EVLA Memo # 227

VLA Calibrator List Revisited: 2018 X-band Astrometry and Alternative Phase-reference Sources

Loránt O. Sjouwerman¹

¹National Radio Astronomy Observatory, Socorro NM

(Dated: October 13, 2024)

ABSTRACT

Sources from the VLA calibrator list with potentially questionable positions were observed in Xband (8-12 GHz) using the BnA and BnA to A (move) array configurations for improved astrometry in February 2018. Promising calibrator or phase-reference sources from other surveys were included for potential inclusion in an updated VLA calibrator list. Presented here are 122 positions for existing calibrators and a list of at least 399 alternative sources, mostly at southern Declinations, that probably should be included in a future version of the VLA calibrator list, at least for X-band in the extended array configurations.

With additional resources the quality of the here presented results could be improved further, but the data contains sufficient valuable information already to not significantly further delay current findings. These new potential calibrator sources can already now be used after inspection and using the information presented here. The best-effort results of this work are available in the public and evolving "VLA Alternatives" source catalog of NRAO's VLA Observation Preparation Tool but should only be used with caution after consulting this memo. Practical guidelines for how to safely use the sources in the "VLA Alternatives" catalog as VLA calibrators are provided.

Keywords: catalogs - surveys - radio emission - radio interferometry

1. INTRODUCTION

The NSF's Karl G. Jansky Very Large Array (VLA) typically observes target fields interspersed with "calibrator" source observations to maintain a temporal sampling of the instrumental gains and atmospheric phase fluctuations. Phase-referencing of target fields using calibrators yields the relative angular frame in which radio sources in a target field are tied to the calibrator position and its positional accuracy. It is therefore important to reduce (or effectively eliminate) systematic positional errors in any calibrator position as much as possible to obtain an absolute target position referenced to such calibrators accurately.

The current (pre-2024) VLA calibrator source list¹ is a compilation of previous efforts, since the first short baseline and decimeter wavelength observations in the late 1970-ies. These efforts are not well documented or preserved². Examples of expansion of the initial list are the additions of a spin-off of a gravitational lens search (CJ2 and JVAS sources) and a dedicated high-frequency campaign on VLBI sources in the late 1990-ies. However, apart from the fact that many sources are variable in flux density, the current list contains sources that are not sufficiently compact in the more extended configurations and/or at higher frequencies where the improved angular resolution should allow for much higher precision. Similarly, the sources observed during the VLA high-frequency campaign were not followed-up for suitability at lower frequencies³. Some sources are remnants of the early days, i.e. only suitable at low frequency using short baselines with low positional accuracy. Furthermore, the calibrator sky density is very coarse for high-frequency observations that generally need close-

¹ http://go.nrao.edu/vla-callist

 $^{^2}$ When available, a month-year label reference is given in Section 3 of the link in the first footnote.

 $^{^3}$ TCAL0008 is a long-term VLA filler program aimed for this.

 Table 1. VLA Calibrator Source Density

Region	Area	All	Dens.	cm	Dens.	$\mathbf{m}\mathbf{m}$	Dens.
All-sky	35955	1864	0.052	271	0.008	1593	0.044
North	20626	1487	0.072	166	0.008	1321	0.064
South	15329	377	0.025	105	0.007	272	0.018

Area: number of square degrees accessible to the VLA in that Region using a southern Declination limit of -48° .

cm: number of sources without high-frequency (K-band through Q-band) information.

mm: number of sources with high-frequency information (of which 668 have only Q-band information, 649 in the North, 19 in the South).

Dens.: the calibrator density per square degree; for example, ignoring suitability, a listed mm-calibrator in the South serves on average 56 square degrees (i.e. 1/0.018).

by calibrators, in particular south of the celestial equator. Apart from a careful cleanup⁴ for typo's, duplicates, omissions and parsing errors of the VLA catalog in the Source Catalog Tool⁵ (SCT) of the VLA Observation Preparation Tool in 2016, the current VLA calibrator list has not been updated nor supplemented since well before the first observations with the expanded VLA in 2010 and wideband observing capabilities (i.e. well before ingestion in the SCT around 2008), and even not until after the publication of this work.

With the execution of the VLA Sky Survey (VLASS; Lacy et al. 2020) starting in 2017, and with a handful of user reports over the years it became apparent that the current list not only has an insufficient sky coverage but also contains positional errors and inadequate positional accuracy for sources that would otherwise be excellent phase-referencing calibrators. The work presented in this memo is an astrometry campaign to amend and expand the list with more (potentially high-frequency) alternative calibrator sources, with an emphasis on southern Declinations.

2. THE CURRENT CALIBRATOR SOURCE LIST

The current VLA calibrator source list consist of 1864⁶ sources and Table 1 provides and overview of the sky density for different uses by coarsely grouping them into regions of the sky and observing bands. Out of 1864 calibrators, 668 contain only Q-band (40-50 GHz) information, and 271 contain no high-frequency (20 GHz

and above) information. Note that even though there may be information contained in the list, it does not guarantee that the source is a suitable calibrator. Using a southern Declination limit of -48° (covering 87.16% of the entire sky), the average listed calibrator density regardless of observing frequency (0.052, Table 1) is one per 19 square degrees regardless whether they are good calibrators or not.

Each source in the VLA calibrator list is given a *Position Error Code* of A, B, C or T. These codes are presumed to indicate an accuracy (i.e., absolute positional error) of a calibrator as documented in Table 2. The most accurate (better than 2 milli-arcseconds; 2 mas) are likely taken from VLBI observations and the least accurate are typical FRII or CSO sources (and the planetary nebula NGC 7027) that are only unresolved in the more compact arrays at low frequency where lower positional accuracy is acceptable due to the low angular resolution. The sky density should be as high as possible for positional code A and as low as possible for positional code T to achieve the highest accuracy anywhere on the visible sky.

Interferometers like the VLA (and VLBI) resolve radio sources to various degrees depending on observing frequency and projected baseline length (i.e., in units of wavelength). What is a good point-like calibrator in one array configuration at one frequency may not hold for the same source at another frequency and/or in another array configuration. Typical cases would be FRII sources that are dominated by their extended lobes at low frequency and by their central core at high frequency making them typically unsuitable at low frequencies in the extended array configurations. On the other hand, the more compact arrays may not resolve the source and observe the combined radiation of the lobes as a point-like calibrator but resolve them at the higher frequencies, yielding the opposite conclusion. It should also be said that a short (calibration) scan on a core-jet source may not yield enough sensitivity to actually be sensitive to the weaker extended structure; if a source is dominated by a point-like structure it may very well be suitable for phase and/or gain calibration regardless the fainter extended structure, provided that the position given is the position of the core, and not a weighted or fitted position of the sum of all emission.

For the four principal VLA array configurations (**A**, **B**, **C** and **D**) and for as many observing bands as available, the VLA calibrator list therefore also indicates the potential usefulness for that combination of array configuration and observing band with a *Calibrator Closure Code*. These more widely used "calcodes" address the amount of closure errors in phase ("closure phase") that

 $^{^4}$ See the "Notes" at the end of the calibrator list in Section 6 of the link in the first footnote.

 $^{^5}$ http://obs.vla.nrao.edu/sct- requires account registration.

 $^{^{6}}$ Ignoring an empty entry for 1118-465/J1118-4634 in the list.

Table 2. VLA Calibrator Positional Accuracy Codes

 Table 3. VLA Closure Phase Calibrator Codes (calcodes)

Code	Positional Accuracy	#	Dens. $(^{-1})$
А	${<}0.002^{\prime\prime}$ (better than 2 mas)	802	0.022 (45)
В	0.002 to $0.01''$ (2-10 mas)	761	0.021 (47)
С	0.01 to $0.15^{\prime\prime}$ (10-150 mas)	143	0.004(251)
Т	${>}0.15^{\prime\prime}$ (worse than 150 mas)	158	0.004(228)

can be expected when the observation is self-calibrated with a point-source model. For properly calibrated data, closure phase is an observation-independent measure and indicative of source structure; large errors warn about deviations from the (point-source) model. These calcodes are listed with their meaning in Table 3.

Note that in principle any source can be used as a calibrator if a reasonably decent source model is available, specifying the flux density, source structure and reference position. Models for the standard VLA flux density calibrators like 3C286 and 3C48 are distributed with the common radio interferometry data reduction packages CASA and AIPS.

2.1. Anchors: calibrator sources used for calibration

Not surprisingly, the calibrator list (and real life) contains many ambiguous sources and the choice of the main positional calibrators in this X-band (8-12 GHz) BnA/A-array astrometry experiment has to be done carefully. For a calibrator to be used as a positional calibrator it must have a good a-priori position and be point-like at X-band.

In order to judge the a-priori positions of sources in the calibrator list, the positions were compared to the latest VLBI positions from the ICRF and RFC (as defined prior to expansion updates in 2018; Charlot et al. (2020) and http://astrogeo.org/rfc/). If the ICRF and/or RFC positions agree with the VLA position within 50 mas (the approximate angular resolution using A-array configuration in Q-band), the VLA position is assumed to be correct⁷, and these sources are acceptable as position (phase-referencing) calibrators in this experiment. It is reassuring to note that of the 1864 sources in the current calibrator list 1468 match this criteria⁸: the remaining ~ 400 sources are candidates for an astrometric check-up using the VLA. For the rest of this document sources matching the VLBI position within 50 mas at the time of selecting the sample, the genuine VLA calCodeMeaning for a point source modelP<3% amplitude closure errors expected. Use it.</td>S3-10% closure errors expected. Gain calibrator.W10-?% closure errors expected. Phase calibrator.CConfused source, avoid for calibration.XDo not use. Too resolved/weak or undetectable.?Source structure unknown.

ibrators, are here referred to as "VLA Anchors", the other sources in the VLA calibrator list without this position accuracy match will be referred to as "VLA targets".

One caveat is that the listed VLA position may have originated from VLBI measurements and that an independently measured position using the VLA may differ from the ones obtained using the longer baselines from VLBI. On the other hand, VLBI calibrators as in the ICRF and RFC are likely dominated by a point-like static (extragalactic core) component and assumed here to unlikely have extended structure at VLA BnA/Aarray configuration baselines in X-band. That is, for this experiment the calibrator positions matching the VLBI positions are used, regardless the "official" positional accuracy code they have in the current VLA calibrator list (i.e. ignoring the information described in Table 2).

It should also be pointed out that many VLA calibrator positions have been taken from VLBI source lists and were followed-up with the VLA in Q-band only. As many of them will not have been observed here due to a matching position (within 50 mas) with the VLBI position (obviously), there is no guarantee that these highfrequency VLA calibrators will still be point-like, with the emission centroid at the postulated position, at Xband in A-array configuration. Including them in these observations was, however, beyond the scope of this experiment.

3. ALTERNATIVE POTENTIAL CALIBRATORS

In an attempt to improve the (high-frequency) calibrator density, in particular in the southern hemisphere, the observations were extended to include sources from other compilations (See Fig. 1 and Table 7). In particular, using the ALMA calibrator list⁹ (as known in December 2016, before any long baseline campaign), compact sources in the AT20G survey (Murphy et al.

 $^{^7}$ It is not uncommon for positions to differ in individual VLBI catalogs, with changes in the order of milli-arcseconds (mas).

 $^{^{8}}$ Of the 668 "Q-band only"-sources 547 passed this criteria.

⁹ https://almascience.nrao.edu/alma-data/calibrator-catalogue

Figure 1. Sky distribution of the 590 sources observed for potential suitability as a VLA calibrator. The lower density of northern Declination sources is due to the upper Declination limit of 0° for the "AT20G" and "Winn" catalogs. Sources south of Declination -48° were not selected.

2010) and a list of southern VLBI sources by Winn et al. (2003), resulted in a total of 590 promising candidate calibrator sources. Being point-like at higher frequencies and/or on longer baselines may indicate a core-dominated compact source, which is a prime attribute for a calibrator source, especially when the highfrequency and low-frequency flux densities are similar (i.e., a likely non- or only slowly-variable flat spectrum source).

During 2017, all these additional sources were observed in C-array, B-array and/or A-array configuration at S-band and positively assessed as sufficiently bright and relatively compact to function as suitable VLASS calibrators.

3.1. ALMA calibrator list

The ALMA calibrator list is a catalog of bright compact high-frequency (90-1000 GHz) sources in use by the Atacama Large Millimeter/submillimeter Array (ALMA). These sources are likely compact flatspectrum cores and should be detectable at lower frequencies with the sensitivity of the VLA. Therefore about 130 calibrators north of Declination -48° that appeared point-like were selected for inclusion in the Xband astrometry survey. While these sources are not included in the current VLA calibrator list, they were detected with the VLA in the S-band observations outlined above. Although these sources in principle should have adequate astrometry from their ALMA calibrator position, they were included here to verify their detectability, compactness and position with VLA BnA/A-array configuration baselines at X-band. The ALMA calibrator sources included in the observations are here referred to as "ALMA targets".

3.2. AT20G survey

The AT20G is a 20 GHz (K-band) survey carried out with the Australia Telescope Compact Array (ATCA) of the sky south of Declination 0° with a flux-density limit of 40 mJy/beam (Murphy et al. 2010). Unfortunately it deliberately omits the inner 3° ($b < \pm 1.5^{\circ}$) of the Galactic Plane due to potential source confusion. About 300 compact AT20G sources north of Declination -48° and that were also detected in the previous S-band observations were included for these X-band observations, excluding the sources already selected using the VLA or ALMA calibrator list. The AT20G sources observed here are referred to as "AT20G targets".

3.3. Other compilations

About 110 non-duplicate sources of the catalog of 321 compact sources of Winn et al. (2003) were added. These "Winn targets" are sources in the declination range -30 to 0° observed to be brighter than 50 mJy/beam in X-band using VLBI and appeared point-like in their B-array S-band observations.

Originally intended to provide extra calibrator sources at S-band, single-component low frequency (150 MHz) sources selected from the TGSS-ADR (Interna et al. 2017) were included. These sources were selected using a Declination cut-off, a flat or rising spectral index characteristic, and with an anticipated minimum flux criteria of 50 mJy/beam at 13 GHz. The 45 "TGSS targets" included had earlier passed a point-like structure assessment from earlier observations in C-array and A-array configurations at S-band.

Finally, a couple of point-like "3FGL targets" from the S-band observations originate from the "Unassociated Gamma-Ray Sources from the Third Fermi Large Area Telescope Source Catalog" (Schinzel et al. 2017).

Although it would have been possible to include many more potential calibrator sources form other compilations, the current target list with 590 sources, mostly in the southern sky (Fig. 1), was considered sufficiently large to postpone observing many more candidates to a future opportunity.

4. OBSERVATIONS

The target sources were grouped to areas in the sky with a common astrometric phase-referencing calibrator, where the calibrator would typically have a designation of "**P**" (see Table 3) at X-band in A-array configuration (i.e. one of the VLA *Anchors*) and typically be well within a 10° reach. Occasionally, in particular in the south were the VLA *Anchor* density is lower, this was relaxed to an "**S**"-type calibrator or to slightly further than 10° distance (though never more than 15°).

Table 4. Observing sessions

Date & Start (UT)	Configuration	Duration	Targets
2018-02-10 08:04	BnA	05:29:27	76
2018-02-13 23:34	BnA	05:58:53	121
2018-02-19 07:13	BnA	05:14:38	109
2018-02-22 23:19	BnA to A	01:40:08	34
2018-02-25 01:06	BnA to A	21:12:13	603

Excluding the standard flux density sources, in total 216 VLA calibrators were used for phase-referencing. In some cases one could have selected more nearby calibrators, increasing the total number of calibrators used, but if the calibrator was a " \mathbf{P} " within 10° , the choice was to reuse calibrators to reduce observing time. All target sources were observed for up to a single one-minute scan, bracketed by a phase-calibrator. This snapshot (u, v)sampling does not capture the full angular structure of the source, but should allow for a proper astrometric measurement if the source is point-like and the synthesized beam is sufficiently round. The observations took place in 2018 February, in BnA-array configuration and during the BnA to A-array configuration move (Table 4), using an X-band setup that covered about 5 GHz in contiguous bandwidth (7.5-12.5 GHz).

Because the observations were primarily set up for astrometry and not for accurate flux density measurements, the resulting flux densities should be assumed to have up to about a ten percent error.

5. DATA REDUCTION

Given the wide frequency coverage, and the fact that many artificial sources transmit in X-band, severe RFI was present. In order to keep it manageable and speed up the astrometry measurements only one of the 128 MHz subbands was reduced and imaged; this subband was centered on 11.284 GHz, the highest frequency subband that was apparently RFI-free. As calibration typically is performed on a per-subband basis, using a single subband is thus appropriate, and adequate for this purpose. After minimal flagging of bad data, the visibilities were calibrated and imaged with the standard AIPS pipeline procedure PIPEAIPS, applying a fixed pixel size of 43.08 mas for all array configurations used in a 1024-square pixel continuum image.

It should be noted that the results are directly taken from this data reduction and thus are "as-is" from the pipeline. More careful flagging, multiple data inspection and reduction passes, and individual handling of each of the target sources may have yielded better overall results and/or resolve individual discrepancies such as an original anticipated point-like ("**P**") source not being detected here once more resources are available. Furthermore, improving image quality using hybrid mapping or self-calibration schemes of course would counter the goal of obtaining absolute (calibrator phase-referenced) astrometry.

6. RESULTS & DISCUSSION

A complete overview of results is collected in the Appendix, where Table 5 and Fig. 3 refer to the VLA targets and where Table 6 and Fig. 4 refer to the alternative reference sources. A suggested application – how to use these results in VLA observations – is given in Sect. 6.4.

Again, it should be noted that the analysis was done mostly automatic with a minimal subjective visual check as resources to perform a thorough individual quality check or follow-up were unavailable. It thus may appear that an extended source is resolved out, with a hot-spot remaining in the image yielding an apparent artificial large position shift; in those cases the position therefore is not from the main component and care must be taken in assuming the here measured position. Equally, a genuine point-like source may appear extended due to improper phase-referencing, which could be corrected for with more attention to the data reduction and/or reobservations at a higher elevation in better weather and/or with a different calibrator source. No such attempts were made; the "as-is" results below were obtained with minimum effort.

In the data reduction, all calibrators used for phase referencing, the VLA Anchors, were detected. Depending on the Hour Angle and elevation some (mostly southern) calibrators had relatively elongated beam shapes potentially affecting the astrometric solution. Apart from the non-detected target sources, a number of target sources (noted in the Appendix) were detected though yielded insufficient data quality to address their astrometry. This may be improved with a more careful reanalysis of the observations.

In the following sections the results of the phasecalibrators, the VLA Anchors used in this experiment are discussed first (Sect. 6.1), followed by an assessment of the questionable VLA calibrators, the VLA targets for which improved astrometry was sought (Sect. 6.2). The alternative reference sources, the 590 additional targets not previously listed as a VLA calibrator are discussed in Sect. 6.3. Finally, Sect. 6.4 suggests the best use of these results.

6.1. Calibration

VLA Anchors—The target observations were calibrated with "good", genuine VLA phase-referencing calibra-

Name

Table 7. Targets for astrometric positions observed

Origin	Observed	Point-like	Inconclusive	
VLA	353	122^{X}	231^X	
ALMA	133	78	55	
AT20G	299	201	98	
Winn	111	91	20	
TGSS	45	28	17	
3FGL	2	1	1	

Point-like: single (or single dominant) point-like component yielding good astrometry.

Inconclusive: extended or multi-component source without a dominant point-like component, non-detection at X-band using these longest baselines, or image affected by bad calibration or RFI.

 X : Includes sources coded as "**X**" for closure error, i.e., previously deemed unsuitable to be used as a point-like source in A-array configuration at X-band.

tors, the VLA Anchors. Their results are discussed in this section. To recall, these are sources that have their position in common (within 50 mas) with VLBI source positions, are bright and are anticipated to be dominated by a point-like source at X-band in BnA/Aarray configuration (calibrator code "P"). In general this assumption yields good results after examining the images, as almost all of the 216 VLA Anchors are detected and appear point-like with the maximum emission in the phase-center. However, there are a few VLA Anchors for which the maximum emission does not appear in the reference pixel (512, 513); these calibrators are listed in Table 8 with the coordinate shift of the flux density maximum. Their images are shown in Fig. 2 and it is clear that many have multiple components and seem to have jet-like structures, possibly either by incomplete flagging of bad data or having emerged in the years since their inclusion in the calibrator list. Target sources calibrated with these calibrators, listed in Table 8, may have larger than anticipated remaining systematic astrometric errors and are labeled as such in Table 5 and Table 6 (in the Appendix).

There are some other calibrators that show evidence for asymmetry and/or jet-like structures in the images, but those are not as extreme and do not seem to impact the astrometric results more than the assumed systematic error by selecting on position based on VLBI data.

