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Summary 

Surface plates with four adjustment screws, one. at each corner, allow

four degrees of freedom for their adjustment, including an internal non-planar

twist or warp. The surface deformation of trapezoidal plates resulting from

an enforced twist is investigated, and a simple approximation is derived

which is well confirmed by measurements of four different experimental plates.

This approximation is then used to develop a least-squares procedure for

obtaining those adjustment amounts which minimize the rms deviation between

the plate's surface and the desired telescope paraboloid. The application

of this procedure is studied with seven experimental plates in the lab.

Measurements of six surface plates on a radio telescope (-..71hLch needs readjust-

ment) showed that the inclusion of the internal twist and its treatment by

the proposed procedure would yield an additional improvement of 18% for the

surface deviations.

I. INTRODUCTION

In the error budgets of most existing or newly designed radio telescopes,

the adjustment errors of the surface plates are one of the major contributions.

It is thus an important task to make them as small as possible, small as com-

pared to the manufacturing tolerances of the plates and the deformations of

the telescope.

The surface adjustment consists of four steps. First, the measurement

of the surface is still a difficult problem, regarding both the extreme

accuracy/distance ratios required, and the unambiguous and exact definition

of a reference coordinate system. Second, a "desired paraboloid" must be

selected which may be different from the design paraboloid. A paraboloid of

revolution has six degrees of freedom, but some of them will be fixed for
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structural reasons; for example, most of our telescopes are Cassegrain systems

allowing axial adjustments at the prime focus, and in this case the direction

and location of the optical axis are given by existing equipment locations,

fixing four parameters and leaving only two free ones: vertex height and

focal length. The vertex height may be chosen in accordance with the tele-

scope's present best-fit paraboloid for minimizing the adjustments. But a

new focal length should be the best-fit one for the internal  curvature of all

plates, independent of their present heights and slopes. Third, after the

desired paraboloid has been selected, a computer procedure is needed to

obtain the single amounts of adjustment for all plate corners. Fourth, the

mechanical adjustments of the corners by the computed amounts should be done

without introducing significant errors, which is again a difficult task,

especially if it must be done from underneath the surface high above ground.

The third step is the subject of this paper, treating two problems.

(a) Telescopes have frequently been adjusted such that the adjustment points

at the plate corners will coincide with the desired paraboloid, which we

call a "true-corner adjustment". The best method, however, is a "least-squares

adjustment" where the rms deviation of the plate surface from the desired

paraboloid is minimized, using all available degrees of freedom. (b) Most

telescopes are designed with a radial surface pattern, with trapezoidal plates

having four adjustment points, one at each corner. This allows four degrees

of freedom per plate. But using all four degrees requires the knowledge o-

a plate's surface deformation resulting from an enforced non-planar twist or

warp (three corners level and one raised). The problem is that no detailed

description of twisted plates could be found in the engineering literat re

neither in the standard textbooks [Ref. I, 2, 3] nor in the journals [4,



0
Ta
GK (1)

-3-

Thus, we developed a description of our own, confirmed by measurements of

four different experimental plates. This description is of a simple form,

and it is then used for deriving the wanted least-squares procedure for

4-cornered plates, a procedure which is recommended for all telescopes with

trapezoidal surface plates.

II. SHAPE OF A TWISTED PLATE

Figure 1,a shows a trapezoidal plate, one of its parallel sides (b 1 ) is

held at z = 0, while the other one (b 2) Is subject to a torsional twist (T).

We want to know the resulting surface shape, x,y).

For a long bar of constant rectangular cross section (of width b and

thickness t) the twist angle 0 at its end is given [Ref. 1, page 194, case 41

by

where T = twisting moment, a = length of bar, G = modulus of rigidity, and

where K is approximately

= t3 [1 - 0.630(t/b) 0.0525(t/b)5],3

with an error not larger than 4%. For our case of relatively thin plates,

the last term of (2) is negligible. The twist angle at the end of a rectangular

plate thus is

3T a 
G t 3 b 0.630 t

For the trapezoidal plate we have, first, a varying cross section with

b(y) 13 1 	(b2-b1)y/a. Second, we must write (3) in differential form.

