gravitational

loads, assuming perfect shape in the absence of gravity. For each of the two

pointings we find its best-fit paraboloid (only two free Parameters, z and F)

The needed 45°and get the deviations from it, called Az and Az
g,z g,45°

adjustments then are

Az
a,45 Az Az -Az .a,z g,z g,45

Second, we obtain the 
Aza,45 

directly from the two-feed measurements at this

45° pointing. Again, the results of both methods should agree within their

errors. The most reliable result would probably be obtained by using equation (1)

with 
Aza,z 

from the stepping method, but deriving the gravitational difference

between the two pointings, Az - Az , from the two-feed measurements.g z g,45

The 45° adjustment has two more items to be discussed. First, x and y
v v

of the structural axis should be defined by the center of the instrument mount

in any case; but its axial direction could be defined in two ways which are

different from each other for the 45° pointing, because of the gravitational

deformations of the feed support legs; we could either use again the plane of

the four punch marks, or use the direction from the instrument center to the

center of the Sterling mount. We suggest using the latter, since it is this



-J-

location of the receiver feed, or of the Cassegrain mirror, which actually

matters for the efficiency. This structural vertex-apex axis should be used

both for describing the 45° two-feed measurements, and for the 45° computer

analysis; it thus will be the axis of the adjustment paraboloid.

The second item is the internal gravitational deformation of the single

Panels. From equation a) of Fig. 1 we derive, with k = 734 cm, h = 86.4 cm, and

for aluminum: Azm 0.18 mm for zenith pointing, and only 0.053 mm for the

difference between zenith and 45° which certainly is negligible. The computer

model thus should calculate the deformations of the panel supports, but should

regard the panels as completely rigid.

4. Thermal Deformation 

The internal thermal deformation of the panels, however, is not negligible.

In sunshine and with white paint we have about AT = 9°F 5°C, and for aluminum

from Figure lb:

Az
m
 = 1.82 mm. (2)

And the backup structure of the whole telescope deforms, too. This means, if

we cannot get days with completely overcast sky, then the measurements should

be done at night only

II. Weight Distribution 

We must decide whether or not we should use weights in the following

averages and best-fit procedures; and if so, which weights. In general, one

should use the weights if they are very different from each other, meaning

that they vary over a wide range.



in general:

weight area of aperture represented by this point,

times aperture illumination at this location,

times (pathlength difference)/(2 Az).

After having measured Az the paraxial deviation of a surface point

from a paraboloid of revolution, the weight to be ascribed to this point is,

The pathlength difference is Ap = Az + AL, see Fig. 2a, where AL = Az cos 2,

and tan a = a z/ aR = R/2F for a parabola with z = R 2 /4F. Because (1 + cos 2a) =

cos 2 = 2/(1 + tan2a), we obtain

(3)

Ap 

2 Az
1 + (R/2F)2 (4)

Findlay's stepping method will yield points which are spaced (on the

surface) at equal steplengths As, along many radii. In Fig. 2b, the projection

of As into the aperture is AR = As cos a, and the area represented by a point

then is proportional to

-1/2
area co R AR n, Rfl + (R/2F) 1 (5)

Instead of R, we shall mostly use the normalized radius

r = D/2 (6)

which is normalized to r = 1 at the rim. For equations (4) and (5) this yields,

in general and with F/D = 0.43 for the 140-ft:

(R/2F) 2 = r 2/(4F/D) 2 = 0.3380 r 2 . (7)

The aperture illumination depends on the feed pattern and the F/D ratio.

We use a typical feed pattern with 15 db edge taper, as shown in Fig. 3.



(8)

(9)

(12)

_7_

We call V (4)
= 10

-a()/20
 the z2.1Lt..ai ... amplitude per solid angle, with a(c),

We keep in mind that the power decreases with 1/L 2 but

the voltage only with 1/14 and we realize from Fig. 2c that the area perpendicular

to the beam is the same before and after reflection, because of the symmetry

expressed by Snell's law. The voltage of the illumination then is, per

aperture area,

In this way, the illumination I(r) of Fig. 3 was calculated. Looking

for some easy approximation, I a (r), we found to our surprise that the frequently

used "parabola on a pedestal" is no good. Calling I = 1 - A r 2 , with the

condition A < 1, it turns out that the best-fitting value is A = 1, which

leaves a large maximum error of max I = 0.184, at r = 0.6. Even if wea

provide one more free parameter, I
a

 = (1 - A r 2 ) B , and if we demand exact fit

at r = 0.5 and r = 1.0, then the solution yields A 0 and B 00 which is no

good either. But a very easy and good approximation was found as

-2.10 rIa (r) = e

with a maximum error of only

max I T

a 

- ii = 0.018, at r = 0.30.