Target source calibration—For all the different sets of targets below, inconclusive results could benefit from a new look at the data. It may be noticeable that specific sources near each other show similar structure, i.e., they arguably suffer from the same incorrect

		(mas)	(mas)	
J0019+7327	A, \mathbf{P}	-0.1, +46.4	46.4	a
J0339 - 0146	A, \mathbf{P}	-26.3, -7.8	27.4	b
J0403 - 3605	B, \mathbf{P}	-100.9, +119.2	156.2	с
J0428 - 3756	A, \mathbf{P}	-1.9, +39.6	39.7	d
J0510 + 1800	A, \mathbf{P}	-42.0, +42.8	60.0	e
J0538 - 4405	A, \mathbf{P}	-13.4, -44.5	46.5	f
J0555 + 3948	A, \mathbf{P}	+39.3, -42.6	58.0	g
J0741 + 3112	A, \mathbf{P}	-44.9, +29.3	53.6	h
J0854 + 2006	A, \mathbf{P}	-87.6, +38.0	95.5	i
J0921 - 2618	В, Р	+4.3, +21.0	21.4	j
J1107 - 4449	B, \mathbf{P}	-1.1, -31.5	31.6	k
J1146 + 3958	A, \mathbf{P}	+88.1, -1.4	88.1	l
J1608 + 1029	A, \mathbf{P}	+36.4, -9.4	37.6	m
J2025+3343	A, \mathbf{P}	-0.1, +44.8	44.8	n
J2052 + 3635	A, \mathbf{S}	-33.5, -45.8	56.7	0
J2322+5057	A, \mathbf{P}	-55.5, +40.9	68.9	p

Codes: positional accuracy code (Table 2) and phase closure error (in bold, Table 3) code references in the VLA calibrator list for A-array configuration and X-band.

Label: see calibrator image in Fig. 2 and see Table 5 and Table 6 for which target is phase-referenced to this calibrator.

phase corrections on individual baselines. This is apparent, e.g., when a group of nearby targets show a typical "rocket shape" triangular (or any other commonly shaped) structure pointing in the same direction. Furthermore, phase-referencing between calibrators and targets at low elevation observations, mostly affecting low-declination targets, are more likely to fail for the longer projected baselines. Thus, whereas the individual images may show structure, these may well be artifacts that can be calibrated out. But for the purpose of this report, they are inconclusive in obtaining proper astrometric positions.

Nevertheless, some structure, whether real or not, may be acceptable for using the majority of these sources as potential alternatives to VLA calibrators in lower resolution observations (e.g., in B-array or more compact array configuration or, e.g., in C-band at ~6 GHz or lower frequencies). See Section 6.3 on alternative VLA reference sources below.

6.2. VLA targets

In general, the (at X-band BnA/A-array configuration) dominant point-like VLA targets could benefit from the here measured alternative positions, although

 Table 8. Questionable Phase-referencing Calibrators.

 $\Delta RA, \Delta Dec.$

Shift

Label

Codes

Figure 2. Phase-calibrators, VLA Anchors used that do not have their maximum emission at the phase center, potentially leading to questionable astrometry larger than the a-priory accuracy (50 mas). The order of sources plotted is left-to-right and top-to-bottom as the labels a through p in Table 8. Sources calibrated with any of these calibrators may have some remaining systematic astrometry issues and are labeled as such in Table 5 and Table 6 (in the Appendix). Other VLA Anchors with apparent structure have a dominant point-like feature at the phase-center causing less concern about systematic residuals in astrometric accuracy.

the differences are typically small; a small fraction of an arcsecond. However, some individual cases should be updated with positions up to 3 arcseconds differing from the calibrator list position.

A large number of non-point-like sources among the VLA targets is likely a remnant of the selection of suitable calibrators, e.g. from the Westerbork catalog, in the early days (i.e., for the longer wavelengths in the shorter array configurations). As they are point-like for e.g. 21-cm work in D-array configuration they were kept but also withheld or assigned a non-suitable calibrator code for, in this case, X-band A-array configuration (similarly the "Q-band only" calibrators do not have an X-band A-array calcode). It should be pointed out that some sources are not detected at all in X-band A-array configuration, suggesting that there is no real core component and the emission is located only in the diffuse lobes like in Compact Symmetric Objects. Many of the multi-component VLA targets seem to be originally positioned somewhere near the weighted center of the X-band emission and thus are off-set from the VLBI core position.

Also, whereas some calibrator sources are quite suitable in the more compact array configurations and/or at the lower frequency bands, they may show near-equal double structure at X-band in the BnA/A-array configuration that may also resolve into a single dominant core at the higher frequency bands (or VLBI baselines) and thus are just not suitable under the conditions of this experiment. Overall, it seems not useful to modify these multi-component positions to their core as clearly the VLA is sensitive to emission that does not share the same center as the VLBI-scale emission.

6.3. Alternative VLA reference sources

ALMA targets—Nearly all of the 133 ALMA targets were detected. The clear non-detections were the ALMA calibrator sources J0449–0057, J1217–0029 and J2156–0037. Looking at the source names it is apparent that the source coordinates, with a Declination between -1 and 0 (i.e., -00°) were not properly parsed into the target list and hence were observed at the mirrored positive Declination (i.e., $+00^{\circ}$).

Of the remaining 130 targets, 55 were not dominated by a point source or were of bad data quality (see Fig. 4) and are thus not listed as alternative VLA reference sources in Table 6. As these are known calibrators (for ALMA), the initial positions are generally already reliable. As mentioned, these are mainly included to confirm these high-frequency sources as suitable calibrators using the VLA at X-band and possibly at other VLA receiver bands. AT20G targets — The majority, 299 of 590 (50.7%) non-VLA targets are drawn from the AT20G catalog. Unsurprisingly this survey provided the largest contribution of new point-like detections, but it is also the survey with the largest collective corrections needed (excepting the low resolution, low frequency TGSS) of typically a couple to a few arcseconds when phase-referencing with the VLA *Anchors*. A smaller fraction (33%) than for the ALMA sources (42%) lacked the dominance of a pointlike source (see Fig. 4), preventing 98 sources to be listed as alternative VLA reference sources in Table 6.

Winn targets—The 111 Winn targets, with a-priori VLBI X-band positions, could potentially expose more extended structure and associated position shift when using the VLA. Whereas most sources agree in position well within 100 mas, the exception is an extended double source (J1418–2958) deviating about 370 mas. Most targets were detected and typically are dominated by a point-like component. That is, 81% are listed as alternative VLA reference sources in Table 6 (see also Fig. 4).

TGSS targets—All TGSS targets were detected and most are point-like. As these originally were drawn from a low-frequency survey, and mostly sensitive to extended lobe emission, the position corrections for this sample are the largest compared to the others (followed by AT20G).

3FGL targets—Of the two 3FGL targets one, J1204-0710, is a clear point-like source. The other field, J1745-2900 and anticipated to be displaced by a few arcseconds from the VLA calibrator Sgr A^{*} (both designated J1745-2900 by IAU naming convention) did not yield a detection other than Sgr A^{*} itself. The former 3FGL target is listed as an alternative VLA reference source in Table 6, the latter is not.

6.4. Use of these results

The sources in Tables 5 and 6 (see Appendix) have been included in a new public source catalog in the SCT; next to the original "VLA" calibrator list one can find the "VLA Alternatives" catalog. However, given the above explanation on observations, calibration and limitations, sources in this list should not be blindly trusted for being good calibrators. It is also anticipated that this VLA Alternatives catalog will be an evolving resource, with updated positions and new sources, whereas the original VLA calibrator list will be kept frozen at this time.

For a successful calibration of VLA observations, it is recommended to select a suitable source from the VLAcalibrator list adhering to the general advice given in the extensive VLA observing documentation. If a suitable calibrator is found, one may check Table 5 or the VLA Alternatives catalog if an updated position is listed, and if so, whether the image in Fig. 3 gives sufficient credence to use the updated position or whether to stick with the original VLA catalog entry.

If no suitable calibrator is found in the VLA list, or such calibrator is deemed non-optimal, one can search for a potential suitable calibrator in the VLA Alternatives catalog. Before using this alternative source as a calibrator, one **absolutely must check** the image in Fig. 4. If dominated by a point-like component, the next check would be the (11.3 GHz) flux density in Table 6 to deduce the approximate flux density at the observing frequency (e.g., using the original catalog data or more general surveys like VLASS) to judge whether it may be sufficiently bright for the observation. If not detected or in case of a complex structure, one should discard this source and search for another, using the same procedure.

7. FUTURE PROSPECTS

The astrometry of this sample, for the sources that are indeed dominated by a point-like component, can be improved by managing the editing of bad data and a more focused attention during the data reduction process as noted above. For the very southern sources, and perhaps others, phase referencing to an alternative, closer VLA reference source from Table 6 instead of a genuine VLA Anchor separated more in angle might be an option when considering new observations. The astrometry for the other sources may only succeed in a different (lower) frequency range and/or in more compact array configurations. Whether these sources are detectable will follow from other programs like TCAL0008, after which astrometry measurements at a more optimum frequency and array configurations can be re-attempted.

Alternative astrometry may be obtained by crosscorrelating this sample with, e.g., data products from the VLASS survey and the optical Gaia astrometric survey, where again one should caution for different emission mechanisms and angular structure sensitivity. Finally, it would be prudent to (re-)develop a (numeric) measure for the "point-likeness" structure of a source that captures suitability to use as a calibrator source. The current calibrator code designations of "**P**", "**S**", etc., are a good parametric start but may need more finesse in the future, when production of observing schedules and selection of calibrator sources become more automated.

8. CONCLUSIONS

By performing new phase-referenced X-band A-array configuration observations of (non-VLBI)calibrators from the VLA calibrator list, 122 positions deviating more than 50 mas from the original have been remeasured. The maximum difference between old and new VLA calibrator positions was 6.6 arcseconds (for J0220-0156), although this is likely from a different, unrelated source in the field of view. Another 399 VLAaccurate positions from sources taken from ALMA, AT20G, Winn et al., TGSS and 3FGL catalogs have been collected. For 422 sources in the X-band A-array configuration observations, a single position could not be assigned; these sources individually may still be good calibrators on shorter wavelengths and/or shorter baselines. These results were obtained "as-is" using standard pipelines and minimal intervention, and could be significantly improved with additional resources and reprocessing of the available data. The results are collected in the Appendix and in the VLA Alternatives source catalog in the SCT of the VLA Observation Preparation Tool and must be used with extreme care as described in Sect. 6.4.

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The author wishes to thank Ylva Pihlström for carefully reading and improving this memo.

REFERENCES

- Belokurov, V., Erkal, D., Deason, A.J., et al. 2017, MNRAS, 446, 4711
- Charlot, P., Jacobs, C. S., Gordon, D., et al. 2020, A&A, 644, A159. doi:10.1051/0004-6361/202038368
- Intema, H. T., Jagannathan, P., Mooley, K. P., & Frail, D. A. 2017, A&A, 598, A78
- Lacy, M., Baum, S. A., Chandler, C. J., et al. 2020, PASP, 132, 035001. doi:10.1088/1538-3873/ab63eb
- Murphy, T., Sadler, E. M., Ekers, R. D., et al. 2010, MNRAS, 402, 2403
- Schinzel, F. K., Petrov, L., Taylor, G. B., & Edwards, P. G. 2017, ApJ, 838, 139
- Winn, J. N., Patnaik, A. R., & Wrobel, J. M. 2003, ApJS, 145, 83

L.O. SJOUWERMAN

APPENDIX

This Appendix lists the details and shows the images obtained for all the "targets"; first the sources from the VLA calibrator list (Table 5, Fig. 3) and then the alternative VLA reference sources from other catalogs (Table 6, Fig. 4). The tables are sorted on RA, one row per source. The figures are sorted on RA, horizontally from upper left to upper right and then similarly row-like all the way down to lower right.

Whereas a large number of targets have their measured positions blanked¹⁰, as it appears that the position is not properly defined in these observations, manual inspection of individual images may help to decide whether a particular target seems a viable point-like source in array configurations with less angular resolution and/or at lower frequency bands, or perhaps potentially may be more point-like at higher frequency bands. Therefore most sources, with their here measured positions (i.e., also for many "Extended" sources still dominated by a point-like core), are retained in a new *VLA Alternatives* catalog in the SCT.

As the majority of the new sources seem indeed to be dominated by a single point-like component, judgment for calibration suitability of individual sources and for specific observing goals is left to the reader upon consultation of the here presented images. Be warned however, that some of the larger shifts may indicate the detection of a lobe hot-spot instead of marking the position of the core emission. That is, when using for phase-referencing one has to decide whether to use the reported position of maximum emission (i.e., as in Table 5 or Table 6) or to use the center RA/DEC as given in the figure caption (which are from the original input catalogs). Also note the peak flux density in the figure caption and the gray scale range, which is auto-scaled.

Do not blindly use the positions as reported in the new VLA Alternatives catalog in the SCT; consult the images first as described in Sect. 6.4. Future observations at lower (or higher) frequency bands and/or in more compact array configurations may yield more reliable or sufficiently accurate positions for general use.

¹⁰ Be aware that the VLA Alternatives catalog <u>does</u> list a position associated with the maximum flux density in the image also for these sources, but it is not suggested to use that data as a phasereference position – check the images for calibration suitability!

IAU Name	Code	Measured RA	Measured Dec.	Error RA	Error Dec.	Flux Dens.	ΔRA	$\Delta \text{Dec.}$	Shift
J2000		(h m s)	(°′″)	(s)	('')	$\rm Jybeam^{-1}$	(mas)	(mas)	(mas)
J0003-1727		Extend	ed Source, Multip	le Compone	nts				
J0004 + 2019		$00 \ 04 \ 35.75746$	$+20 \ 19 \ 42.3106$	0.0000131	0.000143	1.54	2.0	61.6	61.6
J0006 - 0004		Extend	ed Source, Multip	le Compone	nts				
J0010 + 2047		$00\ 10\ 28.74373$	$+20 \ 47 \ 49.7930$	0.0000234	0.000258	0.26	-17.3	80.0	81.8
J0012 - 3954	Р		Inadequate D	Data					
J0018 - 1242			Extended Sou	urce					
J0020 + 1540		Extend	ed Source, Multip	le Compone	nts				
J0024 + 2439		$00\ 24\ 27.32964$	$+24 \ 39 \ 26.2168$	0.0000188	0.000191	0.27	32.1	-83.2	89.2
J0025 - 2602	X		Inadequate D	Data					
J0035 - 2003		Extend	ed Source, Multip	le Compone	nts				
J0040 + 0125		$00 \ 40 \ 13.52529$	$+01 \ 25 \ 46.3421$	0.0000065	0.000110	0.75	-1.4	39.1	39.1
J0040+3310		Extend	ed Source, Multip	le Compone	nts				
J0042 - 4414			Not Detecte	ed					
J0044 - 3530			Not Detected	ed					
J0046 + 2456		$00 \ 46 \ 07.82589$	+24 56 32.5277	0.0000105	0.000114	0.97	45.0	-79.4	91.2
J0047+2435		$00 \ 47 \ 43.87117$	$+24 \ 35 \ 16.0037$	0.0000130	0.000145	0.44	57.7	-69.4	90.2
J0054-0333		Extend	ed Source, Multip	le Compone	nts				
J0059-1700			Extended Sou	urce					
J0103 + 1526		$01 \ 03 \ 26.00273$	$+15\ 26\ 24.6600$	0.0000200	0.000257	0.24	-7.7	-15.0	16.9
J0112+3208			Extended Sou	urce					
J0116-2052	x	$01 \ 16 \ 51.40496$	$-20\ 52\ 06.8977$	0.0000064	0.000146	0.65	-9.2	-84.7	85.2
J0120-1520			Extended Sou	urce					
J0122 + 2954		$01 \ 22 \ 45.43012$	$+29\ 54\ 12.6452$	0.0000110	0.000114	2.20	-28.9	41.1	50.3
J0129+2338			Extended Sou	urce					
J0134-0931	x		Extended Sou	urce					
J0134-3843	\mathbf{S}	Extend	ed Source, Multin	le Compone	nts				
J0135 + 0811			Extended Sou	urce					
J0137+3122		$01 \ 37 \ 08.73273$	$+31 \ 22 \ 35.8321$	0.0000609	0.000551	0.60	-0.4	43.1	43.1
J0141+1353		Extend	ed Source, Multin	ole Compone	nts				
J0141-2706			Extended Sou	urce					
J0157-1043	x	Mu	ultiple Compact C	omponents					
J0200+2523		02 00 20.63823	$+25\ 23\ 54.6503$	0.0000152	0.000194	0.23	15.8	-43.6	46.4
J0201-1132		Mu	ltiple Compact C	omponents					
J0203-4349		Extend	ed Source, Multin	ole Compone	nts				
J0220-0156		$02 \ 20 \ 54.01305$	-01 56 57.0040	0.0002954	0.002846	0.04	4002.0	-5204.0	6564.9
J0221 + 3556	x	$02 \ 21 \ 05.46347$	$+35\ 56\ 13.6638$	0.0000795	0.000668	0.44	119.4	-127.2	174.5
J0224 + 2750		Mu	ltiple Compact C	omponents		-			
J0231-3935	S	Extend	ed Source. Multin	le Compone	nts				
J0242-0000			Extended Sou	urce					
J0252+1718		$02 \ 52 \ 07.71872$	+17 18 42.6886	0.0000097	0.000144	0.59	1.2	1.6	1.9
J0301+3142		$03 \ 01 \ 23.25562$	+31 42 08.4819	0.0000469	0.000374	0.05	3.5	43.9	44.0
J0309+2738		03 09 22.09644	+27 38 54.3708	0.0000174	0.000229	0.07	0.9	-0.2	0.9
J0312 - 1449		Extend	ed Source. Multir	ole Compone	nts				0.0
J0323 + 0534	x	03 23 20.26212	+05 34 11.9024	0.0000104	0.000168	0.34	-7.8	11.5	13.9
J0324 + 3410		03 24 41 16072	$+34\ 10\ 45\ 8479$	0.0000277	0.000203	0.32	-1.5	42.9	42.9
			Not Detect	ad		-	1.0		

Table 5. Alternative Positions and X-band Flux Densities of Existing VLA Calibrators (Continued..)