Using the abbreviations b o = b 1 -0.63t, w = (b 2-b 1 )/bo , and Q 3T/(G t bo), we

have

(2)

0 (3)

de dv 
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Third, this is integrated to yield

(y) = Q ln (I + viT i
ta) • (5)

These equations hold under the conditions that the plate is long, a >> b,

and that both sides b l and b 2 are held on straight lines. Actually, telescope

surface plates are somewhat but not very long, mostly with a/b At; 2; and a side

is not held as a whole but is held only at its corners, which could result

in a small S-shaped deviation from a straight line. A further condition is

that the rigidity G is isotropic, the same in all directions, which is true

for a solid plate but may be different for honeycombs and skin-and-rib plates.

We now introduce three simplifications. First, we assume that equation

(5) is a satisfactory approximation for all a > b. Second, we assume that z

is linear in x for all y, meaning z(x,y) = x 0(y), with 0(y) from (5). IL

call z = corner difference = z(A) -z(B) in Figure 1. The shape of the

twisted solid plate then is

As a third simplification, we assume tentatively that the trapezoidal

plate may be approximated by a rectangle, meaning that ln(14-0 may be replaced

by w, which is permissible if w = (b 2-b 1 )/(b 1 -0.630 << 2. Equation (6) then

turns into the easiest possible one of all twisted shapes:

xy z(x,y) = z
o b2a

In addition to (6) and (7), another relevant shape should be mentioned.

If the plate has a strong rib structure underneath, it will mostly have

dominant long radial ribs and short perpendicular ones. In this case all

radial lines (meeting at the telescope's center) will have only linear

(7)
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t-ranslationa,to a very high approximation, and the resulting shape then is,

with w
o
 = (b1-b2)/b

“X,y) = z X (1+WO) 

0 b 2 W
o
y/a

We have now three different descriptions for the twisted surface shape

z(x,y) of trapezoidal plates: equation (6) as our approximation for a solid

plate, equation (7) which is of the simplest possible form, and equation (8)

which holds for plates with strong radial ribs. We call ze, the value of z(x,y)

from equation (6), and similar for z 7 and z 8 . It can be shown that for all

possible x, y and w, there is always

28 > 26 27. (9)

All three equations become identical for w-->- 0, for the approach to rectangular

plates. Our next question thus is: how different are these three shapes from

each other in realistic cases, and mainly: could the easiest one, (7) . be

considered a satisfactory approximation for both the other two?

As a practical example, we have chosen the surface arrangement of Figure 2

MAD design for a 25-meter telescope for 1 mm wavelength). For simplicity,

we neglect the difference between bo and b i , thus W = wo . If the central hole

for the equipment cabin has a radius equal to the plate length, thenw

with i = ring number. We ask for the root-mean-square differences, z
6
 z7)

and rms (z 8 z 7), integrating in x and y over the whole plate. The results

are shown in Table 1.

(8)
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TABLE 1
Checking the simplest approximation (7) against
the twisted shape of trapezoidal solid plates (6),
and against that of plates with strong radial ribs
(8), for the surface plates shown in Figure 2.

Ring rms(z 6 	z 7)/z rms(z8 z7)/zo

0.0135 0.0264

2 .0089 .0176

3 .0066 .0132

4 .0053 .0105

.0044 .0088

.0038 .0075

7 .0033 .0056

8 .0029 .0059

It is very pleasing to learn from Table I that the differences between

our three descriptions of twisted plates are only rather small, mostly one

percent or less of the corner twist z
o
, and less than three percent even in

the most extreme case. Considering these differences completely neglig:Lble

we conclude that the simple form of equation (7) is a satisfactory approxi-

mation for both the solid plate and the skin-and-rib plate.

III. LEAST-SQUARES ADJUSTMENT OF PLATES

A four-cornered plate has four degrees of freedom which can be defined

in two ways. For an "external" definition, the vertical adjustments at the

corners (A,B,C,D) yield one degree each  For an "internal" definition, we

say that any offsets A,B,C,D will cause a change of the surface shape which

can be described by four independent paraiieters:
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p
1
 = t = parallel vertical lift

p 2 = a = tilt angle about y-axis rigid-body translation
(10)

p

3 
= = tilt angle about x-axis

p4 = T = internal twist non-planar deformation

We ask for a least-squares procedure yielding these four parameters from the

measurements, and for a transformation of the result into the wanted amounts

of adjustment at the four plate corners. We presuppose that the desired

paraboloid has already been defined.

