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Abstract 

Errors in the observed visibilities can be classified as direction dependent 
and direction independent effects. Since direction dependent effects are dif¬ 
ferent for each source, they must be corrected during imaging. This memo is 
concerned with the problem of correcting for such effects during imaging. We 
demonstrate that the effects of known receptor pointing errors (including polar¬ 
ization squint) can be corrected during imaging. An algorithm to solve for the 
antenna pointing errors is described in EVLA Memo 84. Errors due to such ef¬ 
fects as well other time varying direction dependent effects are expected to limit 
the highest imaging dynamic range achievable for single pointing observations 
with the EVLA and mosaicking observations with ALMA. Error analysis and 
corresponding impact on computing load for wide-band and mosaic imaging is 
also discussed. 

1 Introduction 

Measurement Equation for an interferometer can be compactly written using the 
HBS notation (Hamaker et al. 1996) as 

vV*» = Wijiij I J,f!'(S)/(S')e'S B«dS (1) 

where V-jbs is the observed visibility Stokes vectors, Jy is the Muller Matrix com¬ 

posed of multiplicative antenna based gains, J^A:y(5) is the Muller Matrix of direction 
dependent gains as a function of direction S, Wij is the weight for baseline i — j 
and I is the image. When is unity, the above equation reduces to the familiar 
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equation , where is the model visibility vector. The effects of 

Jij can be removed prior to imaging by multiplying this equation by J"1 and using 

the corrected visibility for making the image. The effects of JSky however cannot be 
similarly removed since it is an image plane effect and hence must be corrected for 
during imaging. Direction dependent effects which are antenna independent (and 
hence same for all baselines) can be removed by dividing the image by Non- 
squinted antenna power pattern is one such example. For El-Az mounted antennas 
with a squint in the power patterns of the two orthogonal polarizations, image plane 
polarization properties not only change across the field of view but also rotate on 
the sky as a function of parallactic angle (PA). As long as the squint is same across 
the antennas, such errors can still be corrected, to a large extent, by correcting in¬ 
dividual snapshot dirty images for each polarization (or dirty images in some PA 
increment) and combining them to make the final dirty image for polarization prod¬ 
uct k which is then used as the update direction in the deconvolution iterations 
(Cornwell 2003) as: 

J (2) 

where ip is the parallactic angle and the above equation is evaluated in appropriate 
increments of ip. Since removing the effects of Jij is not an issue, for the rest of this 
paper, Jjj will be assumed to be unity. 

For significant antenna pointing errors, Jskv is different for each baseline making 
it expensive to evaluate the inversion of Eq. 1 for each image pixel. Here we describe 
techniques to efficiently correct for primary beams including polarization squint and 
pointing errors. An algorithm to solve for the antenna pointing errors is described 
in EVLA Memo 84 (Bhatnagar et al. 2004). 

I d 

2 Direction dependent error correction 

Eq. 1, for polarization product P, can be rewritten as: 

Vp' = \NEpFIp (3) 

where W is the weights matrix, Ep = FJpkyFT (the data domain representation 
of J5ky) F is the Fourier transform operator, and IM is the model image. The 
Generalized Dirty Image (Cornwell 1995) is the update direction for an iterative 
deconvolution, given by AID = -CAx2, where C is the covariance matrix. When 
jSky ^ same for aii antennas, approximating the Hessian as a diagonal matrix, the 

update direction can be computed as 

AI0 = _SR U jSky^IR (4) 

where B is the Beam Matrix and JSky is computed in appropriate increment of the 
Parallactic Angle (PA) (Cornwell 2003). 
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When JSky is antenna dependent, direction dependent effects cannot be reduced 
to multiplicative effects in the image domain. Ep then filters the data domain 
differently for each baseline. In such cases, applying the correction in the image 
domain becomes impractical (requires data from each baseline to be inverted for 
each image pixel). Such effects must then be incorporated in the evaluation of Eq. 3 
for visibility prediction. 

The algorithm to incorporate direction dependent effects during imaging is moti¬ 
vated by the w-projection algorithm (Cornwell et al. 2003). Such techniques rely on 
accurately computing the transform in one direction and using it in the iterative de- 
convolution algorithms to achieve convergence. An approximate update direction is 
computed and the model image is iteratively improved asJ^ = J^1+a max [A/P] 
(0 < a < 1). Errors due to the approximation are iteratively corrected in the accu¬ 
rate prediction of the model visibilities to achieve convergence. 