IAU Name	Code	Measured RA	Measured Dec.	Error RA	Error Dec.	Flux Dens.	ΔRA	$\Delta \text{Dec.}$	Shift
J2000		(hms)	(°′″)	(s)	('')	$\rm Jy beam^{-1}$	(mas)	(mas)	(mas)
$J0337 + 0137^{b}$	W	$03 \ 37 \ 17.10824$	$+01 \ 37 \ 22.7537$	0.0000136	0.000234	0.06	77.3	-18.4	79.5
J0338 + 2243		$03 \ 38 \ 17.81155$	$+22 \ 43 \ 35.9937$	0.0000263	0.000337	0.41	28.4	-43.3	51.7
J0348 + 3353		$03 \ 48 \ 46.91069$	$+33 \ 53 \ 15.5145$	0.0000291	0.000227	0.29	-77.1	549.5	554.9
J0355 + 3909		$03 \ 55 \ 16.59368$	$+39 \ 09 \ 09.8234$	0.0000369	0.000260	0.24	-28.9	-0.6	28.9
J0356 + 2903		$03 \ 56 \ 08.46204$	$+29 \ 03 \ 42.3184$	0.0000083	0.000099	0.59	-25.4	41.4	48.6
J0407 - 3303	Р		Extended Sou	urce					
J0409 - 1757	\mathbf{X}	$04 \ 09 \ 06.67553$	$-17 \ 57 \ 10.0772$	0.0000337	0.000376	0.78	349.2	-38.2	351.3
J0409 + 3848		Mu	ultiple Compact C	omponents					
J0411 + 0843		$04 \ 11 \ 33.85746$	$+08 \ 43 \ 11.4210$	0.0000127	0.000208	0.62	0.6	13.0	13.0
J0413 - 3430		Mu	ultiple Compact C	omponents					
J0422 + 3058		$04 \ 22 \ 21.22279$	+30 58 09.7100	0.0000374	0.000265	0.29	36.1	42.0	55.4
J0423 + 3451			Extended Sou	urce					
J0425 + 1755	\mathbf{X}	Mu	ultiple Compact C	omponents					
J0429 - 3426	\mathbf{X}	$04 \ 29 \ 46.91543$	$-34 \ 26 \ 41.0836$	0.0003290	0.005244	0.05	3779.9	676.4	3840.0
J0432 + 3131		$04 \ 32 \ 06.44361$	$+31 \ 31 \ 13.3416$	0.0000449	0.000313	0.30	7.5	41.6	42.3
J0433 + 2905		$04 \ 33 \ 37.82932$	$+29\ 05\ 55.4788$	0.0000123	0.000156	0.22	46.9	18.8	50.5
J0438 + 3004		$04 \ 38 \ 04.94848$	$+30 \ 04 \ 45.5277$	0.0000527	0.000363	0.65	40.5	38.7	56.0
$J0441 - 3340^d$	\mathbf{S}		Extended Sou	urce					
$J0449 - 3911^d$	Р		Extended Sou	urce					
J0455 - 2034		$04\ 55\ 23.72106$	$-20 \ 34 \ 16.0583$	0.0002684	0.006026	0.02	-808.4	-1547.3	1745.8
$\rm J0502{+}2516^{e}$			Inadequate D	Data					
$J0519 + 2744^{e}$			Inadequate D	Data					
J0521 - 2047		Mu	ultiple Compact C	omponents					
$J0534 + 1927^{e}$			Inadequate D	Data					
$J0535 + 3910^{g}$		$05 \ 35 \ 55.12632$	$+39 \ 10 \ 58.5237$	0.0001275	0.001239	0.18	-96.8	126.7	159.4
J0536 - 3401	Р		Extended So	urce					
J0550 + 2326	?		Inadequate D	Data					
J0604 + 2021		Extend	ed Source, Multip	le Compone	ents				
$J0604 + 2429^{f}$	\mathbf{X}		Inadequate D	Data					
J0604 - 4225	Р		Inadequate D	Data					
J0613 + 1708	\mathbf{W}		Inadequate D	Data					
J0617 - 3634	X	Extend	ed Source, Multip	le Compone	nts				
J0625 + 1440	\mathbf{X}		Inadequate D	Data					
J0627 - 0553			Extended Sou	urce					
J0632 + 1022	\mathbf{S}		Inadequate D	Data					
J0632 + 1554			Inadequate D	Data					
J0641 - 0320	Р	Mu	ultiple Compact C	omponents					
J0643 + 0857	\mathbf{S}		Inadequate D	Data					
J0644 - 3459	Р	Extend	ed Source, Multip	le Compone	nts				
J0646 + 3041		Extend	ed Source, Multip	le Compone	ents				
J0653 - 0625	Р	$06 \ 53 \ 00.59662$	$-06\ 25\ 32.6962$	0.0000097	0.000183	0.12	31.1	-176.2	179.0
J0656 - 0323	\mathbf{S}	$06 \ 56 \ 11.12007$	$-03 \ 23 \ 06.7870$	0.0000048	0.000086	0.45	33.5	-149.0	152.7
J0702 - 1015		$07 \ 02 \ 35.75612$	$-10\ 15\ 06.4219$	0.0000085	0.000170	0.09	-28.3	-61.9	68.1
J0703 - 0051	\mathbf{S}	$07\ 03\ 19.08644$	$-00\ 51\ 03.1590$	0.0000044	0.000077	0.18	303.9	1790.0	1815.6
J0706 - 2311		Extend	ed Source, Multip	le Compone	nts				
$J0707 + 2917^{h}$	\mathbf{W}	$07 \ 07 \ 26.00071$	$+29\ 17\ 18.7487$	0.0002155	0.001875	0.09	-185.8	82.7	203.4

Table 5. Alternative Positions and X-band Flux Densities of Existing VLA Calibrators (Continued..)

IAU Name	Code	Measured RA	Measured Dec.	Error RA	Error Dec.	Flux Dens.	ΔRA	$\Delta \text{Dec.}$	Shift
J2000		(hms)	('	(s)	('')	${\rm Jy beam}^{-1}$	(mas)	(mas)	(mas)
J0709-1127		$07 \ 09 \ 10.40652$	$-11 \ 27 \ 48.4577$	0.0000065	0.000134	0.10	-1.7	-13.7	13.8
J0710 - 0343	S	$07 \ 10 \ 20.13278$	$-03 \ 43 \ 27.8712$	0.0000058	0.000106	0.14	19.8	-76.2	78.7
J0714 + 1436			Extended So	urce					
J0724 - 0715	\mathbf{W}	$07 \ 24 \ 17.29277$	$-07 \ 15 \ 20.3588$	0.0000066	0.000128	0.46	95.6	-99.8	138.2
J0728 + 1437		Extend	led Source, Multip	ole Compone	ents				
J0729 - 3639	S		Inadequate I	Data					
J0731 - 2224			Extended So	urce					
J0735 + 2036		$07 \ 35 \ 52.74000$	$+20 \ 36 \ 38.8290$	0.0000790	0.000699	0.50	43.6	2.0	43.6
$J0735 + 3307^{h}$	x	$07 \ 35 \ 55.54958$	$+33 \ 07 \ 09.4494$	0.0000306	0.000248	0.83	206.2	39.3	209.9
$J0736 + 2604^{h}$		$07 \ 36 \ 58.07559$	$+26\ 04\ 49.9717$	0.0000946	0.000857	0.27	-33.6	88.7	94.8
J0738 - 3025		Extend	led Source, Multip	ole Compone	nts				
J0744 - 0629	X		Extended So	urce					
J0744 + 3753		Mu	ultiple Compact C	omponents					
J0746 - 1555	\mathbf{W}	$07 \ 46 \ 18.23592$	$-15\ 55\ 34.7328$	0.0000110	0.000236	0.08	-6.1	-260.8	260.8
J0747 - 3310	Р		Inadequate I	Data					
J0748 - 1639	S	$07 \ 48 \ 03.08400$	$-16 \ 39 \ 50.2530$	0.0000066	0.000144	2.09	57.5	-93.1	109.4
J0749 - 4412		$07 \ 49 \ 42.37337$	$-44 \ 12 \ 26.5731$	0.0002656	0.009118	0.05	-1266.2	2945.9	3206.5
J0801 + 1414		Extend	led Source, Multip	ole Compone	nts				
J0804 + 1015	X	Mu	ultiple Compact C	omponents					
J0805 + 2106			Extended So	urce					
J0808 + 0514		$08 \ 08 \ 38.84693$	$+05 \ 14 \ 39.9416$	0.0000070	0.000114	0.25	12.9	0.6	12.9
J0814 + 3237			Extended So	urce					
J0814 - 3538			Extended So	urce					
J0815 - 0308		Extend	led Source, Multip	ole Compone	ents				
J0821 + 2857		$08\ 21\ 54.06595$	+28 57 39.5661	0.0000959	0.000822	0.37	32.1	2.1	32.2
J0825 + 2704		Extend	led Source, Multip	ole Compone	ents				
J0827 - 2026		Extend	led Source, Multip	ole Compone	ents				
J0837 - 1951	X	$08 \ 37 \ 11.16554$	$-19\ 51\ 56.7309$	0.0000039	0.000081	0.88	232.2	79.1	245.3
J0853 - 2047			Not Detect	ed					
$J0858 + 1409^{i}$		Mu	ultiple Compact C	Components					
J0911 + 3349		$09\ 11\ 47.76372$	$+33 \ 49 \ 16.8137$	0.0000233	0.000169	0.07	6.0	-9.3	11.1
J0921 + 0805		$09\ 21\ 01.06456$	$+08\ 05\ 05.6460$	0.0000081	0.000136	0.19	3.5	-25.0	25.3
$J0921 + 1350^{i}$		$09\ 21\ 31.37404$	$+13 \ 50 \ 48.2294$	0.0000995	0.000806	0.05	-6.4	-0.6	6.5
J0925 + 3127		$09\ 25\ 43.64995$	$+31 \ 27 \ 10.7939$	0.0000313	0.000186	1.99	35.2	-39.1	52.6
J0939 + 8315			Extended So	urce					
J0948 + 0022		$09\ 48\ 57.32148$	$+00 \ 22 \ 25.5629$	0.0000106	0.000174	0.59	-8.7	-0.1	8.7
J0949 + 1752		$09\ 49\ 39.76542$	$+17 \ 52 \ 49.4226$	0.0000499	0.000364	0.33	-38.9	0.6	38.9
J0949 + 6614		Mu	ultiple Compact C	omponents					
J1008 + 0730		Mu	ultiple Compact C	omponents					
J1011 + 0624			Extended So	urce					
J1018 - 3144	Х	$10 \ 18 \ 09.26769$	$-31 \ 44 \ 14.0994$	0.0000102	0.000314	0.88	-2.4	-116.4	116.4
$J1020 - 4251^k$			Not Detect	ed					
J1021 + 2159	Х								
J1022 + 3041	\mathbf{S}	$10 \ 22 \ 30.29849$	$+30 \ 41 \ 05.1365$	0.0000563	0.000307	2.17	9.2	203.5	203.7
J1033 - 3418			Extended So	urce					
J1041 + 0242		Extend	led Source, Multip	ole Compone	ents				

Table 5. Alternative Positions and X-band Flux Densities of Existing VLA Calibrators (Continued..)

IAU Name	Code	Measured RA	Measured Dec.	Error RA	Error Dec.	Flux Dens.	ΔRA	$\Delta \text{Dec.}$	Shift
J2000		(hms)	(°′″)	(s)	('')	$\rm Jy beam^{-1}$	(mas)	(mas)	(mas)
J1106-2108			Extended Sou	urce					
J1109 + 3744	x		Extended Sou	urce					
J1114 + 4037			Extended Sou	urce					
J1117 + 4120		$11\ 17\ 53.33384$	$+41 \ 20 \ 16.2765$	0.0000214	0.000133	0.54	0.7	0.5	0.9
J1119 - 0302		$11 \ 19 \ 25.29276$	$-03 \ 02 \ 51.2723$	0.0000384	0.000696	0.05	108.4	47.7	118.4
J1120 + 2327			Extended Sou	urce					
$J1120 - 2508^{l}$	x	Extend	ed Source, Multip	le Compone	nts				
J1123 + 0530		Extend	ed Source, Multip	le Compone	nts				
J1125 + 2005		Extend	ed Source, Multip	le Compone	nts				
J1131 + 3114		$11 \ 31 \ 09.48205$	$+31 \ 14 \ 05.4931$	0.0000242	0.000118	0.79	-30.1	3.1	30.3
J1132 + 0034		$11 \ 32 \ 45.61831$	$+00 \ 34 \ 27.8313$	0.0000067	0.000117	0.35	8.9	10.3	13.6
J1139 + 6547			Not Detecte	ed					
J1139 + 7654		$11 \ 39 \ 51.53222$	$+76 \ 54 \ 32.3349$	0.0001158	0.000239	1.94	58.0	45.9	74.0
J1142 - 1141		$11 \ 42 \ 34.93429$	$-11 \ 41 \ 48.6954$	0.0000235	0.000416	0.04	1051.8	-857.5	1357.1
J1143 + 2206		Extend	ed Source, Multip	le Compone	nts				
J1145 + 4946		Extend	ed Source, Multip	le Compone	nts				
J1148 + 5254	S		Extended Sou	urce					
J1154 - 3505	X		Extended Sou	urce					
J1156 + 3128		Extend	ed Source, Multip	le Compone	nts				
J1200 + 7300			Extended Sou	urce					
J1206 + 6413		Extend	ed Source, Multip	le Compone	nts				
J1209 + 1810		Extend	ed Source, Multip	le Compone	nts				
J1209 - 3214	Р	Extend	ed Source, Multip	le Compone	nts				
J1209 + 4339		Extend	ed Source, Multip	le Compone	nts				
J1220 + 2916	\mathbf{W}		Not Detected	ed					
J1220+3431		$12 \ 20 \ 08.29340$	$+34 \ 31 \ 21.7641$	0.0001198	0.000924	0.09	-34.7	43.1	55.3
J1221 + 0510		$12 \ 21 \ 52.33221$	$+05 \ 10 \ 16.0746$	0.0000423	0.000292	0.68	34.2	2.6	34.3
J1235 - 4153	X		Extended Sou	urce					
J1236 + 3920		$12 \ 36 \ 51.45204$	$+39\ 20\ 27.6940$	0.0001062	0.000809	0.15	-34.0	0.0	34.0
J1242 - 0446		Extend	ed Source, Multip	le Compone	nts				
J1248 + 2022			Extended Sou	urce					
J1252 + 5634		Extend	ed Source, Multip	le Compone	nts				
J1256 + 4720		Extend	ed Source, Multip	ole Compone	nts				
J1308 - 0950			Extended Sou	urce					
J1308 + 3546	Р		Extended Sou	urce					
J1308 + 6544	X	Mu	iltiple Compact C	omponents					
J1310 + 0044		$13 \ 10 \ 28.50321$	$+00 \ 44 \ 08.8898$	0.0000113	0.000184	0.35	-7.7	19.8	21.2
J1311 - 2216		Extend	ed Source, Multip	ole Compone	nts				
J1321 + 1106		Extend	ed Source, Multip	ole Compone	nts				
J1330 + 2509	X		Inadequate D	Data					
J1338 - 0627			Not Detecte	ed					
J1338 + 3851		$13 \ 38 \ 50.00901$	$+38 \ 51 \ 10.1935$	0.0026398	0.028819	0.02	-2678.6	-1656.5	3149.4
J1341 + 2816			Extended Sou	urce					
J1342 + 6021		Extend	ed Source, Multip	le Compone	nts				
J1343 + 2844		$13\ 43\ 00.17568$	$+28 \ 44 \ 07.5248$	0.0000667	0.000341	0.78	50.2	27.8	57.4
J1344 + 1409	X	$13 \ 44 \ 23.74515$	$+14 \ 09 \ 14.9039$	0.0000498	0.000317	0.64	-44.4	47.9	65.3

Table 5. Alternative Positions and X-band Flux Densities of Existing VLA Calibrators (Continued..)

IAU Name	Code	Measured RA	Measured Dec.	Error RA	Error Dec.	Flux Dens.	ΔRA	$\Delta \text{Dec.}$	Shift
J2000		(hms)	(°′″)	(s)	('')	${ m Jybeam}^{-1}$	(mas)	(mas)	(mas)
J1345+4946	Extended Source								
J1347-0803		$13 \ 47 \ 01.69897$	$-08 \ 03 \ 22.5927$	0.0000565	0.001119	0.01	-2613.5	1247.3	2895.9
J1349 - 3922		Extend	led Source, Multip	le Compone	nts				
J1352 + 3126		Extend	led Source, Multip	le Compone	nts				
J1353 + 1435		$13 \ 53 \ 22.83966$	$+14 \ 35 \ 39.2521$	0.0000519	0.000312	0.74	0.6	-7.9	7.9
J1353 + 7532		Extend	led Source, Multip	le Compone	ents				
J1357 + 4353	x	$13 \ 57 \ 40.59273$	$+43 \ 53 \ 59.7657$	0.0000251	0.000109	2.77	902.1	94.7	907.1
J1400 + 6210	S	$14 \ 00 \ 28.64949$	+62 10 38.5733	0.0000416	0.000129	4.01	21.8	47.3	52.1
J1404 + 6551		$14 \ 04 \ 05.27694$	$+65 \ 51 \ 37.5719$	0.0000326	0.000089	2.11	-5.7	55.9	56.2
J1411 + 5212		Extend	led Source, Multip	le Compone	ents				
J1420 + 1703		$14 \ 20 \ 20.88858$	$+17 \ 03 \ 29.1910$	0.0000371	0.000217	1.41	44.7	-8.0	45.4
J1421 + 4144		Extend	led Source, Multip	le Compone	ents				
J1425 - 2959		Extend	led Source, Multip	le Compone	ents				
J1427 + 2348		$14 \ 27 \ 00.38882$	+23 48 00.0404	0.0000402	0.000219	1.83	86.2	-0.6	86.2
J1428 - 2741			Extended Sou	ırce					
J1429 + 6316		$14 \ 29 \ 05.30828$	$+63 \ 16 \ 04.6518$	0.0000359	0.000109	0.53	-5.3	-4.2	6.7
J1438 + 6211	X	$14 \ 38 \ 44.78393$	$+62 \ 11 \ 54.4013$	0.0000276	0.000093	1.54	23.6	4.3	23.9
J1439 - 1659		Extend	led Source, Multip	le Compone	ents				
J1449 + 6316		Extend	led Source, Multip	le Compone	ents				
J1501 - 3918			Extended Sou	ırce					
J1504 + 2854			Extended Sou	ırce					
J1506 + 8319			Extended Sou	ırce					
J1507 + 5857		$15 \ 07 \ 47.38758$	+58 57 27.6546	0.0000320	0.000108	0.89	-11.4	6.6	13.2
J1520 + 2016			Extended Sou	urce					
J1539 + 2744			Extended Sou	urce					
J1541 + 5348		$15\ 41\ 25.46407$	$+53\ 48\ 13.0354$	0.0000344	0.000133	0.61	0.3	-1.6	1.6
J1547 + 4937		$15\ 47\ 21.13813$	$+49 \ 37 \ 05.8037$	0.0000260	0.000112	2.23	2.6	-6.2	6.8
J1549 + 2125			Extended Sou	ırce					
J1556 + 2004			Inadequate D	Data					
$J1604 + 0117^{m}$		Mu	ultiple Compact C	omponents					
J1604 - 4441	?	Mu	ultiple Compact C	omponents					
J1605 - 1734			Extended Sou	urce					
J1610 + 2414			Extended Sou	ırce					
J1623 - 1140		Extend	led Source, Multip	le Compone	nts				
J1625 - 3108		Mu	ultiple Compact C	omponents					
$J1627 + 1216^{m}$		$16\ 27\ 37.02445$	$+12 \ 16 \ 07.1563$	0.0000618	0.000405	0.44	110.7	42.3	118.5
$J1629 + 1500^{m}$		$16 \ 29 \ 44.79413$	$+15 \ 00 \ 18.6104$	0.0000675	0.000472	0.43	79.3	-6.6	79.6
J1629 + 6757	X	$16 \ 29 \ 51.84090$	+67 57 14.9589	0.0000610	0.000188	0.66	17.4	10.9	20.6
J1634 + 6245	X		Extended Sou	ırce					
$J1636 + 2112^{m}$			Extended Sou	ırce					
J1638 + 6234	X		Extended Sou	ırce					
J1639 + 8631	S	$16 \ 39 \ 25.02476$	$+86 \ 31 \ 53.1506$	0.0004375	0.000292	0.94	85.0	-43.4	95.4
J1641 + 2257			Inadequate D	Data					
J1642 - 0621			Inadequate D	Data					
J1642 + 2523		Mu	ultiple Compact C	omponents					
J1646 - 2227			Extended Sou	ırce					

Table 5.	Alternative	Positions	and X-band	Flux	Densities	of Existing	VLA	Calibrators	(Continued)

IAU Name	Code	Measured RA	Measured Dec.	Error RA	Error Dec.	Flux Dens.	ΔRA	$\Delta \text{Dec.}$	Shift
J2000		(h m s)	(°′″)	(s)	(")	$\rm Jy beam^{-1}$	(mas)	(mas)	(mas)
J1647+2705		Multiple Compact Components							
J1658 - 0739	\mathbf{S}	Inadequate Data							
J1659 + 2629		Extended Source							
J1701 - 2954		Multiple Compact Components							
J1710 + 4601		Extended Source							
J1712 - 2809		Extended Source, Multiple Components							
J1714 - 2514	\mathbf{X}	Extend	led Source, Multip	le Compone	nts				
J1717 - 3342		Extended Source, Multiple Components							
J1717 - 3948		Extended Source, Multiple Components							
J1720 - 3552	X	Extended Source, Multiple Components							
J1722 + 2815		Extended Source							
J1726 + 2717		$17\ 26\ 53.40613$	$+27 \ 17 \ 16.3114$	0.0000643	0.000406	0.52	86.2	-82.6	119.4
J1738 + 3224		$17 \ 38 \ 40.50136$	$+32 \ 24 \ 09.0231$	0.0000353	0.000187	1.37	43.6	-41.9	60.4
J1743 - 3058	\mathbf{S}	Extend	led Source, Multip	le Compone	nts				
J1744 - 3116	\mathbf{S}	Extend	led Source, Multip	le Compone	nts				
J1745 - 0753	Р	$17 \ 45 \ 27.10431$	-07 53 03.9512	0.0000082	0.000157	0.56	-4.6	-351.1	351.2
J1755 + 3350		$17 \ 55 \ 11.24322$	+33 50 59.8103	0.0000659	0.000355	0.63	-6.4	38.3	38.8
J1801 + 1351	X	Mu	ultiple Compact C	omponents					
J1803 + 0341		Extend	led Source, Multip	le Compone	nts				
J1803+0934		18 03 33.66010	$+09 \ 34 \ 25.8239$	0.0000945	0.000758	0.50	-118.4	-86.1	146.4
J1805 + 1101		Extend	led Source, Multip	le Compone	nts				
J1811-2055	X	18 11 06.79527	$-20\ 55\ 03.2714$	0.0000153	0.000365	0.36	66.3	172.6	184.9
J1812-0648	X	$18 \ 12 \ 50.92444$	$-06\ 48\ 23.5328$	0.0000139	0.000258	0.16	260.3	321.0	413.3
J1818-1108		18 18 19.31368	$-11\ 08\ 48.3286$	0.0000166	0.000321	0.16	43.0	0.4	43.0
J1820-0947		Multiple Compact Components							
J1822-0938	X	Mu	ultiple Compact C	omponents					
J1822-1309	X	18 22 10.91317	-13 09 43.5708	0.0000275	0.000555	0.01	-148.5	659.2	675.7
J1822+8257	***	18 22 03.06013	$+82\ 57\ 20.6785$	0.0001465	0.000241	0.32	3.4	-1.5	3.7
J1825-0737	W	18 25 37.61147	-07 37 30.0010	0.0000125	0.000231	0.12	-140.8	222.0	262.9
J1825-1718	w	Extend							
J1828+2626		Extended Source, Multiple Components							
J1830-3002	Б	Extended Source, Multiple Components							
J1032 - 1033	P V	P Extended Source, Multiple Components							
$J_{1000} = 2100$	л	19 94 14 07416		ata	0.000287	0.25	9100.9	1406 E	9660 G
J1034 - 0301 J1024 - 1327		$10 \ 34 \ 14.07410$ $18 \ 24 \ 10 \ 21175$	$-05\ 01\ 19.0280$ 12.27 40.7000	0.0000170	0.000287	0.33	-2199.8	1490.0	2000.0
J1034 - 1237 J1840 + 2024		10 04 19.21170	-12 37 40.7990	0.0000273	0.000327	0.03	09.0 42.6	41.0	50.7
$J1849 \pm 3024$ $J1850 \pm 4050$		18 49 20.10321 18 50 22 24052	$+30\ 24\ 14.2309$ $+40\ 50\ 21\ 4421$	0.0000464 0.0000471	0.000300	1.20 2.53	42.0	41.9	09.7 4 1
11851 ± 0035	S	18 50 22.24052	-49 59 21.4421 Extended See	0.0000471	0.000292	2.00	-4.0	0.1	4.1
11859 ± 1950	5	5 Extended Source							
11000 ± 2722		10 00 34 67846	± 27 22 30 8654	0.0001338	0 000000	0.36	_42.1	15	49.9
J1900+2722 J1902-9390		13 00 94.07040	Extended Sou	0.0001990	0.000333	0.00	-42.1	1.0	42.2
11012 ± 0518	337	Extended Source							
11914±1636	x	Inadequato Data							
.11919+0610		Inadequate Data							
J1926 + 4209		19 26 31 04989	+42.09.59.0328	0.0001170	0.000788	0.18	5.6	41 7	42.1
51010 1100	1		, 1= 00 00.0010		0.000,000	0.10	0.0	****	

Table 5. Alternative Positions and X-band Flux Densities of Existing VLA Calibrators (Continued..)