According to (1), (2) and (3), the weight w(r) then is

(10)



with I( ) to be calculated from (8) or approximated by (10). But we may

as well look for an easy approximation w 
a
(r) directly. A fairly good one is

found as

re
-2.60 r2 (13)

with a maximum relative error of only

max lw -w 1a 
max(w)

= 0.040, r = 1.0, (14)

Fig. 4 shows that the approximation is good enough. It also shows that

we should use the weights since they vary by a large factor (3.70) along the

whole surface, and even within the single panels (factors 3.36, 1.24, 2.56)

Also the integrated weights for the three rings of panels are quite different

from each other and thus should be used:

w(r) dr = 0.0371, for first ring, (15)

.0844 second ring,

.0540 third ring.

III. Best-Fit Focal Length for Single Panels 

1. Definitions and Goal 

We define three different focal lengths

F
o

original design length = 720 inch = 18.288 la;

• present best-fit focal length for the whole telescope,
AA,a1A41,

depending 4on the present adjustment height of the panels.

• wanted focal length for future adjustment = best-fit for

internal curvature of single panel (independent of its

present adjustment), averaged over all panels.



For describing the surface shape, we call

height of design paraboloid,

measured height,

(16)

(17)

Regarding the internal curvature of a panel, one should in general use

and the difference

its curvatures both in radial and in tangential direction, with the square of

its length and of its width as weight factors. Since, in the average of all

panels, (length/width) 2 = 5.5 >> 1, we may neglect the tangential curvature.

This allows equal and independent treatment of all 72 measuring radii

(of the stepping method) within each of the 3 rings of panels. Each radius

has 33 measuring points: n = 8 points in the first (inner) ring, n = 11 in

the second, and n = 14 points in the third ring. For a given ring, we take

these n points of a radius and find the best-fit F to their curvature (independent

of height and tilt); doing it for all radii gives 72 values of F, and their

average is the best-fit value of F for this ring. We use the weights of

equation (15), average over the 3 rings, and obtain the wanted value F for

the future adjustment.

2. Procedure

For a given ring of panels, we call P = projected panel length = R (outer

edge) - R(inner edge). We consider the n points along some radius within this

ring, and we find the weighted average Ra using the weights wi (Ri) of equation (13),



(19)

(20)

-10-

Within this ring, we further use the normalized radial coordinate

We now write the measured height z as the sum of four terms

where the deviations are the sum of surface bumps and measuring errors.

Equation (20) contains three unknowns (u, F) to be determined by a least-

squares fit of equation (20) to the actual measurements z We insert

equations (16), (17) and (19), and obtain from (20):

with the three unknowns

R

a
2

a = u- AF4F

o
2

PR
-  AF

4F
o

2

P
2

AF16F 2

Of these, only y matters, for finding F of this ring; but a and (3 are not

relevant because panel adjustments (u, will be made to a different paraboloid

(22)



; (24)

The demand of least squares leads to the following three equations for

the three unknowns

-I- (12
(23)

+ q a + 
q3

where

and

= p z = w. p.
k
 Az. w. , 1, 2• (25)

i=1 i=1

The solution of system (23) is

qM-qM-q 
2
M

22 3 1 2  0
q 2 (q 4 q22) — -n132

with which we obtain AF, the best-fit change of the focal length for the part

of this radius within this ring,

2F

AF  I (27)

Finally, we average over all 72 radii, and we average over the three rings

using (15). The result is the wanted focal length for the new panel adjustments.

In Section 1.3 we have shown that the internal gravitational deformation of the

panels can be neglected. This means that F can be obtained from the zenith

measurements, and can be applied, unchanged, to the 45° adjustment.

(26)



AF

V
J =

(28)

(29)

We now calculate the variance

(30)

c(F) (31)

-12--

. mean Error 

It will be interesting to know whether or not the resulting change AF

is significantly different from zero. We thus want the mean error of our AF.