3 The forward and inverse transforms 

When direction dependent errors are present, the predicted visibilities are given by 
Eq. 3. Typically the gridded visibilities FIM are interpolated from a regular grid to 
the observed (u, v, w) points and re-sampled at the measured (u, v, w) points as: 

where G is the interpolation operator and superscript g indicates data on a regular 
grid. This equation is similar to Eq. 3. In the absence of direction dependent effects, 
the convolution of the two antenna complex illumination patterns are identical and 
lossless for all baselines. The G operator is therefore real and physically correspond 
to "focusing" of the coherence field by the antenna surfaces. Direction dependent 
effects redistribute the energy in the visibility plane and the focusing operation 
must reflect this via G, which in general is complex valued. For visibility prediction 
then, Eq. 3 can be straightforwardly used by using E in place of G - provided E 
has appropriate aliasing properties and can be efficiently evaluated. Note that the 
model image in this case should be corrected for JSky for predicting model visibilities. 
Transform in this forward direction will be accurate and this is all that is required 
for the update direction computation in Pointing SelfCal algorithm to solve for E 
given a reasonably accurate model image (Bhatnagar et al. 2004). 

The inverse transform will be [FE]*. Using E^ as the interpolation operator for 
re-sampling the data on a regular grid will correct for the effects of E in the Dirty 
image. An approximate update direction can be computed with correct units by 
dividing the image by an average JSky. 

These transforms will include the effects of direction dependent terms and will 
be accurate in prediction of the visibilities and approximate in the other direction. 
Using these transforms for computing the residual visibilities and residual dirty 

(5) 
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image, an iterative deconvolution scheme should ultimately drive the residual image 
to be noise-like. The errors due to the approximate inverse transform will eventually 
be corrected to give a deconvolved image corrected for direction dependent effects 
(see also the discussion in Cornwell 2003). Since the final model image is iteratively 
built using accurate computations only in one direction, dirty image itself will not 
have much physical meaning (as it never does). 

4 Squint and pointing error correction 

In the following section, we use superscripts p and q to represent the two orthogonal 
polarizations. The forward and inverse transforms used in an iterative deconvolution 
algorithm are described in the feed polarization basis. The minor cycle uses the 
Stokes images for updating the model image at each iteration. Stokes model images 
are converted to feed polarization basis and used in the major cycle for visibility 
prediction. 

4.1 Forward transform 

When JSky correspond to the antenna power pattern projected on the sky, Ef?, the 
elements of E for baseline i — j and polarization product pq, itself can be separated 
into terms that include the squint (which is assumed same for all antennas) and the 
antenna based pointing offsets (which are different for each antenna and a function 
of time) as: 

epp = (6) 

where 4>i is the pointing offset and E^0 is the Fourier transform of the ideal squinted 
voltage pattern assumed to be same for all baselines. The function / represents the 
de-correlation that the signal suffers at each baseline due to the antenna pointing 
errors. /(0) = 1.0 and for voltage patterns with finite support, it will be a mono- 
tonically decreasing function of its argument. The exact form of this however will 
depend upon the exact form of the voltage patterns. To the first order, it will be 
close to unity for small pointing errors (few percent of the half-power beam width). 

For no pointing errors, the parallel hand predicted visibilities will correspond to 
a sky tapered by the corresponding power pattern (as it should be). With pointing 
errors, the predicted visibilities will include the effects of pointing errors. 

4.2 Inverse transform 

To correct for the effects of the primary beam (e.g. the pointing offsets) during 
f 

imaging, E™ can be used as the interpolation operator for re-sampling Vpq on a 
regular grid: 

yPq,G _ (jj]Pqiypq\ /y) 
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The Dirty images are then computed as 

'm = fT^ot'G (8) 

The resulting image is tapered by the product of the average power patterns for the 
two polarizations (Ep and Eq ). Therefore to compute the dirty image consistent 
with the true sky (e.g., - not tapered by the square of the primary beam), 
forward transform should be 

= JpSyrlFTvP9'G (9) 

where Jpqy^ is the average over all antennas for the entire range of parallactic angle 
coverage. 