IAU Name	Code	Measured RA	Measured Dec.	Error RA	Error Dec.	Flux Dens.	ΔRA	$\Delta \text{Dec.}$	Shift		
J2000		(hms)	(°′″)	(s)	(″)	${\rm Jy beam^{-1}}$	(mas)	(mas)	(mas)		
J1930 + 1532	X	Inadequate Data									
J1933 + 1504		Inadequate Data									
J1937 + 8356		Extended Source									
J1941 + 1026	X	Extended Source, Multiple Components									
J1941 - 1524		Extended Source, Multiple Components									
J1952 + 2526	X	Inadequate Data									
J1956 - 0736		Multiple Compact Components									
J1956 + 2820	\mathbf{S}	Extended Source, Multiple Components									
J1956 - 3225	\mathbf{S}	Extended Source, Multiple Components									
J2005 + 1825		Extended Source, Multiple Components									
J2005 - 3723	\mathbf{S}	Extended Source, Multiple Components									
J2007 + 3722	\mathbf{W}	$20\ 07\ 45.39926$	$+37 \ 22 \ 02.3234$	0.0000555	0.000439	0.66	-265.3	216.3	342.4		
J2007 - 4434	S	Extend	Extended Source, Multiple Components								
J2008 + 5213		$20\ 08\ 56.28769$	$+52 \ 13 \ 33.0341$	0.0001330	0.001025	0.30	1197.3	1075.1	1609.2		
J2009 + 1318		$20\ 09\ 27.22184$	$+13 \ 18 \ 14.4279$	0.0000133	0.000189	0.49	-13.7	-30.2	33.1		
J2009 + 2505		Extend	ed Source, Multip	le Compone	nts						
$J2010 + 3322^{n}$	Р	$20 \ 10 \ 49.72301$	$+33 \ 22 \ 13.8413$	0.0000705	0.000545	0.79	-209.3	214.2	299.5		
J2016 + 3600	W	$20\ 16\ 45.62052$	$+36\ 00\ 33.3940$	0.0000554	0.000455	0.38	38.6	-43.0	57.8		
J2021 + 2318			Inadequate D)ata							
J2024 + 2736			Inadequate D)ata							
J2033 + 2146			Inadequate D)ata							
J2035 + 1857	X	Inadequate Data									
J2035 - 3454		Not Detected									
J2039 + 2152		Inadequate Data									
J2047 - 0236		Extended Source, Multiple Components									
J2053 + 2248		Inadequate Data									
J2057 + 5058		Extended Source, Multiple Components									
J2104 + 7633		Extended Source									
J2106 + 2135		Inadequate Data									
J2106 + 2500		Inadequate Data									
$J2107{+}4214^o$		Extended Source									
J2114 - 2541		Extended Source, Multiple Components									
J2114 - 3502	X		Extended Sou	urce							
J2114 + 8204		$21 \ 14 \ 01.15487$	$+82 \ 04 \ 48.3403$	0.0001771	0.000489	0.73	50.7	-7.7	51.3		
J2130 + 1643		Multiple Compact Components									
J2131 - 2036		Extended Source, Multiple Components									
J2133 + 1443		$21 \ 33 \ 37.38957$	$+14 \ 43 \ 46.4691$	0.0000074	0.000117	0.25	-3.9	-1.9	4.4		
J2134 + 4050		Extend	ed Source, Multip	le Compone	nts						
J2137 - 2042		Extended Source, Multiple Components									
J2137 + 5101	Р	Extend	ed Source, Multip	le Compone	nts						
J2139 + 1718		$21 \ 39 \ 37.14733$	$+17 \ 18 \ 26.0696$	0.0000109	0.000170	0.12	0.9	-1.4	1.7		
J2148 + 6107	S	Extended Source, Multiple Components									
J2149 - 1304	Х	Multiple Compact Components									
J2150 + 1449	S	21 50 23.60790 + 14 49 47.9041 0.0000099 0.000138 0.26 - 91.3 - 3.9 91.4									
J2152 - 2828		Extended Source, Multiple Components									
J2156 + 4830	Multiple Compact Components										

IAU Name	Code	Measured RA	Measured Dec.	Error RA	Error Dec.	Flux Dens.	ΔRA	$\Delta \text{Dec.}$	Shift	
J2000		(hms)	(^ ′ ″)	(s)	('')	${ m Jybeam}^{-1}$	(mas)	(mas)	(mas)	
J2200+1030		22 00 07.93315	$+10 \ 30 \ 07.9036$	0.0000134	0.000198	0.20	5.2	0.6	5.3	
J2203+6240	Multiple Compact Components									
J2212 + 0152	\mathbf{S}	$22 \ 12 \ 37.97510$	+01 52 51.1842	0.0000132	0.000206	0.47	28.5	33.2	43.8	
J2219 - 2756	\mathbf{X}									
J2224 + 6016	\mathbf{X}									
$J2231 + 5409^{p}$	\mathbf{X}									
J2232 + 6249		Extended Source								
J2242 + 1741		$22 \ 42 \ 47.95573$	$+17 \ 41 \ 44.1647$	0.0000117	0.000162	0.01	11.0	-11.2	15.7	
J2250 + 1419	X	$22 \ 50 \ 25.34321$	$+14 \ 19 \ 52.0486$	0.0000192	0.000279	0.05	2860.0	1448.6	3205.9	
$J2250 + 7129^{a}$		Mu	ultiple Compact C	omponents						
J2251 + 1848	\mathbf{X}	$22 \ 51 \ 34.72708$	$+18 \ 48 \ 40.0151$	0.0000199	0.000294	0.03	163.6	-129.9	208.9	
J2255+1313	\mathbf{X}	Extend	led Source, Multip	ole Compone	nts					
J2257 - 3627	\mathbf{P}	• Extended Source, Multiple Components								
J2307 + 1450		$23\ 07\ 34.00203$	+14 50 17.9755	0.0000115	0.000172	0.01	-515.6	-430.0	671.3	
J2307 - 4132			Not Detect	ed						
J2312 + 0919		Extended Source, Multiple Components								
J2316 + 0405		Extended Source, Multiple Components								
J2316 + 1618		$23\ 16\ 39.69814$	$+16 \ 18 \ 06.7464$	0.0000123	0.000173	0.02	8.1	3.4	8.7	
J2321 - 1623		Extended Source								
J2321 + 3204			Inadequate I	Data						
J2325 - 1207		$23 \ 25 \ 19.73138$	$-12 \ 07 \ 27.1634$	0.0000198	0.000396	0.13	610.4	-72.4	614.7	
J2325 + 4346	\mathbf{X}		Inadequate I	Data						
J2326 + 1507		$23\ 26\ 52.89175$	$+15 \ 07 \ 39.7105$	0.0000142	0.000206	0.03	12.4	-19.6	23.1	
J2326 - 4027		Extend	led Source, Multip	ole Compone	nts					
$J2339+6010^{p}$	\mathbf{S}		Extended So	urce						
J2340 + 1333	\mathbf{X}	$23 \ 40 \ 33.23870$	$+13 \ 33 \ 00.8872$	0.0000194	0.000272	0.15	-199.8	-22.8	201.1	
J2341 + 0018			Extended So	urce						
J2341 - 3506	\mathbf{X}	X Multiple Compact Components								
$J2343 + 5348^{p}$		Mu	ultiple Compact C	omponents						
$J2345 + 6557^{a}$		Multiple Compact Components								
$J2350+6440^{a}$	Multiple Compact Components									

Table 5. Alternative Positions and X-band Flux Densities of Existing VLA Calibrators (Continued..)

Figure 3. Images for "VLA targets", sorted in RA.

Figure 3. Images for "VLA targets", sorted in RA. (continued)

Figure 3. Images for "VLA targets", sorted in RA. (continued)

Figure 3. Images for "VLA targets", sorted in RA. (continued)

Figure 3. Images for "VLA targets", sorted in RA. (continued)

Figure 3. Images for "VLA targets", sorted in RA. (continued)

Figure 3. Images for "VLA targets", sorted in RA. (continued)

Figure 3. Images for "VLA targets", sorted in RA. (continued)

Figure 3. Images for "VLA targets", sorted in RA. (continued)

Figure 3. Images for "VLA targets", sorted in RA. (continued)

Figure 3. Images for "VLA targets", sorted in RA. (continued)

Figure 3. Images for "VLA targets", sorted in RA. (continued)

Figure 3. Images for "VLA targets", sorted in RA. (continued)

Figure 3. Images for "VLA targets", sorted in RA. (continued)

Figure 3. Images for "VLA targets", sorted in RA. (continued)

Figure 3. Images for "VLA targets", sorted in RA. (continued)

Figure 3. Images for "VLA targets", sorted in RA. (continued)

Figure 3. Images for "VLA targets", sorted in RA. (continued)

Figure 3. Images for "VLA targets", sorted in RA. (continued)

Figure 3. Images for "VLA targets", sorted in RA. (continued)

Figure 3. Images for "VLA targets", sorted in RA. (continued)

Figure 3. Images for "VLA targets", sorted in RA. (continued)

Figure 3. Images for "VLA targets", sorted in RA. (continued)

Figure 3. Images for "VLA targets", sorted in RA. (continued)

Figure 3. Images for "VLA targets", sorted in RA. (continued)

Figure 3. Images for "VLA targets", sorted in RA. (continued)

Figure 3. Images for "VLA targets", sorted in RA. (continued)

Figure 3. Images for "VLA targets", sorted in RA. (continued)

Figure 3. Images for "VLA targets", sorted in RA. (continued)

Figure 3. Images for "VLA targets", sorted in RA. (continued)

IAU Name	Measured RA	Measured Dec.	Error RA	Error Dec.	Flux Dens.	Origin	ΔRA	$\Delta \text{Dec.}$	Shift
J2000	(hms)	(^ ′ ′′)	(s)	('')	$\rm Jybeam^{-1}$		(mas)	(mas)	(mas)
J0001-0746	00 01 18.02533	$-07 \ 46 \ 26.9206$	0.0000081	0.000157	0.40	AT20G	218.1	-120.6	249.2
J0001 - 1551	$00 \ 01 \ 05.32829$	$-15\ 51\ 07.0754$	0.0000134	0.000287	0.46	AT20G	1323.3	124.6	1329.2
J0003 - 1927	$00\ 03\ 18.67472$	$-19 \ 27 \ 22.3595$	0.0000202	0.000465	0.19	Winn	23.8	-17.4	29.5
J0004 - 1148	$00 \ 04 \ 04.91577$	$-11 \ 48 \ 58.3791$	0.0000116	0.000234	1.57	ALMA	-11.4	10.9	15.8
J0005 - 1648	$00 \ 05 \ 17.93411$	$-16 \ 48 \ 04.6729$	0.0000149	0.000330	0.30	Winn	-41.7	-23.0	47.6
J0006 - 2955	$00 \ 06 \ 01.12637$	$-29 \ 55 \ 50.0901$	0.0000193	0.000564	0.42	AT20G	177.2	-490.1	521.2
J0008 - 2339	Extend	led Source, Multip	ole Compone	ents		AT20G			
J0008 - 2559	Extend	led Source, Multip	ole Compone	ents		AT20G			
J0008 - 3945	M	ultiple Compact C	omponents			AT20G			
J0010 - 0433	00 10 00.38840	$-04 \ 33 \ 48.5084$	0.0000072	0.000130	1.06	ALMA	8.9	1.6	9.1
J0010 - 2157		Extended Sou	urce			AT20G			
J0011 - 1434	$00 \ 11 \ 40.45592$	$-14 \ 34 \ 04.6307$	0.0000122	0.000253	0.35	AT20G	-231.1	-430.8	488.8
J0013 - 0423	$00 \ 13 \ 54.13101$	$-04 \ 23 \ 52.2967$	0.0000084	0.000152	1.16	ALMA	-0.1	-6.7	6.7
J0014 - 0205	$00 \ 14 \ 25.54015$	$-02\ 05\ 55.7899$	0.0000227	0.000366	0.11	TGSS	-676.8	1220.1	1395.2
J0015 - 1812		Extended Sou	urce			AT20G			
J0016 - 2343	Mi	ultiple Compact C	omponents			Winn			
J0017 - 0512	$00\ 17\ 35.81731$	$-05 \ 12 \ 41.7836$	0.0000124	0.000228	0.32	ALMA	-4.6	-13.6	14.4
J0017 - 2748	Extend	led Source, Multip	ole Compone	ents		AT20G			
J0024 - 0412	$00 \ 24 \ 45.98312$	$-04 \ 12 \ 01.5488$	0.0000087	0.000158	0.56	Winn	-22.7	-26.8	35.2
J0024 - 0811	$00\ 24\ 00.67257$	$-08 \ 11 \ 10.0498$	0.0000127	0.000240	0.40	AT20G	258.8	-249.8	359.7
J0025 - 2227	$00\ 25\ 24.24721$	$-22\ 27\ 47.5629$	0.0000351	0.000803	0.32	AT20G	-99.9	37.0	106.6
J0026 - 3512	Extend	led Source, Multip	le Compone	ents		ALMA			
J0029 - 0113	00 29 00.98693	$-01 \ 13 \ 41.7543$	0.0000075	0.000131	0.69	AT20G	345.9	-54.3	350.2
J0030 - 0211	00 30 31.82394	$-02 \ 11 \ 56.1340$	0.0000068	0.000120	1.83	AT20G	240.7	66.0	249.6
J0031 - 1426	Mi	ultiple Compact C	omponents			Winn			
J0032 + 0136	$00 \ 32 \ 08.00543$	$+01 \ 36 \ 55.5971$	0.0000329	0.000493	0.09	TGSS	-666.2	-92.9	672.6
J0032 - 2849	Extend	led Source, Multip	le Compone	ents		AT20G			
J0034 - 2303	$00 \ 34 \ 54.79624$	$-23 \ 03 \ 35.2621$	0.0000181	0.000443	0.12	AT20G	466.0	-862.1	980.0
J0037 - 2145	$00 \ 37 \ 14.82597$	$-21 \ 45 \ 24.7146$	0.0000160	0.000397	0.19	AT20G	474.1	-814.6	942.5
J0038 - 2459	M	ultiple Compact C	omponents			ALMA			
J0039 - 1111		Extended Sou	urce			AT20G			
J0040 - 3225		Not Detected	ed			AT20G			
J0046 - 2631	$00 \ 46 \ 13.77552$	$-26 \ 31 \ 54.4613$	0.0000231	0.000616	0.13	AT20G	-476.7	-161.2	503.2
J0049 - 1006	$00 \ 49 \ 54.10537$	$-10 \ 06 \ 14.6826$	0.0000185	0.000330	0.39	TGSS	112.7	-172.5	206.1
J0050 - 0452	$00 \ 50 \ 21.53506$	$-04 \ 52 \ 20.5987$	0.0000112	0.000195	1.36	ALMA	-0.9	-8.7	8.7
J0053 - 0727	$00 \ 53 \ 36.51507$	$-07 \ 27 \ 29.6276$	0.0000318	0.000564	0.24	Winn	25.7	-23.6	34.9
J0058 - 0539	$00 \ 58 \ 05.06690$	$-05 \ 39 \ 52.2792$	0.0000104	0.000179	1.30	ALMA	-13.4	0.8	13.4
J0058 - 3347	$00 \ 58 \ 15.64079$	$-33 \ 47 \ 57.4496$	0.0000641	0.002117	0.12	AT20G	738.0	-349.5	816.6
J0101 - 2831	$01 \ 01 \ 52.38896$	$-28 \ 31 \ 20.4174$	0.0000227	0.000638	0.19	Winn	1.9	28.6	28.7
J0102 - 2646	$01 \ 02 \ 56.35304$	$-26 \ 46 \ 36.5247$	0.0000285	0.000727	0.10	AT20G	1164.5	-524.7	1277.3
J0104 - 2416	01 04 58.20492	$-24 \ 16 \ 28.4709$	0.0000117	0.000294	0.23	AT20G	616.4	429.1	751.0
J0106 - 2718	Extend	led Source, Multip	le Compone	ents		ALMA			
J0109 - 3854	$01 \ 09 \ 17.79747$	$-38 \ 54 \ 55.9907$	0.0000380	0.001616	0.13	AT20G	29.6	1209.3	1209.7
J0113 - 0630	$01 \ 13 \ 16.24592$	$-06 \ 30 \ 52.5317$	0.0000131	0.000247	0.38	AT20G	-88.2	-831.7	836.3
J0115 - 2804		Extended Sou	urce			ALMA			
J0117-0425	$01 \ 17 \ 27.85842$	$-04 \ 25 \ 10.4603$	0.0000136	0.000243	0.69	AT20G	173.1	-860.3	877.5

 Table 6. Positions and X-band Flux Densities of Alternative VLA Reference Sources (Continued..)