After the telescope surface has been measured, we call z(x,y) the

vertical surface deviation

z(x,y) = (measured height) - (desired paraboloid) (11)

where x and y refer to a system within each plate as shown in Figure 1,b,

letting the y-axis coincide with the line of symmetry such that, for simplicity,

•■•••■••■■■■•

xy xy2 = 0 (12)

But the height of the x-axis is left arbitrary, because two different means

of y will be needed: the ordinary average y, and an x2-weighted one, called yo.

= 
x

2
y / x

2
(13)

--where y
o
 = y for rectangles, but y

o
 > y for trapezoids.

Averages shall always be defined by a summation over all measured points

of this plate (as opposed to an integration over its surface). If the points

are not equal-distributed, all averages should use weights equal to the area

represented by the point. If there are only a few long plates along the

telescope radius, the weights should also include the illumination taper.
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Using the parameters (10), the measured deviations (11) can be written

as

z(x,y) = k -I- a x (y-S;) T x (y-yo ) R(x,y) (14)

where R(x,y) is the remaining residual describing the plate's internal

bumpiness, and c is the measuring error. If written this way, all four

parameters are "decoupled". Without subtraction of y, a tilt 13 0 would

also change the height k, whereas subtraction of y decouples 0 and k;

similarly, the subtraction of yo is needed to decouple T and a.

The advantage of decouplA parameters is that they are obtained from

the measurements in a most direct way, without inverting a matrix (instead of
idecoupled" we could have said "orthogonal"). In the present case, the least-

squares solution (minimum residual) is obtained, as can be shown, in the

following way

P i+ = / f _ 2_= (xyz - xz y
o

) / lX y y02).

The wanted corner adjustments Az we define by z(after) = z(before) -I- Az,

and we call )ic. and yk the corner coordinates, with k = A,B,C,D. The best-fit

adjustments then are, using all four degrees of freedom,

Azk = + a f3 (y - y) T xk (y.k yo)1 (16)

We want to check the single steps of improvement by calculating their

remaining residuals. First, we define a sat of "uncorrected" residuals U

which would remain after stepwise removal of one of the parameters (14) at a

time, with still the same measuring er on each point:



= z2

U1
2 = u02

U22 - a
2 

x
2

(17)

---u 3 2 u 2 2

- 

a2( 2y y

u 2 u3 T2( x2y2 2v 2)
do

Second, we define the I co ected" residuals R )/ as those which would

remain after stepwise removal, if the plate would after removal be remeasured

at the same points without any new measuring errors, but still keeping in mind

that the removed parameters are erroneous because of our original measuring

errors of (14), whose rms value we call c

o
. (We presuppose that c

o
 is known,

the best way to determine c
o 

is to measure the telescope twice.) Omitting a

lengthy derivation, the result is, for v = 0...4,

= u 2 ... lq-9v 
c 1 112

i

Third, we call n the number of measured points on a plate . . If no weights

are used in the averages of (13), (15) and (17), then N = n. If weights W.
3

are used, then the equivalent number of unweighted points is, as can be shown,

n 2E (19)

L =I j =1

For a verification of (18), consider the two extreme cases. For N-+ we

= u 2 _ 2.have R 2
c

o
 , and for the minimum, N = n = v, we have U

v
 = 0 and

R
v
 = c

o
; both as to be expected.

(18)
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Fourth, we define stepwise improvements as

Iv = [1 - (Rv iRv_1 )] 100%, (20)

and the total improvement as

I
t
 - [1 - (114 /R0)] 100%. (21)

When is the removal of a parameter statistically justified: Consider for

example the case where the plate has actually no tilt about the y-axis,

P2 a . 0, but where the measuring errors have feigned an erroneous tilt

a # O. Its removal according to (17) will still decrease the uncorrected

residual by definition. This is different for the corrected residuals, where

going from v-1 to v will give R
V 

R -1 if the measuring error c
o
 is sufficientlyv

large. We thus regard a positive improvement as a criterion for a justified

removal, using the convention:

If I
v <

0 , then set p
v
 = 0, (22)

and these cases are not counted for the value of v in the term of

equation (18).