4.3 The deconvolution algorithm 

The above forward and inverse transforms are used in the major and minor cycles 
of the iterative deconvolution algorithms. The algorithm is as follows: 

1. Set the initial model image to zero. 

2. Compute the update direction using Eq.9 and the appropriate smoothing op¬ 
erator 

3. Update the model image (minor cycle) 

4. Use the forward transform to compute the residual visibilities (major cycle) 

5. Goto 2 till residuals are noise-like. 

The software framework for deconvolution algorithms in AIPS++ involves two 
basic set of C-|—I- classes. The SkyEquation (and related classes) evaluate the 
update direction and implement the Newton-Raphson minimization. FTMachine 
line of classes implement the forward and inverse transforms, which are used in 
the minimization iterations. To realize the above algorithm in this framework, 
a new specialization of the FTMachine was developed (the PBWFTMachine) and 
used for forward and inverse transforms. The Eij functions are evaluated using 
the VLACalcIlluminationConvFunc class and the modified VisJones class (the 
EPJones) to interpolate the pointing offsets in time. Rest of the machinery for 
the major-minor cycle iterations remains the same. At the user level, the above 
deconvolution algorithm can be used by setting the ftmachine parameter of the 
imager tool to "pbwproject". 
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5 Error analysis 

Convergence of the deconvolution iterations is judged by the statistics in the residual 
image. The residual image is constructed as: 

IR = Y^ PSFitp) * [APB(ip)I0] (10) 

where ^ is the feed Parallactic Angle, 1° is the true sky, APBfy) is the error 
between the true and the assumed primary beam model at PA= ^ and PSF(iJj) is 
the instantaneous (snap-shot) PSF. The peak residual can be estimated as a source 
of flux density S located at the position of the peak of the error pattern multiplied 
by the maximum sidelobe of the instantaneous PSF: 

max{IR} = maxiPSFsideiobeiipo^maxiAPB^^jS (11) 

100 80 60 40 20 0 -20 -60 -100 ou ™ ^ u ^ " D 

Relotive J2000 Right Ascension (orcmln) Relo,ive J2000 ^«nS!on (o'cmin) 

Figure 1: The model for VLA L-band antenna power pattern at Parallactic Angle ~ 80°. 
Left panel shows the Stokes-I power pattern ([PBrr + PBll\/2). Image on the right shows 
the Stokes-V power pattern ([PBrr — PBll]/^)^ colour/gray scale with the contours of 
the Stokes-I power pattern superimposed. Dark regions in the gray scale image on the right 
represent negative values due to the polarization squint of VLA antenna. 

An instantaneous Stokes-I and -V VLA antenna power patterns at 1.4GHz are 
shown in Fig. 1. This pattern rotates on the sky with the PA and results in the time 
varying gain across the field of view. When imaging using azimuthally symmetric 
PB model, the PB error pattern is given by APB(ip) — PB — PB(ip) where PB is 
the azimuthally averaged PB. Rotation of this error pattern on the sky contributes 
the dominant errors in the residual image (and consequently in the final deconvolved 
image). The Stokes-I error pattern and an azimuthal cut through this function at 
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Figure 2: Difference between instantaneous Stokes-I PB and an azimuthally averaged PB. 
The colour image is APB = PB(ip0) — PB while the contours are for the PB. 

50%, 10% and 1% point of PB is shown in Figs. 2 and 3 respectively. The first 
contour in the image is at 0.95 and the sixth contour is at 0.5 of PB. Within the 
main-lobe of the Stokes-I beam, the peak of the error pattern is where PB ~ 1%. 
For S = Uy, maxsideiobe{PSF(i/j0)} = 40% (measured for the test L-band, C-array 
data) and max{APB(ijjo)} = 0.005, the peak residual will be about 2mJy in Stokes- 
I. Peak residual in Stokes-V would at the level of about lOmJy. 