IAU Name	Measured RA	Measured Dec.	Error RA	Error Dec.	Flux Dens.	Origin	ΔRA	$\Delta \text{Dec.}$	Shift
J2000	(hms)	(' '')	(s)	('')	$\rm Jy beam^{-1}$		(mas)	(mas)	(mas)
J0117 - 1507	01 17 38.93192	$-15 \ 07 \ 55.0075$	0.0000233	0.000507	0.08	Winn	-46.7	15.5	49.2
J0117 - 2111	01 17 48.78007	$-21 \ 11 \ 06.6288$	0.0000064	0.000154	0.33	ALMA	-0.9	1.2	1.5
J0120 + 2256	01 20 33.36976	+22 56 36.7399	0.0000293	0.000344	0.11	TGSS	-397.2	-10.1	397.4
J0122 - 0018		Extended So	urce			AT20G			
J0122 - 0056	01 22 17.47016	$-00\ 56\ 15.6942$	0.0000193	0.000317	0.48	AT20G	147.5	-594.2	612.2
J0123 - 0348	$01 \ 23 \ 35.77491$	$-03 \ 48 \ 39.2898$	0.0000171	0.000294	0.42	AT20G	225.8	-689.8	725.8
J0131 - 1211	$01 \ 31 \ 12.54764$	$-12 \ 11 \ 00.6921$	0.0000215	0.000422	0.18	Winn	-3.4	-4.1	5.4
J0134 + 0003	$01 \ 34 \ 12.70387$	$+00 \ 03 \ 45.1373$	0.0000112	0.000188	0.48	Winn	33.4	12.4	35.6
J0138 - 0540	$01 \ 38 \ 51.84961$	$-05 \ 40 \ 08.2540$	0.0000318	0.000279	0.40	AT20G	304.4	-554.0	632.1
J0138 - 2254	$01 \ 38 \ 57.46212$	$-22\ 54\ 47.3862$	0.0000406	0.000462	0.67	AT20G	523.3	-686.2	863.0
J0138 - 2711		Extended So	urce			AT20G			
J0142 - 0544	$01 \ 42 \ 38.87509$	$-05 \ 44 \ 01.5581$	0.0000273	0.000236	0.25	Winn	50.9	-40.1	64.8
J0142 - 1714	$01 \ 42 \ 23.40494$	$-17 \ 14 \ 35.4085$	0.0000389	0.000410	0.15	Winn	13.8	37.5	40.0
J0143 - 3200	$01 \ 43 \ 10.13204$	$-32 \ 00 \ 56.6566$	0.0000621	0.000829	0.51	ALMA	-0.6	-6.6	6.7
J0144 - 3938	$01 \ 44 \ 54.10702$	$-39 \ 38 \ 10.3355$	0.0001746	0.003123	0.25	AT20G	-81.1	464.5	471.5
J0147 - 0445	$01 \ 47 \ 21.12304$	$-04 \ 45 \ 42.1341$	0.0000307	0.000255	0.14	AT20G	-792.8	-134.1	804.1
J0147 - 2144	$01 \ 47 \ 07.35087$	$-21 \ 44 \ 42.5270$	0.0000412	0.000477	0.36	Winn	0.4	-2.0	2.0
J0149 + 3628	$01 \ 49 \ 46.07265$	$+36 \ 28 \ 32.6263$	0.0001109	0.001045	0.08	TGSS	-550.6	216.3	591.5
J0151 - 1719	$01 \ 51 \ 48.05186$	$-17 \ 19 \ 55.0538$	0.0000385	0.000393	0.09	AT20G	-169.9	-953.8	968.8
J0151 - 1732	$01 \ 51 \ 06.08605$	$-17 \ 32 \ 44.7200$	0.0000281	0.000297	0.35	AT20G	199.6	-220.1	297.1
J0151 - 3435	$01 \ 51 \ 23.49390$	-34 35 13.7972	0.0000755	0.001130	0.24	AT20G	445.8	-897.2	1001.9
J0152 - 1412	$01 \ 52 \ 32.01532$	$-14 \ 12 \ 39.3805$	0.0000352	0.000349	0.33	AT20G	-513.6	-180.5	544.4
J0153 - 1906	$01 \ 53 \ 01.51201$	$-19 \ 06 \ 56.7000$	0.0000328	0.000351	0.10	AT20G	255.0	-0.0	255.0
J0154 - 2329	$01 \ 54 \ 46.10326$	$-23 \ 29 \ 53.9573$	0.0000616	0.000700	0.08	AT20G	-732.7	42.7	733.9
J0202 - 1948	$02 \ 02 \ 13.84888$	$-19 \ 48 \ 19.4878$	0.0000246	0.000261	0.16	AT20G	1286.0	512.2	1384.2
J0205 - 3444	$02 \ 05 \ 55.50850$	$-34 \ 44 \ 09.1544$	0.0000788	0.001143	0.08	AT20G	-474.5	-154.4	499.0
J0206 - 1150	$02 \ 06 \ 26.08334$	-11 50 39.7458	0.0000280	0.000268	0.57	AT20G	97.8	54.2	111.8
J0206 - 2212	$02 \ 06 \ 20.07397$	$-22 \ 12 \ 19.6628$	0.0000412	0.000457	0.15	Winn	-55.1	-47.9	73.0
J0208 - 2650		Extended So	urce			AT20G			
J0210 - 1444	$02 \ 10 \ 23.17980$	$-14 \ 44 \ 59.0301$	0.0000369	0.000352	0.11	Winn	-36.2	-34.1	49.7
J0213 - 2943		Extended So	urce			AT20G			
J0216 - 3009		Extended So	urce			TGSS			
J0217 - 0121	$02 \ 17 \ 54.99860$	$-01 \ 21 \ 50.7220$	0.0000348	0.000309	0.13	Winn	-14.9	2.0	15.1
J0217 - 0820	$02\ 17\ 02.66406$	$-08 \ 20 \ 52.3490$	0.0000213	0.000196	0.59	ALMA	-30.5	1.0	30.6
J0217 - 1631	$02 \ 17 \ 57.24884$	$-16 \ 31 \ 10.4814$	0.0000333	0.000339	0.24	Winn	8.1	-33.4	34.4
J0219 - 1842	$02 \ 19 \ 21.16226$	$-18 \ 42 \ 38.7432$	0.0000224	0.000240	0.24	AT20G	678.2	-43.2	679.6
J0220 - 2151	$02 \ 20 \ 35.14873$	$-21 \ 51 \ 12.1122$	0.0000563	0.000653	0.10	AT20G	992.2	87.8	996.1
J0222 - 1615	$02 \ 22 \ 00.72368$	$-16 \ 15 \ 16.5529$	0.0000283	0.000280	0.22	AT20G	811.1	47.1	812.5
J0223 - 1656	$02 \ 23 \ 43.76244$	$-16\ 56\ 37.6990$	0.0000260	0.000268	0.17	AT20G	251.9	301.0	392.5
J0226 - 1843	$02\ 26\ 47.62944$	$-18\ 43\ 39.2358$	0.0000404	0.000444	0.24	AT20G	718.2	-435.8	840.1
J0227 - 0621	$02 \ 27 \ 44.46213$	$-06\ 21\ 06.7405$	0.0000460	0.000430	0.34	Winn	5.6	0.5	5.6
J0229 - 3643	Extend	led Source, Multip	ole Compone	nts		AT20G			
J0236 - 2953	Extend	led Source, Multip	ole Compone	nts		AT20G			
J0237 + 0919	$02 \ 37 \ 40.52935$	$+09 \ 19 \ 01.6422$	0.0000076	0.000124	0.71	TGSS	-301.2	372.2	478.8
J0237 - 2623	$02 \ 37 \ 16.75927$	$-26\ 23\ 53.1945$	0.0000905	0.001134	0.11	AT20G	-259.0	-394.5	471.9
J0239 - 1348	02 39 26.02095	$-13 \ 48 \ 43.3876$	0.0000412	0.000408	0.15	Winn	29.9	-42.6	52.0

IAU Name	Measured RA	Measured Dec.	Error RA	Error Dec.	Flux Dens.	Origin	ΔRA	$\Delta \text{Dec.}$	Shift
J2000	(hms)	(°′″)	(s)	('')	$\rm Jy beam^{-1}$		(mas)	(mas)	(mas)
J0240-0504	$02 \ 40 \ 56.17224$	$-05\ 04\ 42.2001$	0.0000273	0.000236	0.18	AT20G	116.0	299.9	321.6
J0243 - 0550	$02 \ 43 \ 12.46886$	$-05 \ 50 \ 55.2966$	0.0000207	0.000183	0.46	ALMA	2.0	3.4	4.0
J0243 - 3204		Extended Sou	ırce			AT20G			
J0245 - 1107	$02 \ 45 \ 24.95256$	$-11 \ 07 \ 16.8099$	0.0000210	0.000204	0.19	AT20G	109.6	290.1	310.1
J0246 - 1236	$02 \ 46 \ 58.46986$	$-12 \ 36 \ 30.8063$	0.0000253	0.000251	0.32	ALMA	2.1	-6.2	6.6
J0250 - 2627	$02 \ 50 \ 35.56588$	$-26\ 27\ 42.5451$	0.0000554	0.000683	0.27	AT20G	-347.5	-345.1	489.7
J0252 - 2219	$02 \ 52 \ 47.95394$	$-22 \ 19 \ 25.4612$	0.0000353	0.000400	0.37	AT20G	84.1	-561.2	567.5
J0252 - 2933	$02 \ 52 \ 34.97934$	$-29 \ 33 \ 46.7331$	0.0000916	0.001219	0.12	AT20G	-774.2	-433.0	887.1
J0256 - 2137	$02 \ 56 \ 12.83893$	$-21 \ 37 \ 29.1430$	0.0000417	0.000477	0.37	AT20G	15.0	-643.1	643.2
J0257 - 1212	$02 \ 57 \ 41.00412$	$-12 \ 12 \ 01.3863$	0.0000173	0.000160	0.42	ALMA	12.9	-6.3	14.3
J0259 - 0019	$02 \ 59 \ 28.51539$	$-00 \ 19 \ 59.9742$	0.0000245	0.000212	0.90	AT20G	1719.2	-474.2	1783.4
J0300 - 0531	$03 \ 00 \ 01.29969$	$-05 \ 31 \ 20.3781$	0.0009528	0.010286	0.04	AT20G	303.2	-178.1	351.7
J0301 - 1652	$03 \ 01 \ 16.62273$	$-16 \ 52 \ 45.0767$	0.0000602	0.000645	0.75	AT20G	247.9	1123.3	1150.3
J0301 - 1812	$03 \ 01 \ 06.71651$	$-18 \ 12 \ 17.7758$	0.0000449	0.000506	0.74	AT20G	1332.1	424.2	1398.0
J0303 - 2407		Extended Sou	ırce			AT20G			
J0304 - 4333		Extended Sou	ırce			AT20G			
J0315 - 1031		Extended Sou	ırce			ALMA			
J0315 - 1656	$03 \ 15 \ 27.67787$	$-16\ 56\ 29.7209$	0.0000374	0.000373	0.25	AT20G	1178.4	-120.9	1184.6
J0319 - 1613		Extended Sou	ırce			AT20G			
J0325 - 2415	$03 \ 25 \ 13.34266$	$-24 \ 15 \ 48.0817$	0.0000342	0.000410	0.26	AT20G	-173.1	218.2	278.6
J0327 - 2202	$03 \ 27 \ 59.92443$	$-22 \ 02 \ 06.3760$	0.0000479	0.000555	0.57	AT20G	633.6	-176.0	657.6
J0331 - 2524	$03 \ 31 \ 08.92053$	$-25 \ 24 \ 43.2817$	0.0000368	0.000455	0.39	AT20G	399.3	-681.7	790.1
$J0337 - 1204^{b}$	$03 \ 37 \ 55.45769$	$-12 \ 04 \ 04.4517$	0.0000540	0.000537	0.14	AT20G	-2019.7	648.3	2121.2
J0339 - 1736	03 39 13.69936	$-17 \ 36 \ 00.7827$	0.0000529	0.000591	0.11	Winn	77.7	2.3	77.8
J0340 - 2152	03 40 03.40969	$-21 \ 52 \ 01.3901$	0.0000559	0.000664	0.10	Winn	0.1	-3.1	3.1
$J0347 - 3616^c$	$03 \ 47 \ 59.07871$	$-36 \ 16 \ 36.5038$	0.0000839	0.001309	0.15	AT20G	257.5	-303.8	398.2
J0348 - 1610		Extended Sou	urce			ALMA			
J0349 - 2102	03 49 57.82372	$-21 \ 02 \ 47.7399$	0.0000500	0.000543	0.87	ALMA	45.9	0.1	45.9
J0349 - 2401	$03 \ 49 \ 15.38695$	$-24 \ 01 \ 14.3625$	0.0000488	0.000579	0.10	Winn	29.5	-49.5	57.6
J0350 - 3232		Extended Sou	urce			ALMA			
J0352 - 2514		Extended Sou	urce			ALMA			
J0356 - 4021		Extended Sou	urce			AT20G			
J0357 - 0751	$03 \ 57 \ 43.29297$	$-07 \ 51 \ 14.5397$	0.0000361	0.000343	0.11	AT20G	996.1	-1939.7	2180.5
J0359 - 2615	$03 \ 59 \ 33.68194$	$-26\ 15\ 31.3675$	0.0000666	0.000820	0.57	AT20G	-833.3	-567.5	1008.2
J0406 - 1749	04 06 12.24786	$-17 \ 49 \ 57.9110$	0.0000352	0.000371	0.56	AT20G	-1968.6	689.0	2085.7
J0408 - 0529	$04 \ 08 \ 59.64946$	$-05 \ 29 \ 40.5509$	0.0000427	0.000396	0.32	AT20G	306.7	49.1	310.6
J0409 - 1655	04 09 37.33533	$-16\ 55\ 35.5298$	0.0000371	0.000380	0.66	AT20G	1071.6	170.2	1085.0
J0417 - 0250	$04 \ 17 \ 58.26015$	$-02 \ 50 \ 19.3332$	0.0000200	0.000208	0.39	ALMA	-2.2	-3.2	3.9
J0422 - 2034	$04 \ 22 \ 48.46027$	$-20 \ 34 \ 56.0295$	0.0000432	0.000471	0.18	Winn	4.6	-2.5	5.2
J0427 - 0700	$04 \ 27 \ 26.16019$	$-07 \ 00 \ 31.2526$	0.0000285	0.000266	0.27	AT20G	-2.9	-52.6	52.7
J0428 - 1230	$04 \ 28 \ 44.86588$	$-12 \ 30 \ 17.0926$	0.0000472	0.000479	0.27	AT20G	353.2	-292.6	458.7
J0431 - 0406	$04 \ 31 \ 28.08733$	$-04 \ 06 \ 27.3584$	0.0000359	0.000316	0.47	ALMA	25.0	-38.5	45.9
J0432 - 1614	04 32 29.08140	$-16 \ 14 \ 05.6755$	0.0000334	0.000341	0.84	AT20G	1275.9	-175.5	1287.9
J0433 - 0229	$04 \ 33 \ 54.88959$	$-02 \ 29 \ 56.0373$	0.0000053	0.000094	0.53	AT20G	605.6	-437.3	747.0
J0437 - 2813	$04 \ 37 \ 48.22414$	$-28 \ 13 \ 39.3399$	0.0000095	0.000278	0.19	AT20G	606.0	460.1	760.9
J0438 - 0716	$04 \ 38 \ 21.67213$	$-07 \ 16 \ 19.1936$	0.0000169	0.000322	0.11	TGSS	-671.5	-713.6	979.9

Table 6. Positions and X-band Flux Densities of Alternative VLA Reference Sources (Continued..)

IAU Name	Measured RA	Measured Dec.	Error RA	Error Dec.	Flux Dens.	Origin	ΔRA	$\Delta \text{Dec.}$	Shift
J2000	(h m s)	(' '')	(s)	('')	$\rm Jy beam^{-1}$		(mas)	(mas)	(mas)
J0438-0848	04 38 37.87588	$-08 \ 48 \ 21.4881$	0.0000234	0.000423	0.25	Winn	19.5	3.9	19.9
J0438 - 1251	04 38 35.02107	$-12\ 51\ 03.3631$	0.0000082	0.000170	0.74	ALMA	-1.1	-3.1	3.2
J0438 - 2012	04 38 50.48941	$-20\ 12\ 26.3644$	0.0000127	0.000285	0.76	AT20G	853.0	-264.3	893.0
J0442 - 2825	$04 \ 42 \ 37.65720$	$-28 \ 25 \ 30.8596$	0.0000127	0.000356	0.55	ALMA	-2.6	-19.6	19.7
J0447 - 0152	$04 \ 47 \ 42.60765$	$-01 \ 52 \ 47.3155$	0.0000128	0.000223	0.04	Winn	-14.3	3.5	14.7
J0448 - 0935	04 48 49.46949	$-09 \ 35 \ 31.4857$	0.0000106	0.000206	0.06	Winn	1.6	9.3	9.4
J0448 - 2109	04 48 17.38213	$-21 \ 09 \ 44.8316$	0.0000066	0.000156	0.30	ALMA	-1.8	-1.6	2.4
J0449 - 0057	Obs	erved at the wrong	g Declination	1		ALMA			
J0450 - 1837	$04 \ 50 \ 35.90958$	$-18 \ 37 \ 00.3947$	0.0000061	0.000136	0.68	AT20G	858.8	105.2	865.3
J0453 - 1233	$04 \ 53 \ 40.98853$	$-12 \ 33 \ 54.6005$	0.0000108	0.000214	0.36	ALMA	-7.8	-0.5	7.8
J0457 - 0849	$04 \ 57 \ 20.21251$	$-08\ 49\ 05.4738$	0.0000094	0.000178	0.09	Winn	22.1	6.2	22.9
J0457 - 1819	$04 \ 57 \ 54.32533$	$-18 \ 19 \ 16.0393$	0.0000181	0.000400	0.52	AT20G	493.7	60.7	497.4
$J0457 - 4025^d$	$04 \ 57 \ 16.03278$	$-40\ 25\ 20.6083$	0.0000811	0.002618	0.06	AT20G	-31.7	-408.3	409.5
$J0459 + 2706^{e}$		Not Detected	ed			TGSS			
J0501 - 1706	$05 \ 01 \ 42.64323$	$-17 \ 06 \ 08.5959$	0.0000138	0.000292	0.60	AT20G	1100.6	304.1	1141.8
J0503 - 0638	$05 \ 03 \ 56.04751$	$-06 \ 38 \ 03.4560$	0.0000126	0.000237	0.07	AT20G	186.0	-556.0	586.3
J0503 + 3403	$05 \ 03 \ 56.78645$	$+34 \ 03 \ 28.1155$	0.0000553	0.000398	0.63	TGSS	93.8	395.5	406.5
J0504 - 0744	$05 \ 04 \ 34.49271$	$-07 \ 44 \ 36.8739$	0.0000074	0.000139	0.23	AT20G	257.0	-473.9	539.1
J0505 - 0419	$05 \ 05 \ 51.23862$	$-04 \ 19 \ 26.6150$	0.0000104	0.000193	0.09	AT20G	-128.9	-315.0	340.4
J0505 - 1615	$05 \ 05 \ 57.16120$	$-16 \ 15 \ 58.0198$	0.0000148	0.000314	0.24	AT20G	846.7	480.2	973.4
J0513 - 0032	$05\ 13\ 02.60397$	$-00 \ 32 \ 25.2590$	0.0000143	0.000242	0.04	Winn	11.0	0.0	11.0
J0514 - 0733	$05 \ 14 \ 29.03746$	$-07 \ 33 \ 12.9409$	0.0000102	0.000200	0.07	AT20G	335.2	159.1	371.0
J0517 - 0520	$05\ 17\ 28.10983$	$-05 \ 20 \ 40.8414$	0.0000092	0.000175	0.17	ALMA	2.5	-1.4	2.9
J0517 - 1756	$05\ 17\ 24.04725$	$-17 \ 56 \ 24.1590$	0.0000108	0.000240	0.45	AT20G	39.2	341.0	343.3
J0522 - 1627	$05 \ 22 \ 44.65518$	$-16 \ 27 \ 52.4177$	0.0000118	0.000253	0.41	AT20G	644.8	82.3	650.0
J0523 - 2614	$05 \ 23 \ 18.46936$	$-26 \ 14 \ 09.5359$	0.0000119	0.000311	1.49	AT20G	412.3	564.1	698.7
J0525 - 2338	$05 \ 25 \ 06.50599$	$-23 \ 38 \ 10.8088$	0.0000076	0.000196	4.95	ALMA	0.1	1.2	1.2
J0526 - 2342	$05 \ 26 \ 48.38522$	$-23\ 42\ 55.8530$	0.0000119	0.000306	0.44	AT20G	-1033.0	-153.0	1044.2
J0529 - 0519	$05 \ 29 \ 53.53392$	$-05 \ 19 \ 41.6167$	0.0000096	0.000174	1.32	AT20G	-357.2	683.3	771.0
J0532 - 0307	$05 \ 32 \ 07.51934$	$-03 \ 07 \ 07.0326$	0.0000065	0.000116	1.55	ALMA	-5.0	7.4	9.0
J0533 - 2344	$05 \ 33 \ 54.60337$	$-23 \ 44 \ 29.9863$	0.0000106	0.000259	0.82	AT20G	91.1	213.8	232.4
J0535 - 1202	$05 \ 35 \ 33.29987$	$-12 \ 02 \ 22.4292$	0.0000111	0.000219	0.65	AT20G	-291.5	170.7	337.8
J0541 - 0211	$05 \ 41 \ 21.69652$	$-02 \ 11 \ 08.3842$	0.0000060	0.000103	1.20	AT20G	202.0	515.8	553.9
J0542 - 0913		Inadequate D	Data			ALMA			
J0544 - 0917	$05 \ 44 \ 09.09693$	$-09 \ 17 \ 41.0642$	0.0000174	0.000302	0.90	Winn	-3.4	2.8	4.3
J0549 + 2031		Inadequate D	Data			TGSS			
J0557 - 2214	$05 \ 57 \ 29.89097$	$-22 \ 14 \ 39.0950$	0.0000125	0.000294	0.18	AT20G	-707.7	405.0	815.4
J0558 - 1317	$05\ 58\ 02.54682$	$-13 \ 17 \ 41.1964$	0.0000066	0.000136	0.57	ALMA	2.7	3.6	4.5
J0603 - 1716	06 03 57.73208	$-17 \ 16 \ 28.2226$	0.0000064	0.000143	0.26	Winn	-8.3	24.4	25.7
J0606 - 0724	M	ultiple Compact C	omponents			AT20G			
J0608 - 1520	$06 \ 08 \ 01.53195$	$-15 \ 20 \ 36.9868$	0.0000047	0.000104	0.28	AT20G	261.1	-186.8	321.1
$J0612 - 4337^{f}$	M	ultiple Compact C	omponents			AT20G			
J0617 - 2200	$06\ 17\ 02.04204$	$-22\ 00\ 28.1609$	0.0000148	0.000349	0.13	AT20G	-306.4	739.0	800.0
J0618 - 0954	$06\ 18\ 20.66748$	$-09 \ 54 \ 25.7262$	0.0000101	0.000200	0.14	AT20G	-258.3	73.8	268.7
J0620 - 2515		Extended Sou	urce			ALMA			
J0622 - 0846	$06 \ 22 \ 37.99951$	$-08 \ 46 \ 18.2651$	0.0000222	0.000426	0.04	AT20G	155.5	34.9	159.4