Finally, a note of caution. The definition of the residuals (18) assumed

the plate, after adjustment, to be remeasured without errors af the same ylstiAlal

as before; whereas regarding the performance of the adjusted telescope, the

receiver will, so to say, remeasure without: error all of the surface area.

The latter may yield a somewhat larger residual than the former, if the distri-

bution of measuring points was not dense enough to catch the shortest surface

bumps. For treating this effect one would have to know the Fourier power

spectrum of the plate's surface shape, which we will not follow up. Thus,

equation (18) is used for the residuals, assuming a sufficiently dense measuring

grid.



IV. RESULTS OF MEASUREMENTS

Table 2 shows the construction types and sizes of seven experimental

surface plates, manufactured (Plate No 1 and 2) or purchased (No. 3 ... 7)

by NRAO in connection with the design of two millimeter-wave telescopes. All

plates are trapezoidal and are supported at their four corners. Plates No.

1 ... 4 are described in detail by Findlay and von Hoerner [6]. All plates

have been measured with a radial grid similar to Fig. lb. (Some additional

measurements were done with a rectangular grid, without significant differences.)

TABLE 2

Types and sizes of experimental surface plates.

With length a, width b, thickness t, number of measured

pointsrliandw = (b ,2- b 1 )/b 1 . See Figure la.

Plate
No

Telescope
Design

Plate type Name

._

size (cm)
wo na bi b2 t

1 65-m skin + ribs
riveted

II .A 191.1 68.9 74.8 10.16 0.085 56

2 65-m (same) III 191.1 68.9 74.8 10.16 .085 56

3 65-m skin ± ribs
cast alumin.

PF #1 189.1 65.4 74.3 7.62 .136 60

4 65-m (same) PP #2 189.1 65.4 74.3 7.62 .136 60

5

_

25-m skin + ribs
cast alumin.

AF #1 152.4 72.7 91.4 7.62 .257 60

6 25-m (same) ANF #4 152.4 72.7 91.4 7.62 .257 60

7 25-m honeycomb H #2 151.5 72.7 91.6 7.62 .260 60



First, we want to check how well the simple equation (7) will approximate

the actual shap of a twisted plate. The plate is corner-supported with all

four corners adjusted level, and heights 11 1 are measured for the n grid

points (using scale and level). Then one corner is lifted by z = 3.0 mm,

the other three corners held level, and heights h 2 are measured. Finally

the heights h 3 are measured with all four corners leveled again. The twist

deformation then is

(h1 h3)/2. (23)

The single measuring error was determined as c = 12.7 pm = 0.0127 mm. The

error of the combination (23) then is

= c i 7RY = 15.6 pm. (24)

The n values of z and their coordinates x and y are submitted to a program

which calculates the ten averages and four parameters of equation (15) and the

residuals of (18). The results are -shown in Table 3; most plates were measured

twice, lifting a corner of the long side (A or B), or one of the short side

(C or D). R is the rms deformation of the plate, given in percent of z;• and
o

R4 is the rms deviation of the measured shape from the shape of equation (7).

If equation (7) would hold exactly, then Ro = 113 = 33.3% as can be shorn,and

R4 = 0 by definition. The agreement may be called quite satisfactory: R deviates

from 1/3 by only 2% of zo in the average, and the average of R4 is (1.15 4. 0.25)%

of zo , which agrees well enough with the theoretical expectations of Table 1,

and which is completely negligible for all practical purposes. Thus, equation

(7) and the least-squares procedure (15) based on it are satisfactory approxi-

mations.



1 53.4 51.1 1.73 0.43 0.55 1.60 4.24
2 58.8 49.8 12.67 .45 0 2.62 15.34
3 78.5 48.7 21.51 18.65 2.86 0 37.98
4 51.0 30.4 13.17 30.65 0 1.04 40.41
5 40.9 36.7 4.35 0 2.17 3.95 10.12

6 29.5 27.2 0 5.64 .65 1.63 7.77

7 291.0 174.1 39.53 .47 .54 .02 I 40.15

rm,,, 18.4 13.7 1.41 2.03 27.0

Plate
No.