The deconvolution algorithm described above is essentially approximating the 
function shown in Fig. 1 as a function of PA by a piece-wise constant function. The 
maximum error due to such an approximation can be estimated using the following 
equation: 

Ipeak — ^peak (12) Lpeak LA1peak 
dPB 

where = S -j—- (13) 

For an imaging sensitivity requirement of 77, the minimum PA increment such that 
the imaging dynamic range is not limited by the piece-wise constant approximation 
would be given by 

AV < S.j/Ai** (14) 

For the L-band, VLA C-array test data (see below), 

increment of 10°, peak residuals in Stokes-I and -V would be about ImJy and 5mJy 

0.0003. For PA 
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Figure 3: Azimuthal cut through the APB shown in Fig. 2 at points where the gain of the 
average PB is at 50%, 10% and 1%. 

respectively. With the expected thermal sensitivity of 0.2mJy/beam for the L-band 
data we used, PA increments of 1° had to be used. 

The PA increments for EVLA such that imaging is not limited by the above 
approximation will be much higher. Use of a better interpolation of the aperture 
functions will significantly relax the PA-increment limit. Since image interpolation 
itself can be expensive, a better approach is probably to pre-compute the aperture 
functions at smaller PA increments in a disk-cache. The gridding cost is relatively 
insensitive to the number of convolution functions used. A hybrid approach of FFT 
based transforms plus analytical computations for the strongest sources will probably 
deliver optimal performance. 

6 Implications for wideband and mosaic imaging 

Antenna pointing errors, non-azimuthally symmetric aperture illuminations, wide 
bandwidths and deconvolution errors due to use of pixel basis for sky representation 
all leave residuals at few 10s of micro Jy level. Therefore, apart from correcting for 
the direction dependent effects, for the highest imaging dynamic ranges allowed by 
the thermal sensitivity of the EVLA, scale-sensitive decomposition of the sky will 
also be necessary (Bhatnagar & Cornwell 2004). While this may be more expensive 
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than the current deconvolution algorithms in use (Clean, MEM, etc.), it will provide 
the required accuracy. With higher accuracy in visibility prediction, it will relax the 
requirement on the sampling rate along the PA axis and may even be more efficient 
overall. 

The algorithm described here accounts for the variations due to azimuthally 
asymmetric aperture illumination and consequent gain variations as a function of 
time. For imaging with bandwidth ratio of 2:1, the dominant error terms will be 
the scaling of the power pattern with frequency. Sources which will be well within 
the main lobe of the primary beam at the lower frequency end of the band will be 
outside the main lobe at the higher frequency end (and may even appear in the first 
sidelobe). Since the azimuthal variations in the power pattern due to feed legs/sub- 
reflector blockages are maximum close to the null and in the first sidelobe, frequency 
scaling of the aperture illumination will contribute the first order error. 

Scaling with frequency in observations with wide bandwidths can be incorpo¬ 
rated by computing the aperture illumination functions at appropriate increments 
in frequency. Since the computing cost scales weakly with the number of convo¬ 
lution functions used, the extra computing load will not be too high. The cost of 
computing the aperture functions itself will be significant, but it is a one-time cost. 

The sidelobe gain variation as a function PA is ~ 50%. For mosaic observations, 
this will contribute significant time varying flux in most individual pointings. As¬ 
suming the peak PSF sidelobe of 10%, sidelobe gain variations will contribute an 
error of few percent of the flux density at the location of the PB sidelobes. This 
clearly will significantly limit the mosaicking dynamic range and will be the first or¬ 
der effect that will need to be corrected for. The second order error due to antenna 
pointing errors will also need to be corrected for. Neither of these dominant effects 
are included in existing simulations to estimate the imaging performance of ALMA. 

The algorithm described above includes the pointing error term. The problem 
of mosaicking is a straight forward generalization of this work where the vector for 
the center of each pointing with respect to the mosaic field center can be used as 
the antenna pointing offset. The resulting phase gradient in the aperture plane and 
proper normalization in the image domain is internally computed already in the 
PBWFTMachine and can be straight forwardly used for forward and inverse mosaic 
transforms. Rest of the machinery for iterative deconvolution remains unchanged. 
Since this FTMachine nominally corrects for the time varying sidelobe gains and 
antenna pointing errors, one can expect these dominant errors to be significantly 
reduced. With some more work (related to internal book-keeping of convolution 
functions), inhomogeneous arrays like CARMA/ALMA (not all antennas in the 
array are identical even to the first order) can be easily handled as well. (Ultimately, 
at the very high dynamic range imaging with telescopes like the SKA, nominally 
identical antenna elements may have variations at levels higher than the thermal 
noise sensitivity limit. In that sense, such telescopes will also need to be treated as 
inhomogeneous arrays). 
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7 Results 