IAU Name	Measured RA	Measured Dec.	Error RA	Error Dec.	Flux Dens.	Origin	ΔRA	$\Delta \text{Dec.}$	Shift
J2000	(h m s)	(°′″)	(s)	('')	$\rm Jy beam^{-1}$		(mas)	(mas)	(mas)
J0630 - 1323	$06 \ 30 \ 53.90294$	$-13 \ 23 \ 34.4861$	0.0000073	0.000150	0.52	ALMA	0.8	3.9	4.0
J0631 - 1410	$06 \ 31 \ 20.22597$	$-14 \ 10 \ 31.7372$	0.0000087	0.000190	0.45	ALMA	0.4	2.8	2.9
J0634 + 2550		Inadequate D	ata			TGSS			
J0636 - 0547	$06 \ 36 \ 48.33005$	$-05\ 47\ 07.5474$	0.0000248	0.000483	0.07	AT20G	-0.7	252.7	252.7
J0643 - 1335	$06\ 43\ 32.36196$	$-13 \ 35 \ 49.8746$	0.0000059	0.000125	0.48	ALMA	0.6	5.4	5.4
J0643 - 2451	Extend	led Source, Multip	le Compone	nts		AT20G			
J0649 - 1839	$06\ 49\ 46.67670$	$-18 \ 39 \ 11.2312$	0.0000128	0.000276	0.16	AT20G	-237.4	-31.2	239.4
J0650 - 1306	Extend	led Source, Multip	le Compone	nts		AT20G			
J0654 - 1053	$06 \ 54 \ 10.63931$	$-10 \ 53 \ 36.9686$	0.0000090	0.000181	0.14	ALMA	-4.6	1.4	4.8
J0654 - 1309	$06\ 54\ 50.40939$	$-13 \ 09 \ 30.3935$	0.0000071	0.000149	0.11	AT20G	447.1	-293.5	534.8
J0658 + 2754	Extend	led Source, Multip	le Compone	nts		TGSS			
J0709 - 0255	$07 \ 09 \ 45.05435$	$-02 \ 55 \ 17.4977$	0.0000050	0.000089	0.17	ALMA	9.7	2.2	10.0
J0710 - 2033	$07 \ 10 \ 46.62165$	$-20 \ 33 \ 23.9637$	0.0000150	0.000352	0.25	AT20G	819.5	236.3	852.9
J0723 + 3519	$07 \ 23 \ 55.44293$	$+35 \ 19 \ 36.4173$	0.0000615	0.000512	1.11	TGSS	1432.7	687.3	1589.0
J0724 - 0624	$07 \ 24 \ 29.07898$	$-06 \ 24 \ 33.2785$	0.0000079	0.000148	0.11	AT20G	-282.9	1421.5	1449.3
J0727 - 3813		Extended Sou		AT20G					
J0730 - 0241	$07 \ 30 \ 25.87729$	$-02 \ 41 \ 24.8988$	0.0000074	0.000128	0.14	ALMA	10.6	1.2	10.7
J0730 - 0535	$07 \ 30 \ 28.43703$	$-05 \ 35 \ 46.9092$	0.0000159	0.000296	0.03	AT20G	-254.2	90.8	269.9
J0735 + 2341		Extended Sou	ırce			TGSS			
$J0735 + 3428^{h}$	$07 \ 35 \ 55.99808$	$+34 \ 28 \ 50.6418$	0.0000316	0.000264	0.27	TGSS	468.8	731.8	869.1
J0737 - 0720	$07 \ 37 \ 07.13324$	$-07 \ 20 \ 38.0421$	0.0000086	0.000162	0.06	AT20G	-1089.7	457.9	1181.9
J0737 - 3954		Extended Sou	ırce			AT20G			
J0741 - 2647	$07 \ 41 \ 55.68170$	$-26\ 47\ 30.5121$	0.0000128	0.000335	0.58	AT20G	-156.7	-112.1	192.6
J0743 - 0440	$07 \ 43 \ 52.40620$	$-04 \ 40 \ 20.5327$	0.0000072	0.000131	0.27	AT20G	-690.8	767.2	1032.4
J0747 - 1237	$07 \ 47 \ 10.05602$	$-12 \ 37 \ 18.1432$	0.0000097	0.000208	0.08	AT20G	-2283.8	756.8	2405.9
$J0755 {-} 1028$	07 55 17.83948	$-10 \ 28 \ 27.5288$	0.0000085	0.000167	0.06	AT20G	302.6	-28.7	304.0
J0759 - 1821	$07 \ 59 \ 43.70046$	$-18\ 21\ 59.1834$	0.0000143	0.000326	0.19	AT20G	-6.6	-583.4	583.4
J0800 - 3959		Extended Sou	irce			AT20G			
J0802 - 1042	$08 \ 02 \ 05.92864$	$-10 \ 42 \ 16.7199$	0.0000093	0.000189	0.09	AT20G	-127.4	-319.9	344.3
J0806 - 1724	$08 \ 06 \ 24.96636$	$-17 \ 24 \ 44.3331$	0.0000118	0.000265	0.54	AT20G	767.7	-33.1	768.4
J0807 - 1531	$08 \ 07 \ 05.30957$	$-15 \ 31 \ 25.3924$	0.0000167	0.000352	0.18	AT20G	1451.6	-92.4	1454.5
J0812 - 1810	Mu	ultiple Compact C	omponents			AT20G			
J0821 - 0323	Mu	ultiple Compact C	omponents			AT20G			
J0824 - 1527	$08 \ 24 \ 51.62222$	$-15\ 27\ 45.9260$	0.0000107	0.000227	0.28	ALMA	-17.6	-6.0	18.6
J0824 - 1827	$08 \ 24 \ 04.06668$	$-18\ 27\ 40.8347$	0.0000096	0.000218	0.27	AT20G	474.1	-134.7	492.9
J0824 - 2428	$08\ 24\ 49.25913$	$-24 \ 28 \ 52.5360$	0.0000158	0.000388	0.24	AT20G	285.0	-136.0	315.8
J0837 - 3409	Extend	led Source, Multip	le Compone	nts		ALMA			
J0847 - 0520	Mu	ultiple Compact C	omponents			ALMA			
J0847 - 0703	Mu	ultiple Compact C	omponents			ALMA			
J0847 - 2337	$08\ 47\ 01.56583$	$-23 \ 37 \ 01.6839$	0.0000143	0.000349	0.16	AT20G	-492.4	116.1	505.9
J0856 - 1105	Mu	ultiple Compact C	omponents			ALMA			
J0902 - 1721	09 03 00.01909	$-17 \ 21 \ 05.2181$	0.0000085	0.000187	0.35	AT20G	-1705.1	3781.9	4148.5
J0903 - 3117	$09 \ 03 \ 37.93566$	$-31 \ 17 \ 39.1650$	0.0000189	0.000578	0.19	AT20G	-72.5	-65.0	97.4
J0904 - 2552	$09 \ 04 \ 52.18576$	$-25 \ 52 \ 51.7589$	0.0000075	0.000203	0.83	AT20G	732.0	1941.2	2074.6
J0904 - 3111	$09 \ 04 \ 20.51632$	$-31 \ 11 \ 25.7129$	0.0000121	0.000363	0.55	ALMA	-4.2	-43.0	43.2
J0912 - 4137	Mu	ultiple Compact C	omponents			AT20G			

Table 6. Positions and X-band Flux Densities of Alternative VLA Reference Sources (Continued..)

IAU Name	Measured RA	Measured Dec.	Error RA	Error Dec.	Flux Dens.	Origin	ΔRA	$\Delta \text{Dec.}$	Shift
J2000	(hms)	(°′″)	(s)	('')	$\rm Jy beam^{-1}$		(mas)	(mas)	(mas)
J0914-3314		Extended Sou	ırce			AT20G			
J0915 - 3029	$09\ 15\ 40.89529$	$-30 \ 29 \ 49.4617$	0.0000156	0.000462	0.26	AT20G	319.4	-261.7	412.9
J0917 - 1345	$09\ 17\ 39.00032$	$-13 \ 45 \ 42.2359$	0.0000061	0.000130	0.51	AT20G	432.5	-1135.9	1215.4
J0922 - 0529		Extended Sou	ırce			ALMA			
J0923 - 2135		Extended Sou	ırce			ALMA			
J0928 - 0409	$09\ 28\ 33.46918$	$-04 \ 09 \ 08.8489$	0.0000096	0.000169	0.16	ALMA	-2.8	1.1	3.0
J0932 - 3405		Extended Sou	ırce			AT20G			
J0933 - 0819	Mu	ultiple Compact C	omponents			ALMA			
J0933 - 1139	Mu	ultiple Compact C	omponents			ALMA			
J0938 - 0708	Mu	ultiple Compact C	omponents			ALMA			
J0939 - 1731	$09 \ 39 \ 19.19465$	$-17 \ 31 \ 35.7749$	0.0000212	0.000428	0.19	AT20G	-352.6	2325.1	2351.7
J0942 - 0759	$09 \ 42 \ 21.46123$	$-07 \ 59 \ 53.2037$	0.0000108	0.000203	0.97	ALMA	-3.4	-3.7	5.0
J0946 + 0419		Extended Sou	urce			TGSS			
$J0946 - 2020^{j}$	$09 \ 46 \ 50.21096$	$-20 \ 20 \ 44.4522$	0.0000206	0.000455	0.13	AT20G	-154.1	-152.2	216.6
$J0948 - 3544^{j}$	$09 \ 48 \ 41.59579$	$-35 \ 44 \ 29.1760$	0.0000397	0.001277	0.08	AT20G	1025.3	-1275.9	1636.8
J0952 + 2828	$09 \ 52 \ 06.08398$	$+28 \ 28 \ 32.4035$	0.0000627	0.000356	0.34	TGSS	79.4	-376.5	384.7
$J0952 - 3006^{j}$		Extended Sou	urce			ALMA			
J0958 - 4110		Inadequate D)ata			AT20G			
J1006 - 2159	$10 \ 06 \ 46.41375$	$-21 \ 59 \ 20.4062$	0.0000083	0.000197	0.48	AT20G	782.3	393.7	875.8
J1008 - 0933	$10 \ 08 \ 43.86548$	$-09 \ 33 \ 23.3504$	0.0000095	0.000187	0.79	Winn	9.2	20.6	22.5
J1010 - 0200	$10 \ 10 \ 51.66616$	-02 00 19.5692	0.0000042	0.000074	3.02	ALMA	12.6	0.8	12.6
J1011 - 0423	$10 \ 11 \ 30.23940$	$-04 \ 23 \ 27.7044$	0.0000063	0.000113	1.64	Winn	-14.9	32.7	35.9
J1011 - 2301	$10\ 11\ 20.48175$	$-23 \ 01 \ 19.4729$	0.0000210	0.000500	0.13	Winn	0.7	2.1	2.2
J1011 + 4204	$10\ 11\ 54.17654$	$+42 \ 04 \ 33.3797$	0.0000273	0.000154	0.54	TGSS	-763.2	-3280.3	3367.9
J1013 + 2829	$10\ 13\ 02.99891$	$+28 \ 29 \ 10.9329$	0.0000535	0.000338	0.46	TGSS	-1014.0	2.9	1014.0
J1016 - 3533		Extended Sou	urce			AT20G			
J1019 - 2219	$10 \ 19 \ 49.02396$	$-22 \ 19 \ 59.7702$	0.0000225	0.000538	0.13	AT20G	-193.7	-470.2	508.6
J1019 - 2708	$10 \ 19 \ 08.48331$	$-27\ 08\ 55.6622$	0.0000173	0.000467	0.18	Winn	13.2	31.8	34.5
J1024 - 3234	$10 \ 24 \ 00.42408$	$-32 \ 34 \ 16.0889$	0.0000125	0.000419	0.42	ALMA	-1.0	-28.9	28.9
J1027 - 2230	$10\ 27\ 08.45723$	-22 30 09.8596	0.0000110	0.000270	0.21	AT20G	-516.0	340.4	618.1
J1028 - 0236	Mu	ultiple Compact C	omponents			ALMA			
J1028 - 0844	Mu	ultiple Compact C	omponents			Winn	-3.4	-3.7	5.0
J1029 - 1852	$10 \ 29 \ 33.09800$	$-18 \ 52 \ 50.2883$	0.0000052	0.000118	0.76	ALMA			
J1031 - 0423	Mu	ultiple Compact C	omponents			AT20G			
J1031 - 2228	$10 \ 31 \ 52.31212$	$-22\ 28\ 24.9815$	0.0000062	0.000156	0.44	AT20G	386.5	-281.5	478.1
J1036 - 0605	Mu	ultiple Compact C	omponents			Winn			
J1037 - 2823	$10 \ 37 \ 42.45748$	$-28\ 23\ 04.1013$	0.0000068	0.000194	0.36	Winn	4.1	-5.3	6.8
$J1038 - 4325^k$	Extend	led Source, Multip	le Compone	nts		ALMA			
$J1042 - 4143^k$	Extend	led Source, Multip	le Compone	nts		ALMA			
J1047 - 1308		Extended Sou	urce			AT20G			
J1048 + 6008	$10 \ 48 \ 33.70097$	$+60\ 08\ 45.6444$	0.0000505	0.000196	0.72	TGSS	254.1	224.4	339.0
J1049 - 2231	$10 \ 49 \ 21.86895$	$-22 \ 31 \ 07.4879$	0.0000098	0.000241	0.28	AT20G	-678.2	512.1	849.8
J1052 + 2029		Inadequate D	Data			TGSS			
J1057 - 2342	$10\ 57\ 24.42072$	$-23 \ 42 \ 01.7031$	0.0000097	0.000241	0.97	AT20G	-834.0	96.8	839.6
J1058 - 0309	$10 \ 58 \ 11.01116$	$-03 \ 09 \ 27.2599$	0.0000093	0.000160	0.94	Winn	2.1	3.1	3.7
J1059 - 1134	$10 \ 59 \ 12.42619$	$-11 \ 34 \ 22.7870$	0.0000106	0.000216	0.14	ALMA	-2.8	-7.0	7.5

IAU Name	Measured RA	Measured Dec.	Error RA	Error Dec.	Flux Dens.	Origin	ΔRA	$\Delta \text{Dec.}$	Shift
J2000	(h m s)	(°′″)	(s)	('')	$\rm Jy beam^{-1}$		(mas)	(mas)	(mas)
J1100 - 1251	$11 \ 00 \ 11.06784$	$-12\ 51\ 11.9309$	0.0000115	0.000237	0.08	AT20G	177.8	-430.9	466.2
$J1100 - 4249^k$		Extended Sou	ırce			AT20G			
J1104 - 2431	$11 \ 04 \ 46.17633$	$-24 \ 31 \ 25.7954$	0.0000100	0.000254	0.60	ALMA	-4.5	4.7	6.5
J1105 + 2052		Extended Sou	ırce			TGSS			
J1108 + 1435		Inadequate D	ata			TGSS			
$J1108 - 4329^k$		Extended Sou	ırce			AT20G			
J1110 - 0756	$11 \ 10 \ 16.95388$	$-07 \ 56 \ 50.1837$	0.0000172	0.000325	0.06	AT20G	388.1	216.3	444.3
J1110 - 1858	$11 \ 10 \ 00.40705$	$-18 \ 58 \ 48.7428$	0.0000095	0.000215	0.16	AT20G	41.9	-142.8	148.8
J1112 - 0842	$11 \ 12 \ 12.64641$	$-08 \ 42 \ 19.3854$	0.0000144	0.000275	0.07	AT20G	646.4	-1285.4	1438.8
J1113 - 2300	$11 \ 13 \ 54.78750$	$-23 \ 00 \ 43.6751$	0.0000083	0.000208	0.39	ALMA	6.9	-15.1	16.6
J1114 - 0247	$11 \ 14 \ 39.66414$	$-02 \ 47 \ 31.7515$	0.0000117	0.000213	0.28	ALMA	-2.2	-11.5	11.7
J1114 - 0816	$11 \ 14 \ 32.54989$	$-08 \ 16 \ 39.0133$	0.0000117	0.000228	0.29	ALMA	16.4	-13.3	21.1
J1116 - 2828	$11\ 16\ 11.79940$	$-28\ 28\ 30.5651$	0.0000131	0.000331	0.20	AT20G	-123.9	734.9	745.2
J1118 - 1232	$11 \ 18 \ 17.14085$	$-12 \ 32 \ 54.2662$	0.0000073	0.000150	0.64	ALMA	2.2	-6.2	6.5
J1120 - 1243	$11 \ 20 \ 12.07998$	$-12 \ 43 \ 37.8352$	0.0000076	0.000155	0.22	AT20G	-1462.9	864.8	1699.4
J1120 - 1420	$11 \ 20 \ 55.56338$	$-14 \ 20 \ 29.9262$	0.0000072	0.000149	0.22	AT20G	241.5	273.8	365.1
$J1120 - 2719^{l}$	$11 \ 20 \ 16.19145$	$-27 \ 19 \ 06.3826$	0.0000150	0.000408	1.54	AT20G	-1352.1	1617.4	2108.1
J1121 - 0553	$11 \ 21 \ 25.10771$	$-05\ 53\ 56.4552$	0.0000136	0.000251	0.23	ALMA	4.4	-15.2	15.8
J1121 - 0711	$11 \ 21 \ 42.12213$	$-07 \ 11 \ 06.3619$	0.0000128	0.000234	0.19	AT20G	-775.8	138.1	788.0
$J1122 - 2532^{l}$	$11 \ 22 \ 05.74305$	$-25 \ 32 \ 33.8556$	0.0000133	0.000338	0.65	AT20G	-1124.0	-355.6	1179.0
J1124 + 1919	$11 \ 24 \ 43.87192$	$+19 \ 19 \ 29.4961$	0.0000767	0.000477	1.01	TGSS	1.2	-463.8	463.8
J1126 + 3345	$11\ 26\ 23.66168$	$+33 \ 45 \ 26.8319$	0.0000299	0.000163	0.74	TGSS	-644.5	481.8	804.7
J1127 - 0735	$11 \ 27 \ 12.43600$	$-07 \ 35 \ 12.1766$	0.0000135	0.000256	0.11	AT20G	-386.5	1223.4	1283.0
J1129 - 0446	$11 \ 29 \ 35.51208$	$-04 \ 46 \ 59.4937$	0.0000164	0.000310	0.15	Winn	12.3	4.3	13.0
J1135 + 3708	$11 \ 35 \ 05.93209$	$+37 \ 08 \ 40.7938$	0.0000452	0.000367	0.08	TGSS	-216.3	83.8	231.9
J1136 - 0330	$11 \ 36 \ 24.57709$	$-03 \ 30 \ 29.4989$	0.0000046	0.000083	0.94	AT20G	941.8	-1099.0	1447.3
J1139 - 1552	$11 \ 39 \ 29.57598$	-15 52 51.6536	0.0000058	0.000123	0.40	Winn	-9.7	-2.6	10.1
J1142 + 1338		Extended Sou	ırce			TGSS			
$J1142 - 2442^{l}$	$11 \ 42 \ 24.74896$	$-24 \ 42 \ 57.2978$	0.0000141	0.000361	0.21	Winn	0.5	2.2	2.2
J1148 - 0404	$11 \ 48 \ 55.88512$	$-04 \ 04 \ 09.5619$	0.0000065	0.000118	0.40	AT20G	3364.7	138.0	3367.5
J1150 - 1930	$11 \ 50 \ 31.52571$	$-19 \ 30 \ 49.5450$	0.0000091	0.000206	0.42	AT20G	-2908.5	-345.0	2928.9
J1151 - 1723	$11 \ 51 \ 03.20278$	$-17 \ 23 \ 59.8404$	0.0000081	0.000176	0.48	Winn	18.9	1.6	18.9
J1152 - 0841	$11 \ 52 \ 17.20917$	$-08 \ 41 \ 03.3157$	0.0000033	0.000065	2.22	ALMA	12.4	-5.7	13.6
J1153 - 1105	$11 \ 53 \ 22.31509$	$-11\ 05\ 12.5814$	0.0000183	0.000329	0.18	Winn	-39.5	26.6	47.7
J1154 - 3242		Extended Sou	ırce			AT20G			
J1155 - 1216	$11 \ 55 \ 36.81943$	$-12 \ 16 \ 35.5092$	0.0000088	0.000174	0.12	Winn	-13.7	14.8	20.1
J1159 + 5820	$11 \ 59 \ 48.77170$	$+58 \ 20 \ 20.3139$	0.0000325	0.000123	1.45	TGSS	-52.8	-376.1	379.8
J1202 - 0528	$12 \ 02 \ 34.22487$	$-05 \ 28 \ 02.4817$	0.0000512	0.001005	0.19	ALMA	1.9	8.3	8.5
$J1203 - 2628^{l}$	12 03 33.28431	$-26 \ 28 \ 10.6925$	0.0000131	0.000340	0.36	AT20G	210.7	-92.5	230.1
J1204 - 0710	$12 \ 04 \ 16.66481$	$-07 \ 10 \ 08.9999$	0.0000127	0.000236	0.29	3FGL	-964.6	1510.1	1791.9
J1204+1129	$12 \ 04 \ 26.66586$	$+11 \ 29 \ 10.1479$	0.0000701	0.000490	0.35	TGSS	134.5	258.0	290.9
J1207 - 0106		Not Detecte	ed			AT20G			
J1208-0435	12 08 02.38185	$-04 \ 35 \ 33.0150$	0.0000161	0.000299	0.17	AT20G	-2270.5	-3215.0	3936.0
$J1212 - 2221^{l}$	$12 \ 12 \ 03.69776$	$-22\ 21\ 51.4939$	0.0000134	0.000327	0.48	AT20G	3499.0	-694.0	3567.1
J1213-1003	$12 \ 13 \ 22.94514$	$-10\ 03\ 25.2761$	0.0000098	0.000198	0.38	AT20G	-814.3	1123.9	1387.9
$\mathrm{J}1213{-}2724^l$	$12 \ 13 \ 40.06945$	$-27\ 24\ 22.5588$	0.0000140	0.000393	0.42	AT20G	1605.3	1141.3	1969.6