In total, we have m = 3 x 72 = 216 single determinations of AF, and we call

AF, the single one, as obtained from (27). We finally have taken the weighted

average, with the W from (15).

and the "effective" number of (equal-weight) cases

The mean error of AF then is

IV. Panel Adjustment 

1. Present Deviations 

For each measured surface point, we now calculate Lir, the deviation of the

surface (whlan pointing at 45° elevation on the south meridian) from a paraboloid

of focal length F and vertex height zv whose axis intersects the structural vertex

and the structural joint of the support legs:



(32)

-13-

Here z and R are given by the stepping method, when pointing at zenith, for

33 points each on 72 radii, in a system whose axis is again structurally

defined for zenith pointing; R /41" is the wanted paraboloid with F from the

panel curvatures; the terms in parentheses are the gravitational difference

between zenith and 45° pointings as defined before equation (1); and z should

be determined such that g = 0 in the average over the whole telescope.

It is these deviations AC, more precisely the sum of their squares, which

we want to minimize by the new panel adjustments.

2. Degrees of Freedom 

We consider the 48 panels of the second and third ring, which have four

adjustment screws each, yielding the following four degrees of freedom for the

adjustment of a panel (see Figure 5 for definitions):

1. lift, u

2. radial tilt, cP

3. tangential tilt,

4. internal twist, T

AC(R,a)

(R - Ra ) (1)

R a ip

(R - R
a
) a

if positive, corners are

all 4 up

1,2 up; 3,4 down (33)

2,4 up; 1,3 down

2,3 up; 1,4 down

Similar to equation (20), the local deviation AC as obtained from (32) can now

be written as the sum of five terms:

= lift radial tilt + tangent. tilt + int. twist + bumps and errors

u + (R. - R ) + R. ot.IP + (R.- R )a.T + C. (34)a a

The 12 panels of the first ring have only three screws (in Fig. 5, points

3 and 4 would coincide at the center). This means T = 0 but no other change.



which is also the same for

and a = 5*

all panels in one ring; and we have, for 72 radii

from equation (18). addition, we calculateIn

(35)

for rings 2 and 3;

(36)

2
g

r s r s
= OZ - Ra ) a Ac = 1: wi (Ri- Ra ) airs (37)

Amount!_p_f*thlttlle.11.t

For all panels within one ring, we have the weighted average a

1 35 a 2E 01_ 2

6 12 -o
= 72.92 deg 2 , for ring 1.

i=1

For each individual panel, we then calculate the four averages

i=1 I i=1

where v = number of measured points/panel, with v = 48 for the first ring,

V = 33 for the second ring, and v = 42 for the third ring. From equation (34)

we then obtain the following four equations for our four unknowns (u 4), 11), T),

similar to the system of (23):

N = +u 0 000
N10 = 0 +q (P 0 0

M
01 

= 0 0 + R
a 

q
a

4) 0
(38)

11 = 0 0 + qR quIP -I- qR q



The solution is simply

(39)

-1.5-

MOO

M10/c1R

= 14 01 / (Ra
 a)

= 1111/(ciRciot)

• - L2 (1) - R2 a2 11,/ L2 Ot2 T

u + L ob_ 4 	+ R4 004
.

LI+ a4 T

+ R4 o 4 L4 a4 T

A2

A 3 =

A4 =

(40)

The needed amount of adjustment, A., then follows from equation (34) with L2

and 14
4
 as explained in Figure 5. As to the sign, we define the adjustment

as the opposite of the deviation, A -AC; thus A > 0 means that this corner

must be moved up, while for A < 0 it must be moved down:

If written in this way, we see the actual signs of all single contributions.

But we can also write in a unified way:

A. • - u - (Rj- R a ) - R. j— (R — R
a
 a. (41)

I J j

with j = 1,2,3,4 for the second and third ring; for the first ring, we have

only j = 1,2,3 and a3 = O.
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Fig. 1. Geometrical relations.

a) For pathlength difference, Ap Az + AL

b) For projection of surface into aperture, AR s cos

c) For illumination, dR L
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Weight distribution, for points which are spaced equidistant

on the surface along a radius (arbitrary units).



A panel of the third (outer) ring, projected  to aperture plane

The 42 dots are the measuring points,

the 4 crosses the adjustment screws,

and R
a
 is the average radius, using weights