7.1 Simulations 

The algorithm was tested for squint correction by imaging visibilities simulated 
using the standard AIPS++ simulator which can simulate VLA polarization squint 
for azimuthally symmetric primary beam patterns. A model for typical sky emission 
at 1420MHz was generated using the NVSS source list. The PA increment of 10° 
was used in order to rotate the squinted R- and L-beams on the sky. The visibilities 
were simulated for VLA B-array and an RMS noise of ~ l//Jy/beam was added. 

Fig. 4 shows the Stokes-V deconvolved images with and without squint correction 
applied during deconvolution. Squint correction results in noise figure improvement 
by a factor of ~ 10 and more than 20 times improvement in the image fidelity. 
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Figure 4: The deconvolved Stokes-V images: The image on the left had no squint correction 
applied while squint correction was applied to the image on the right. The peak and RMS 
noise in the images are 2mJy and « 10/iJy/beam and 70/zJy and « l//Jy/beam respectively. 

AIPS++ simulator (or any other simulator that we know of) cannot simulate vis¬ 
ibilities with time varying antenna pointing errors (for the same reasons that makes 
it impractical to apply known pointing errors during imaging). The visibilities with 
pointing errors where therefore simulated by predicting the model visibilities using 
the PBFTMachine in increments of 10° in PA. A model for the VLA aperture illu¬ 
mination pattern (Brisken 2003) was used to generate a non-azimuthally symmetric 
power pattern. The mean of the pointing errors were randomly distributed between 
±25" with an RMS of 5". The images where then deconvolved using the above 
algorithm and the results are shown in Figs. 5 and 6. Fig. 5 shows the Stokes-I im¬ 
ages. As expected, the deconvolution errors were maximum for the sources around 
the half-power point of the primary beam. These errors were significantly reduced 
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(close to the noise level) when the pointing and squint corrections were applied dur¬ 
ing deconvolution. Fig. 6 shows the Stokes-V images (without and with pointing 
and squint corrections) which separates the effect of only pointing offsets. 

7.2 VLA L-band data 

The algorithm was also tested for Stokes-I and -V imaging using a VLA L-band, 
2 x 7hr observation (without solving for pointing offsets). The field contains two 
strong (~ Uy) sources on either side of the pointing center, with one of them located 
close to the half-power point of the primary beam. The aperture illumination pattern 
for each antenna was assumed to be the same and was computed using the model 
for VLA antennas (Brisken 2003). The model includes geometry of the sub-reflector 
and the feed position as well as the aperture blockage due to the feed legs and 
the sub-reflector. The aperture illuminations were computed as a function for PA 
increments of 1°. The expected thermal noise for this data is ~ 0.2mJy. The results 
of the imaging run with and without the correction for time varying primary beam 
gains and polarization squint are shown in Figs.7 and 8. The peak residual in the 
Stokes-V images without and with primary beam corrections are 7mJy and 0.3mJy 
respectively. 
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Figure 5: Stokes-I imaging: Image in the top panel was made without squint and pointing 
correction while bottom image had both corrections applied. The systematic deconvolution 
errors seen at the location of the strongest sources around the half-power point are due to 
the antenna pointing errors. 
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Figure 6: The residual Stokes-V images: Only VLA polarization squint co 
applied to the image on the top. Both, antenna pointing offset and squint co 
applied to the image in the bottom panel. 
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Figure 7: The Stokes-I images for a L-band VLA C-array data. Top panel shows the 
deconvolved image without correcting for the antenna power pattern variations as a function 
of the Parallactic Angle. Bottom panel shows the result of the deconvolution using the 
algorithm described above. The two dominant sources, on either side of the pointing center 
have a flux density of ~ Uy each. 
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Figure 8: The Stokes-V images for a L-band VLA C-array data. The top and bottom 
panels show the images without and with PB-corrections. Errors due to the polarization 
squint are clearly above thermal noise in the top image while the bottom image is consistent 
with the thermal noise (0.3mJy/beam). 