Table 6. Positions and X-band Flux Densities of Alternative VLA Reference Sources (Continued..)

IAU Name	Measured RA	Measured Dec.	Error RA	Error Dec.	Flux Dens.	Origin	ΔRA	$\Delta \text{Dec.}$	Shift
J2000	(hms)	(°′″)	(s)	('')	$\rm Jy beam^{-1}$		(mas)	(mas)	(mas)
J1213-4343		Extended Sou	ırce			AT20G			
J1216 - 3546	$12 \ 16 \ 24.93624$	$-35 \ 46 \ 34.1802$	0.0000613	0.002042	0.05	AT20G	167.4	-1380.2	1390.3
J1217 - 0029	Obse	erved at the wrong	g Declination	L		ALMA			
J1218 - 0119	$12 \ 18 \ 34.92821$	$-01 \ 19 \ 54.3480$	0.0000461	0.000353	0.92	AT20G	-2072.6	-1248.0	2419.3
J1221 - 3423		Extended Sou	irce			AT20G			
J1222 - 3046	$12 \ 22 \ 24.76382$	$-30 \ 46 \ 21.8298$	0.0000176	0.000530	0.16	AT20G	3430.6	2970.2	4537.7
J1223 - 0546	$12 \ 23 \ 46.05579$	$-05 \ 46 \ 58.0165$	0.0000697	0.000601	0.28	AT20G	-1280.3	783.5	1501.0
J1228 - 0304	$12\ 28\ 36.91444$	$-03 \ 04 \ 39.3049$	0.0000592	0.000457	0.40	Winn	39.8	-7.9	40.6
J1230 - 3121	$12 \ 30 \ 44.93299$	$-31 \ 21 \ 23.3466$	0.0000164	0.000507	0.13	AT20G	986.4	-246.6	1016.8
J1232 - 1015	$12 \ 32 \ 15.86014$	$-10 \ 15 \ 25.1718$	0.0000054	0.000109	0.39	ALMA	-2.1	-1.9	2.8
J1238 - 0656	$12 \ 38 \ 38.48625$	$-06 \ 56 \ 12.1726$	0.0000106	0.000201	0.22	AT20G	-2773.3	-872.6	2907.3
J1244 - 2633	$12 \ 44 \ 14.64108$	$-26 \ 33 \ 24.9540$	0.0000174	0.000456	0.09	AT20G	1998.2	346.0	2027.9
J1245 - 1616	Mı	ultiple Compact C	omponents			ALMA			
J1247 - 2348	$12 \ 47 \ 59.35012$	$-23 \ 48 \ 59.2095$	0.0000220	0.000536	0.15	AT20G	-138.9	-209.5	251.3
J1248 - 0632	$12 \ 48 \ 22.97543$	$-06 \ 32 \ 09.8142$	0.0000065	0.000123	0.93	ALMA	8.4	5.9	10.3
J1249 - 2324	$12 \ 49 \ 05.03456$	$-23 \ 24 \ 21.9343$	0.0000337	0.000832	0.12	AT20G	-62.7	-234.4	242.6
J1251 - 1717	$12 \ 51 \ 14.47601$	$-17 \ 17 \ 13.1544$	0.0000109	0.000239	0.42	ALMA	-14.5	5.6	15.6
J1256 - 2155	$12 \ 56 \ 25.51015$	$-21 \ 55 \ 21.1434$	0.0000065	0.000158	0.60	AT20G	-280.3	-543.4	611.4
J1259 - 0150	$12 \ 59 \ 06.61492$	$-01 \ 50 \ 58.3552$	0.0000108	0.000191	0.16	Winn	1.2	10.8	10.9
J1259 - 2310	$12 \ 59 \ 08.46236$	$-23 \ 10 \ 38.6395$	0.0000141	0.000358	0.75	ALMA	-5.0	10.5	11.6
J1300 - 1302	$13 \ 00 \ 18.74002$	$-13 \ 02 \ 53.6778$	0.0000117	0.000246	0.21	Winn	-17.8	30.2	35.1
J1300 - 3253	$13 \ 00 \ 42.42636$	$-32 \ 53 \ 12.1217$	0.0000127	0.000384	0.17	AT20G	171.8	-521.7	549.2
J1303 - 1051	$13 \ 03 \ 13.86753$	$-10\ 51\ 17.1256$	0.0000074	0.000151	0.43	Winn	18.7	14.4	23.6
J1303 - 2405	$13 \ 03 \ 19.64708$	$-24\ 05\ 03.0346$	0.0000150	0.000380	0.14	AT20G	450.8	65.4	455.5
J1303 + 2433	$13 \ 03 \ 03.21962$	$+24 \ 33 \ 55.7165$	0.0000500	0.000275	2.34	ALMA	-35.8	-13.4	38.2
J1305 - 2850		Extended Sou	ırce			ALMA			
J1306 - 1718	Mu	ultiple Compact C	omponents			AT20G			
J1306 - 2147	$13 \ 06 \ 42.04917$	$-21\ 47\ 50.9733$	0.0000175	0.000421	0.13	Winn	29.6	22.7	37.3
J1308 - 2422	$13 \ 08 \ 42.01185$	$-24 \ 22 \ 57.9392$	0.0000144	0.000366	0.13	Winn	-47.1	-69.2	83.7
J1309-3948		Inadequate D	ata			AT20G			
J1311+1839	$13 \ 11 \ 57.24369$	+18 39 30.7725	0.0000594	0.000363	0.67	TGSS	1127.1	212.6	1146.9
J1312-0424	$13 \ 12 \ 50.90144$	$-04 \ 24 \ 49.8891$	0.0000121	0.000217	0.79	ALMA	-6.6	0.9	6.7
J1313 - 2722	13 13 01.42043	$-27 \ 22 \ 58.8324$	0.0000143	0.000394	0.17	Winn	70.1	62.6	94.0
J1317 - 1345	$13\ 17\ 36.53855$	$-13 \ 45 \ 32.6497$	0.0000050	0.000105	0.10	AT20G	-1290.2	-1149.6	1728.1
J1317-2031	$13\ 17\ 26.14842$	$-20 \ 31 \ 38.1125$	0.0000139	0.000327	0.18	Winn	1.1	41.5	41.5
J1318 - 0607	13 18 33.70925	$-06\ 07\ 23.8251$	0.0000118	0.000209	0.12	AT20G	-287.1	-25.1	288.2
J1318-1807	$13\ 18\ 56.70671$	$-18\ 07\ 40.4257$	0.0000174	0.000384	0.03	AT20G	1187.4	-325.7	1231.3
J1321-2636	$13\ 21\ 14.03590$	$-26 \ 36 \ 10.4401$	0.0000088	0.000230	0.65	AT20G	-347.4	-440.1	560.7
J1322-0937	13 22 36.91276	$-09 \ 37 \ 37.7986$	0.0000116	0.000226	0.09	Winn	-20.1	-25.6	32.5
J1323-4101	Extend	led Source, Multip	le Compone	nts		AT20G			
J1324-1049	$13 \ 24 \ 25.79314$	$-10\ 49\ 23.1337$	0.0000063	0.000128	0.28	ALMA	-2.1	-3.7	4.3
J1325-1117	$13\ 25\ 13.21996$	$-11 \ 17 \ 39.0831$	0.0000074	0.000148	0.07	ALMA	0.6	-3.1	3.1
J1326 - 0500	$13\ 26\ 54.61294$	$-05 \ 00 \ 58.9857$	0.0000144	0.000267	0.07	Winn	-3.6	-25.7	26.0
J1327 - 4214		Extended Sou	ırce			AT20G			
J1330 - 2056	13 30 07.70087	$-20 \ 56 \ 16.5541$	0.0000186	0.000432	0.05	AT20G	1528.9	-154.1	1536.6
J1331 - 0341	$13 \ 31 \ 29.16091$	$-03 \ 41 \ 14.1121$	0.0000139	0.000254	0.08	ALMA	1.4	-2.1	2.5

IAU Name	Measured RA	Measured Dec.	Error RA	Error Dec.	Flux Dens.	Origin	ΔRA	$\Delta \text{Dec.}$	Shift
J2000	(hms)	(°′″)	(s)	('')	$\rm Jy beam^{-1}$		(mas)	(mas)	(mas)
J1331-4230		Extended Sou	ırce			AT20G			
J1332 - 0509	$13 \ 32 \ 04.46486$	$-05 \ 09 \ 43.3069$	0.0000131	0.000238	0.14	ALMA	2.2	3.1	3.8
J1332 - 1402	$13 \ 32 \ 30.92818$	$-14 \ 02 \ 13.1835$	0.0000075	0.000159	0.08	AT20G	-1137.7	216.5	1158.1
J1333 - 1950	$13 \ 33 \ 45.17603$	$-19 \ 50 \ 42.3357$	0.0000135	0.000307	0.09	ALMA	-0.5	4.3	4.3
J1333 - 2356	Extend	led Source, Multip	le Compone	nts		AT20G			
J1333 + 2725	$13 \ 33 \ 07.49012$	$+27 \ 25 \ 18.3749$	0.0000407	0.000212	2.36	ALMA	-1.6	5.0	5.2
J1334 - 1150	$13 \ 34 \ 04.19072$	$-11 \ 50 \ 14.2721$	0.0000076	0.000151	0.09	AT20G	-891.4	-172.1	907.8
J1335 - 0511	$13 \ 35 \ 56.47694$	$-05 \ 11 \ 41.6612$	0.0000163	0.000301	0.05	ALMA	0.9	-1.2	1.6
J1335 - 3911		Extended Sou	urce			AT20G			
J1336 - 0829	$13 \ 36 \ 08.25999$	$-08 \ 29 \ 51.7999$	0.0000060	0.000120	0.42	ALMA	0.1	0.1	0.2
J1337 - 0601	$13 \ 37 \ 19.51065$	$-06 \ 01 \ 47.1212$	0.0000237	0.000460	0.02	AT20G	1332.9	-1021.2	1679.1
J1339 - 0637	$13 \ 39 \ 07.14567$	$-06 \ 37 \ 04.8767$	0.0000150	0.000289	0.05	AT20G	213.5	-476.7	522.3
J1339 - 2401	Extend	led Source, Multip	le Compone	nts		ALMA			
J1340 - 0137	$13 \ 40 \ 04.61441$	$-01 \ 37 \ 46.5582$	0.0000065	0.000110	0.88	AT20G	2183.1	-758.2	2311.0
J1342 - 2051	Extend	led Source, Multip	le Compone	nts		ALMA			
J1342 - 2900	Extend	led Source, Multip	le Compone	nts		ALMA			
J1342 - 3010	Mu	ıltiple Compact C	omponents		Winn				
J1343 - 1747	$13\ 43\ 37.41405$	$-17 \ 47 \ 55.4502$	0.0000094	0.21	ALMA	-0.7	-0.2	0.8	
J1343 - 2357	$13\ 43\ 26.81147$	$-23 \ 57 \ 31.9947$	0.0000151	0.000365	0.46	Winn	36.1	28.3	45.9
J1347 - 3750		Extended Sou	urce		AT20G				
J1349 - 1110	$13\ 49\ 03.19292$	$-11 \ 10 \ 00.8204$	0.08	ALMA	1.2	-0.3	1.2		
J1349 - 1132	$13 \ 49 \ 31.44352$	$-11 \ 32 \ 53.8268$	0.0000076	0.13	Winn	8.5	-17.8	19.8	
J1349 - 1413	$13 \ 49 \ 16.02252$	$-14 \ 13 \ 16.8393$	0.0000147	0.000310	0.03	Winn	4.1	-18.3	18.7
J1349 - 2334	$13 \ 49 \ 24.68831$	$-23 \ 34 \ 31.1189$	0.0000153	0.000371	0.62	AT20G	-664.1	581.1	882.5
J1350 - 1634	$13 \ 50 \ 36.14411$	$-16 \ 34 \ 49.5271$	0.0000113	0.000250	0.10	ALMA	-1.6	-17.1	17.1
J1350 - 2204	Extend	led Source, Multip	le Compone	nts		AT20G			
J1351 - 3442		Extended Sou	ırce			AT20G			
J1352 + 0232	$13 \ 52 \ 30.69893$	$+02 \ 32 \ 47.1303$	0.0000092	0.000119	0.53	TGSS	285.7	-269.7	392.9
J1352 - 1817	$13 \ 52 \ 50.27929$	$-18 \ 17 \ 28.4066$	0.0000205	0.000447	0.03	Winn	-28.3	39.3	48.5
J1354 - 1041	$13 \ 54 \ 46.51851$	$-10 \ 41 \ 02.6621$	0.0000078	0.000156	0.23	Winn	14.5	-28.1	31.6
J1354 - 2357	Extend	led Source, Multip	le Compone	nts		Winn			
J1356 - 1101	$13 \ 56 \ 46.83206$	$-11 \ 01 \ 29.2338$	0.0000103	0.000209	0.07	Winn	10.9	-30.8	32.6
J1356 - 1724	$13 \ 56 \ 06.95376$	$-17 \ 24 \ 31.8227$	0.0000133	0.000298	0.07	AT20G	948.0	1277.3	1590.7
J1401 - 0916	$14 \ 01 \ 05.33196$	$-09 \ 16 \ 31.5974$	0.0000119	0.000238	0.12	ALMA	0.6	-27.4	27.4
J1401 - 3004		Extended Sou	ırce			Winn			
J1405 - 1440	14 05 32.86718	$-14 \ 40 \ 18.3105$	0.0000107	0.000231	0.09	AT20G	-2716.2	-1510.5	3107.9
J1405 - 3907	Extend	led Source, Multip	le Compone	nts		AT20G			
J1406 - 0707		Extended Sou	ırce			ALMA			
J1406-0848		Extended Sou		AT20G					
J1407 - 2701		Extended Sou		AT20G					
J1408-2900		Extended Source							
J1409 - 2315		Extended Source							
J1416 - 1705		Extended Sou	ırce			AT20G			
J1416-2131		Extended Source							
J1418 - 2958		Extended Source							
J1419 - 0838	Mu	ultiple Compact C	omponents			ALMA			

Table 6. Positions and X-band Flux Densities of Alternative VLA Reference Sources (Continued..)

IAU Name	Measured RA	Measured Dec.	Error RA	Error Dec.	Flux Dens.	Origin	ΔRA	$\Delta \text{Dec.}$	Shift
J2000	$(h\mathrm{ms})$	(°′″)	(s)	('')	$\rm Jy beam^{-1}$		(mas)	(mas)	(mas)
J1419-1928		Extended Sou	urce			Winn			
J1421 - 0643	$14\ 21\ 07.75615$	$-06 \ 43 \ 56.3536$	0.0000124	0.000233	0.46	Winn	-2.2	1.4	2.6
J1422 - 2308		Extended Sou	urce			ALMA			
J1426 - 0215	$14 \ 26 \ 55.48454$	$-02\ 15\ 44.2751$	0.0000065	0.000112	0.90	AT20G	381.6	-775.1	864.0
J1429 - 2157		Extended Sou	urce			TGSS			
J1438 - 3122		Extended Sou	urce			ALMA			
J1441 - 3303		Extended Sou	urce			AT20G			
J1449 - 0045	$14 \ 49 \ 16.59010$	$-00\ 45\ 19.2345$	0.0000532	0.000395	1.24	AT20G	-1501.4	-734.5	1671.5
J1449 - 2139	$14 \ 49 \ 39.97422$	$-21 \ 39 \ 24.7174$	0.0000190	0.000461	0.26	AT20G	-198.3	282.6	345.2
J1450 - 3319		Extended Sou	urce			AT20G			
J1451 - 0127	$14 \ 51 \ 47.41444$	$-01 \ 27 \ 35.2775$	0.0000656	0.000489	1.00	AT20G	-666.3	1022.5	1220.5
J1451 - 2329		Extended Sou	urce			AT20G			
J1453 - 2522		Extended Sou	urce			AT20G			
J1455 - 1700	$14 \ 55 \ 02.81041$	$-17 \ 00 \ 13.9551$	0.0000096	0.000213	0.31	AT20G	-436.2	144.9	459.7
J1455 - 2159		Extended Sou	urce			Winn			
J1455 - 3158		Extended Sou	urce			AT20G			
J1458 + 3542		Inadequate D	Data			TGSS			
J1500 - 2358		Extended Sou	urce			AT20G			
J1506 - 0919	Mu	ultiple Compact C	omponents			Winn			
J1509 - 4340	Extend	Extended Source, Multiple Components							
J1513 - 4221	Extend	Extended Source, Multiple Components							
J1517 - 0710	$15\ 17\ 14.05623$	17 14.05623 -07 10 14.0737 0.0000081 0.000154 1.06					-3.4	26.3	26.5
J1522 - 2936		Extended Sou	urce			Winn			
J1524 - 3012		Extended Sou	urce			ALMA			
J1525 + 0308	Extend	led Source, Multip	le Compone	nts		TGSS			
J1533 - 0421	$15 \ 33 \ 14.20519$	$-04 \ 21 \ 16.6291$	0.0000139	0.000249	0.76	AT20G	1567.6	-729.1	1728.9
J1551 - 1755	Extend	led Source, Multip	ole Compone	nts		AT20G			
J1553 - 2422	$15 \ 53 \ 31.62814$	$-24 \ 22 \ 06.0186$	0.0000188	0.000515	0.19	ALMA	-2.0	21.4	21.5
J1555 - 0326	$15\ 55\ 30.74902$	$-03 \ 26 \ 49.4973$	0.0000101	0.000179	0.83	AT20G	-883.7	602.7	1069.7
J1555 - 4150	Extend	led Source, Multip	ole Compone	nts		ALMA			
J1559 - 2442	Extend	led Source, Multip	ole Compone	nts		AT20G			
J1600 - 0037	$16 \ 00 \ 01.01531$	$-00 \ 37 \ 22.5867$	0.0000295	0.000484	0.10	Winn	-25.6	3.2	25.8
J1603 - 0139	$16\ 03\ 48.50644$	$-01 \ 39 \ 00.6171$	0.0000126	0.000215	0.50	TGSS	803.0	-7.2	803.1
J1604 - 2223	$16 \ 04 \ 01.47122$	$-22 \ 23 \ 40.9996$	0.0000178	0.000435	0.14	Winn	-0.3	-21.5	21.5
J1611 - 3018	$16 \ 11 \ 03.73405$	$-30 \ 18 \ 26.1265$	0.0000284	0.000826	0.08	AT20G	-570.5	-1526.5	1629.6
J1617 - 1941	$16\ 17\ 27.09336$	$-19 \ 41 \ 32.0296$	0.0000248	0.000516	0.10	AT20G	1788.5	270.4	1808.8
J1624 - 0649	Extend	led Source, Multip	ole Compone	nts		Winn			
J1624 - 3213	$16 \ 24 \ 59.61969$	$-32 \ 13 \ 24.4429$	0.0000283	0.000873	0.17	ALMA	4.0	-2.9	5.0
J1624 - 3516	Extend	led Source, Multip	ole Compone	nts		AT20G			
J1628 - 1415	Extend	led Source, Multip	ole Compone	nts		Winn			
J1631 - 4345	Extend	Extended Source, Multiple Components							
J1632 - 0033		Extended Source							
J1634 - 2058		Extended Sou		ALMA					
J1638 - 0340	Extend	Extended Source, Multiple Components							
J1638 - 1415	Extend	led Source, Multip	ole Compone	nts		Winn			
J1647 - 1044		Extended Sou	urce			TGSS	-363.8	252.0	442.5