Residuals (im)

R
4

Improvements (7.) 
1

2
1

3 4 It
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TABLE 3
The shape of twisted plates.
R rms deformation with one corner lifted, R 4 =
rms deviation of measured shape from equation (7)._

Residuals (in % of z)

R R

36.1 0.24
36.3 .33
30.52 .83
37.91 1.88
34.48 1.39

37.48 1.53
34.28 1.71

Second, for the experimental plates of Table 2, we, want to find the

gradual improvemen ts 	equation (20) resulting from the stepwise removal of

the four parameters as described in (17). For Plates 1, 2 and 3 we have only

one set of measurements, thus c = c i = 12.7 pm; for Plate 5 we have two sets

and use the average, where c = c i b
r
i = 9.0 1,1m; and for Plates 4, 6 and 7 we have

four sets and use the average, with c = c 1 12 = 6.4 pm.

TABLE 4

Stepwise removal of the four adjustment parameters, and

resu1t inJmprovemento f  the residuals, for the plates ,  of Table 2. 

Plate No. Corner
(Table 2) lifted

A

A

7



Residuals (mm) 

R4
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Table 4 shows the results. R
o
 is the original rms deviation of the

true-corner adjusted plate from the design paraboloid; R 4 is the rms deviation

after the final 4-parameter least-squares adjustment, and I t is the total

improvement thus achieved. For the seven plates, we have rms(I ) = 27%, a

rather substantial improvement. From the single improvements I v we learn that

Ii Is the largest, which means than an over-all bulging up or down of the plate

is its largest mode of distortion; 1 2 >> 1 3 may be explained by the dominance

strong radial ribs which are present in Plates 3, 4, 5, 6; and 1 4 = 2% is

small but still significant.

Third, we ask for the gradual improvements again, but this time for plates

being on an actual telescope which needs readjustment. The surface of the

140-ft telescope has been measured by J. Fifidlay with a new me .thod (unpublished);

the data are still preliminary but sufficient for our present purpose, with

about E= 0.30 mm. The 140-ft has only three rings of relatively long plates

(panels), and we select arbitrarily the North and South sectors, treating a

sample of six plates. Ring , 1 is at the center, Ring 3 at the rim.

TABLE 5
Same as Table 4, but for six plates on the 140-ft telescope
which needs readjustment. 

Improvements (%)

Ii 12 13 14

40.5 8.8 0 0 54.7
43.4 13.2 15.5 23.4 68.2
1.6 23.5 14.0 28.6 53.8

30.2 0 10.4 0 37.4
.3 18.1 32.0 26.3 59.1

1.5 15.2 .4 1.4 17.9

Sector Ring

1
2
3

2
3

0.87 0.47
1.53 .49
2.06 .95

.83 .52

.99 .40
1.28 1.05

rms = 1.33 0.69 27.2 15.1 16.2 18.5 49.7
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Results are shown in Table 5. Since the starting condition of R
o
 is not

any more the true-corner adjustment as before, but is now a plate which is

maladjusted at all four corners (including a non-planar internal twist), all

improvements of Table 5 are larger than those of Table 4 (especially 14).

Provided that the data used are representative of the actual surface of the

whole telescope, and that the mechanical adjustments can be done without

significant errors, the comparison of R o = 1.33 mm with R4 = 0.69 mm would

mean that a proper readjustment could improve the surface accuracy by almost

a factor of two. And rms(I 4) = 18.5% shows drastically the importance of

using the fourth degree of freedom, the internal twist.

It is a pleasure to thank 3. Findlay for the 140-ft data, and L. King

for the literature search.
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FIGURE CAPTIONS

Fig. 1. Trapezoidal surface plate.

a) Torsional twist of a beam with rectangular cross section (t X b

T = twisting moment, 6 = twist angle, b = variable width.

Top view of plate; showing coordinate system, radial grid of

measuring points, and corner adjustment points (A, B, C, D).

Fig. 2. Example of trapezoidal surface plates, in radial pattern with

eightrings; showing 114 of telescope.



Figure /. Trapezoidal surface plate.

a) Torsional twist of a beam with rectangular cross section ( t x
T = twisting moment,4-,%= twist angle, b  variable width.

b) Top view of plat_ showing coordinate system radial grid
mern,urin„,„ points, and corner adiustme points (A, B, C, D).
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