IAU Name	Measured RA	Measured Dec.	Error RA	Error Dec.	Flux Dens.	Origin	ΔRA	$\Delta \text{Dec.}$	Shift
J2000	(hms)	(°′″)	(s)	('')	$\rm Jy beam^{-1}$		(mas)	(mas)	(mas)
J1647+1720	Extend	led Source, Multip	le Compone	nts		TGSS			
J1647 - 2912	$16\ 47\ 57.87592$	$-29 \ 12 \ 44.3926$	0.0000302	0.000876	0.10	AT20G	708.0	207.4	737.8
J1652 - 3005	$16 \ 52 \ 12.87455$	$-30\ 05\ 42.8755$	0.0000530	0.001538	0.02	Winn	-25.3	96.5	99.7
J1653 - 1551	$16\ 53\ 34.20694$	$-15\ 51\ 29.8652$	0.0000150	0.000307	0.05	AT20G	332.7	-1565.2	1600.2
J1656 - 0206		Inadequate D	ata			Winn			
J1709 + 0645		Extended Sou	ırce			TGSS			
J1710 - 0355	Extend	led Source, Multip	le Compone	nts		Winn			
J1711 - 3338	Mu	ultiple Compact C	omponents			AT20G			
J1711 - 3744	Mu	ultiple Compact C	omponents			ALMA			
J1713 - 0259		Extended Sou	ırce			Winn			
J1722 - 0503	$17 \ 22 \ 03.53860$	$-05 \ 03 \ 25.0070$	0.0000138	0.000260	0.10	AT20G	319.7	-1407.0	1442.9
J1739 - 4137	Mu	ultiple Compact C	omponents			AT20G			
J1745 - 2900		Inadequate D	ata			3FGL			
J1759 - 1505	$17 \ 59 \ 57.24604$	$-15 \ 05 \ 49.1805$	0.0000172	0.000360	0.02	Winn	19.8	-27.5	33.9
J1805 - 0438	$18\ 05\ 31.11602$	$-04 \ 38 \ 09.7211$	0.0000203	0.000364	0.02	Winn	-0.3	-0.0	0.3
J1818-0814	18 18 33.49202	$-08 \ 14 \ 42.3742$	0.0000170	0.000329	0.05	Winn	2.6	15.8	16.0
J1819-0258	$18 \ 19 \ 17.40958$	$-02\ 58\ 07.8607$	0.0000107	0.000183	0.25	AT20G	605.5	-560.8	825.3
J1826-2924		Extended Sou	ırce			ALMA			
J1827-0405	$18\ 27\ 45.04046$	$-04 \ 05 \ 44.5745$	0.0000142	0.000250	0.34	AT20G	-755.0	-374.4	842.7
J1838-3427		Extended Sou	ırce			AT20G			
J1848 - 2718	Extend	led Source. Multip		AT20G					
J1850 - 2740	Extend	led Source. Multip		AT20G					
J1901-1416	$19 \ 01 \ 46.14638$	$19 \ 01 \ 46.14638 \ -14 \ 16 \ 26.6408 \ 0.0000242 \ 0.000493 \ 0.06$						23.2	24.4
J1908 - 2942	Mu	ultiple Compact C	omponents			AT20G			
J1912-1223	$19\ 12\ 29.51466$	$-12\ 23\ 00.8220$	0.0000161	0.000317	0.16	AT20G	-947.3	1378.0	1672.2
J1913-0151	$19\ 13\ 39.12476$	$-01\ 51\ 47.0234$	0.0000201	0.000342	0.24	TGSS	-416.2	176.6	452.1
J1916-1519	Mu	iltiple Compact C	omponents		-	ALMA			
J1928 - 2035	$19\ 28\ 09.18325$	$-20\ 35\ 43.7727$	0.0000414	0.000956	0.11	AT20G	1358.6	427.3	1424.2
J1934-2416		Extended Sou	ırce		-	AT20G			
J1938 - 1749	$19 \ 38 \ 04.95931$	$-17 \ 49 \ 20.3761$	0.0000094	0.000204	0.17	ALMA	-18.7	13.9	23.2
J1942-3130		Extended Sou	ırce			AT20G			
J1945 - 0153		Extended Sou	ırce			ALMA			
J1947-0103	Mu	ultiple Compact C	omponents			AT20G			
J1950-0436	Mu	ultiple Compact C	omponents			AT20G			
J1951 - 0509	Mu	ultiple Compact C	omponents			ALMA			
J2000-1921	20 00 08.56007	$-19\ 21\ 37.5307$	0.0000128	0.000285	0.24	AT20G	-142.6	-130.7	193.4
J2000 - 4214	Extend	led Source. Multip	le Compone	nts		AT20G			
J2005 + 4556	$20\ 05\ 48.04743$	$+45\ 56\ 33.1283$	0.0000735	0.000528	0.25	TGSS	-390.4	348.3	523.2
J2006 - 1222	20 06 48.34295	$-12\ 22\ 55.2915$	0.0000135	0.000270	0.18	AT20G	249.8	-791.5	829.9
J2008 - 0418	$20\ 08\ 24.42929$	$-04\ 18\ 29.2976$	0.0000315	0.000509	0.07	Winn	-11.8	-27.6	30.0
J2015 - 1252	M1	ultiple Compact C	omponents			AT20G			
J2015 - 3445	Extended Source, Multiple Components					AT20G			
J2023 - 0123	Multiple Compact Components					ALMA			
J2024 - 4127	Extended Source					AT20G			
J2025 - 2845	Extend		ALMA						
J2036 - 2146	20 36 51 17205	-21 46 36 7444	0.0000369	0.000811	0.60	AT20G	389.4	455 7	599.3
J_JJJU _110	20 00 0111200	10 00.1111	0.0000000	0.000011	0.00	111 200	500.1	100.1	000.0

Table 6. Positions and X-band Flux Densities of Alternative VLA Reference Sources (Continued..)

IAU Name	Measured RA	Measured Dec.	Error RA	Error Dec.	Flux Dens.	Origin	ΔRA	$\Delta \text{Dec.}$	Shift
J2000	(hms)	(°′″)	(s)	('')	$\rm Jy beam^{-1}$		(mas)	(mas)	(mas)
J2036-2830	Extend	led Source, Multip	le Compone	nts		AT20G			
J2048 - 3112	$20\ 48\ 51.97022$	$-31 \ 12 \ 49.3767$	0.0000289	0.000767	0.28	AT20G	-900.8	523.3	1041.8
J2054 - 2016	Extend	led Source, Multip	le Compone	nts		AT20G			
J2054 - 4242		Extended Sou	ırce			AT20G			
J2059 - 3645	Mu	ultiple Compact C	omponents			AT20G			
J2110 - 3635	Mu	ultiple Compact C	omponents			AT20G			
J2118 - 0636	21 18 43.24249	$-06 \ 36 \ 17.9928$	0.0000175	0.000309	0.28	AT20G	261.0	-92.8	277.0
J2118 - 3752	Mu	ultiple Compact C	omponents			AT20G			
J2119 - 1106	$21 \ 19 \ 39.88113$	$-11 \ 06 \ 14.7083$	0.0000157	0.000288	0.64	Winn	1.1	-28.3	28.3
J2124 - 1941	$21 \ 24 \ 44.64099$	$-19 \ 41 \ 43.3439$	0.0000320	0.000641	0.14	AT20G	-296.4	156.1	335.0
J2126 - 0119		Extended Sou	irce			AT20G			
J2130 - 0927	Mu	ultiple Compact C	omponents			ALMA			
J2132 + 1541	$21 \ 32 \ 09.09117$	$+15 \ 41 \ 08.8770$	0.0000084	0.000134	0.17	TGSS	-450.1	-213.0	498.0
J2135 - 3312	$21 \ 35 \ 11.67634$	$-33 \ 12 \ 42.2197$	0.0000555	0.001589	0.16	AT20G	-205.1	-119.7	237.5
J2146 - 2902	$21 \ 46 \ 59.90196$	$-29\ 02\ 11.5404$	0.0000205	0.000526	0.22	AT20G	-419.2	159.6	448.6
J2146 - 2935	Mu	ultiple Compact C	omponents			AT20G			
J2147 - 3601	Extend	led Source, Multip	le Compone	nts		AT20G			
J2148 - 1723	$21 \ 48 \ 36.80070$	$-17 \ 23 \ 43.9773$	0.0000332	0.000636	0.71	ALMA	4.3	42.6	42.9
J2151 - 2742		Extended Sou	irce			ALMA			
J2156 - 0037	Obse	erved at the wrong		ALMA					
J2156 - 2012	$21 \ 56 \ 33.75645$	$-20 \ 12 \ 30.8683$	0.0000222	0.000471	0.06	Winn	-35.9	66.7	75.7
J2157 - 1319	$21 \ 57 \ 02.97691$	$-13 \ 19 \ 02.9683$	0.0000126	0.000259	0.08	AT20G	45.1	631.7	633.3
J2157 - 1807	$21 \ 57 \ 29.12380$	$-18 \ 07 \ 02.8529$	0.0000220	0.000455	0.16	AT20G	88.4	47.1	100.2
J2159 - 0105	$21 \ 59 \ 34.27609$	$-01 \ 05 \ 54.8892$	0.0000143	0.000240	0.08	Winn	-19.4	-32.2	37.6
J2200 - 1632	$22 \ 00 \ 54.87921$	$-16 \ 32 \ 32.6804$	0.0000185	0.000387	0.09	Winn	-23.1	17.6	29.0
J2200 - 1945	$22 \ 00 \ 07.76156$	$-19\ 45\ 47.3536$	0.0000253	0.000537	0.06	Winn	-20.6	32.4	38.4
J2202 - 2335	$22 \ 02 \ 56.00018$	$-23 \ 35 \ 10.2321$	0.0000330	0.000772	0.13	ALMA	-2.5	17.9	18.1
J2210 + 2013	$22 \ 10 \ 51.65201$	$+20 \ 13 \ 24.0514$	0.0000137	0.000175	0.34	ALMA	-0.1	1.4	1.4
J2211 - 1328	$22 \ 11 \ 24.10020$	$-13 \ 28 \ 09.7347$	0.0000150	0.000284	0.20	ALMA	-17.4	-14.7	22.8
J2211 - 3707	Mu	ultiple Compact C	omponents			AT20G			
J2218 + 1520	$22\ 18\ 10.91405$	$+15\ 20\ 35.7254$	0.0000139	0.000185	0.99	ALMA	-0.7	5.4	5.4
J2223 - 1607	$22 \ 23 \ 41.17186$	$-16\ 07\ 05.1549$	0.0000264	0.000526	0.07	Winn	22.2	38.0	44.0
J2224 - 1126	$22\ 24\ 07.96184$	$-11 \ 26 \ 21.1000$	0.0000224	0.000405	0.15	ALMA	17.1	10.0	19.8
J2225 - 1113	$22 \ 25 \ 43.71841$	$-11 \ 13 \ 40.6902$	0.0000246	0.000458	0.03	Winn	16.0	30.8	34.7
J2227 - 1946	$22\ 27\ 41.43951$	$-19 \ 46 \ 36.0221$	0.0000790	0.001535	0.02	Winn	-3.0	-3.1	4.3
J2228 - 0753	$22\ 28\ 52.60696$	$-07 \ 53 \ 46.6381$	0.0000183	0.000334	0.15	ALMA	15.5	1.9	15.6
J2232 - 1659	$22 \ 32 \ 22.56507$	$-16 \ 59 \ 01.9029$	0.0000331	0.000653	0.15	Winn	-0.9	0.1	1.0
J2234 - 1759	$22 \ 34 \ 02.62697$	$-17 \ 58 \ 58.8628$	0.0000597	0.000811	0.02	TGSS	-1112.4	1127.2	1583.7
J2234 - 2055	$22 \ 34 \ 57.43968$	$-20\ 55\ 03.2150$	0.0000432	0.000929	0.12	Winn	-2.5	45.0	45.0
J2236 - 0406	$22 \ 36 \ 16.77425$	$-04 \ 06 \ 19.6706$	0.0000176	0.000294	0.22	AT20G	86.0	129.4	155.4
J2236 - 1706	$22 \ 36 \ 09.52226$	$-17 \ 06 \ 21.9946$	0.0000180	0.000358	0.19	Winn	4.9	-18.6	19.2
J2240 - 1209	$22 \ 40 \ 25.90190$	$-12 \ 09 \ 33.0003$	0.0000160	0.000304	0.10	Winn	-7.4	-13.3	15.2
J2240 - 1839	$22 \ 40 \ 37.56894$	$-18 \ 39 \ 28.8171$	0.0000278	0.000569	0.05	Winn	-3.5	-22.1	22.4
J2240 - 3621	Extend		AT20G						
J2242 - 4204	Extend	led Source, Multip		AT20G					
J2243 - 0609	$22 \ 43 \ 08.76072$	$-06 \ 09 \ 02.5646$	0.0000183	0.000323	0.05	AT20G	287.6	-664.6	724.2

IAU Name	Measured RA	Measured Dec.	Error RA	Error Dec.	Flux Dens.	Origin	ΔRA	$\Delta \text{Dec.}$	Shift
J2000	(hms)	(°′″)	(s)	('')	$\rm Jybeam^{-1}$		(mas)	(mas)	(mas)
J2247+0000	22 47 30.19601	$+00 \ 00 \ 06.4660$	0.0000124	0.000195	0.42	Winn	23.9	1.0	23.9
J2247 - 1237	$22 \ 47 \ 52.64138$	$-12 \ 37 \ 19.7218$	0.0000115	0.000230	0.35	AT20G	126.1	-621.8	634.4
J2248 - 0541	$22 \ 48 \ 00.07882$	$-05 \ 41 \ 18.1958$	0.0000169	0.000275	0.06	AT20G	-430.2	-995.8	1084.8
J2249 - 1251	$22 \ 49 \ 59.61047$	$-12\ 51\ 16.8025$	0.0000254	0.000487	0.27	TGSS	446.5	1957.5	2007.8
J2250 - 2806	$22 \ 50 \ 44.49211$	$-28 \ 06 \ 39.3230$	0.0000132	0.000348	0.28	ALMA	-1.4	7.0	7.2
J2251 - 1848	$22 \ 51 \ 31.38649$	$-18 \ 48 \ 07.9011$	0.0000297	0.000669	0.04	Winn	-15.4	-23.1	27.8
J2252 - 2047	$22 \ 52 \ 28.68048$	$-20\ 47\ 31.5512$	0.0000173	0.000400	0.06	Winn	40.9	-2.2	41.0
J2254 - 4139	Extended Source, Multiple Components					AT20G	434.1	-820.9	928.6
J2256 - 1249	$22 \ 56 \ 45.91492$	$-12 \ 49 \ 55.7419$	0.0000133	0.000250	0.15	AT20G	659.3	-742.0	992.6
J2256 - 2011	Multiple Compact Components					ALMA			
J2256 - 2735	$22 \ 56 \ 00.15718$	$-27 \ 35 \ 56.1195$	0.0000168	0.000414	0.12	ALMA	-15.7	0.5	15.7
J2300 - 2644	23 00 25.50070	$-26 \ 44 \ 22.7856$	0.0000165	0.000456	0.10	Winn	-1.3	-17.6	17.7
J2301 - 0158	Multiple Compact Components					ALMA			
J2303 - 1841	$23\ 03\ 02.97613$	$-18\ 41\ 25.8636$	0.0000285	0.000629	0.13	ALMA	-1.9	-43.6	43.6
J2307 - 2247	$23 \ 07 \ 38.65679$	$-22\ 47\ 53.0228$	0.0000291	0.000673	0.13	AT20G	874.1	277.2	917.0
J2313 - 3704	Extended Source					AT20G			
J2318 - 4032	Extended Source					AT20G			
J2323 - 0150	$23 \ 23 \ 04.62953$	-01 50 48.1016	0.0000141	0.000235	0.40	Winn	16.0	0.4	16.0
J2328 - 4035	Multiple Compact Components					ALMA			
J2330 - 1656	$23 \ 30 \ 55.45338$	$-16 \ 56 \ 39.6046$	0.0000194	0.000408	0.32	Winn	3.2	11.4	11.9
J2332 - 1423	$23 \ 32 \ 31.77823$	$-14\ 23\ 20.5057$	0.0000179	0.000368	0.14	Winn	17.0	12.2	20.9
J2332 - 4118	Multiple Compact Components					AT20G			
J2333 - 0131	$23 \ 33 \ 16.68861$	$-01 \ 31 \ 07.3733$	0.0000207	0.000332	0.21	AT20G	1520.4	326.7	1555.1
J2335 - 0131	$23\ 35\ 20.41237$	$-01 \ 31 \ 09.5765$	0.0000118	0.000197	0.62	ALMA	-5.6	13.5	14.6
J2335 - 2907	Multiple Compact Components					Winn			
J2336 - 4115	Inadequate Data					ALMA			
J2342 - 0322	$23\ 42\ 56.60067$	$-03 \ 22 \ 26.2642$	0.0000101	0.000177	0.25	Winn	-20.6	-5.3	21.3
J2345 - 1555	$23\ 45\ 12.46228$	$-15 \ 55 \ 07.8403$	0.0000065	0.000141	2.88	ALMA	-4.1	-10.3	11.1
J2347 - 1856	$23\ 47\ 08.62577$	$-18 \ 56 \ 18.8592$	0.0000185	0.000414	0.58	AT20G	-365.7	-559.2	668.1
J2348 - 0425	$23 \ 48 \ 11.75737$	$-04 \ 25 \ 56.3933$	0.0000134	0.000237	0.43	AT20G	1534.9	806.8	1734.0
J2349 - 0438	$23\ 49\ 10.16571$	$-04 \ 38 \ 03.3883$	0.0000124	0.000223	0.41	AT20G	961.2	611.7	1139.3
J2354 - 0019	$23\ 54\ 09.17606$	$-00 \ 19 \ 47.9596$	0.0000119	0.000206	0.57	Winn	2.2	-25.6	25.7
J2354 - 0405	$23 \ 54 \ 51.68181$	$-04 \ 05 \ 03.4837$	0.0000301	0.000450	0.12	Winn	-51.1	-35.7	62.3
J2354 - 4106	Extended Source, Multiple Components					AT20G			
J2355 + 1541	Multiple Compact Components					TGSS			
J2357 - 0152	$23 \ 57 \ 25.13849$	$-01 \ 52 \ 15.5105$	0.0000134	0.000234	0.32	Winn	-31.4	-31.5	44.5
J2357 - 2451	$23 \ 57 \ 23.84901$	$-24 \ 51 \ 03.1265$	0.0000430	0.001058	0.17	Winn	-11.0	-9.5	14.5
J2359 - 0031	$23 \ 59 \ 36.82108$	$-00\ 31\ 12.8661$	0.0000172	0.000294	0.19	AT20G	2683.7	1433.9	3042.8

^a : Calibrated with source a in Table 8, ^b with source b, etc.

Figure 4. Images for alternative VLA reference sources, sorted in RA.

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

Figure 4. Images for alternative VLA reference sources, sorted in RA. (continued)

