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Abstract 

Full primary synthesis imaging in Stokes I,Q,U,V requires that the full polarization 
behavior of the antennas be accounted for in the deconvolution step. The "Hamaker- 
Bregman-Sault" measurement equation provides a compact description of polarization 
in synthesis imaging. In AIPS++, the HBS ME is used as the basis for synthesis imag¬ 
ing. In this note I describe and demonstrate a CLEAN-based deconvolution algorithm 
that incorporates knowledge of the polarized primary beam. 

1 Introduction 

High accuracy full polarization imaging of the entire primary beam using the VLA has 
always been difficult because of the two instrumental effects: 

Beam squint Since the VLA feed circle is off-axis, the two polarizations (right hand and 
left hand circular) are inevitably squinted. 

Cross-hand leakage Off-axis, radiation will leak from right to left and vice versa. Also, 
antenna and optics imperfections will cause leakage on and off axis. 

Cotton (1994) has measured the polarization behavior of the VLA at L-band and Brisken 
(2003) has calculated the beam (both unpolarized and polarized) using an antenna simu¬ 
lation program. At the 3dB point, Cotton measured about 2% spurious linear and 10% 
spurious circular polarization. At the 6dB point, these values roughly doubled. Brisken's 
calculations of the fractional linear polarization were 50% lower than measured, perhaps 
due to the un-modelled effects of the L-band feed lens. The beamsquint at any frequency 
is 0.065 of the HWHM of the antenna beam - about an arcminute at L-band. 

Both these effects are believed to be constant in the antenna frame so the impact on 
an astronomical source (fixed in right ascension and declination) will be parallactic angle 
dependent. Thus it is not possible to remedy this problem purely in the image plane after 
deconvolution except for the special case of a snapshot. In the case of a long synthesis, our 
current recommendation is evidently that observers should break the data into small chunks 
of roughly constant parallactic angle, deconvolve each data set separately, and then add the 
resulting images. Besides being tedious, this procedure has the failing that deconvolutions 
are performed with small data sets so the accuracy of each is lower. Since the deconvolution 
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is non-linear, the sum of a set of deconvolution is not the same as (and is usually substantially 
poorer than) the deconvolution of the sum. 

For a long synthesis, then, it is preferrable to accomodate the squint and leakage within 
the deconvolution algorithm. In principle this is not different from mosaicing, where the 
image-plane sampling patterns of the antennas {i.e. different pointings) must be accomo- 
dated in the deconvolution. Hence the same basic approach as used in mosaicing must work. 
In this note, I show that this is in fact correct - algorithms similar to normal mosaicing can 
be used to form high quality deconvolved images in the presence of squint and leakage. 

This topic is scientifically important for the VLA but absolutely vital for the EVLA. 
Reaching the full continuum sensitivity of the EVLA at L-band will require correction of 
this effect (and many others!). 

The basis of the imaging algorithms described here is the "Hamaker-Bregman-Sault" 
measurement equation (Hamaker, Bregman & Sault [1996], see also Sault and Cornwell, 
1999 for an overview of the HBS ME and its relevance to imaging). The HBS ME forms the 
foundation of the synthesis (and single dish) calibration and imaging code in AIPS+-I- (see 
Noordam 1995, 1996; Cornwell 1995a, 1995b; Cornwell and Wieringa 1996; Cornwell 1996; 
Cornwell and Wieringa 1997). The advantage of the HBS ME is that it provides a compact 
notation for expressing the well-known physics of the radio-interferometric measurement 
of polarization radiation (see e.g. Conway and Kronberg, 1969). This notation has no 
new physics but it is conducive to algorithm development because the notational simplicity 
allows one to concentrate on details of a new algorithm rather than the algebra of polariza¬ 
tion measurements. For example, the HBS ME for polarization radiation is isomorphic to 
the scalar (non-polarized) standard synthesis measurement equation (with Jones matrices 
replacing scalars and multiplication replaced by direct products). 

In this memo, I pick up from the description of the HBS ME given by Sault and Cornwell 
(1999). 

2 Direction-Dependent Effects 

As Sault and Cornwell (1999) describe, where calibration effects are direction dependent, 
different sources within the field will experience different effects. These effects include 
antenna gains that vary with position on the sky (e.g. non-isoplanaticity) or distance from 
the pointing center (e.g. primary beam gain and off-axis polarimetric response). In these 
cases, the measured coherency vector cannot be described as a simple multiplication of the 
true Stokes visibility vector with a single response matrix. If we assume that the source is 
expressible as a sum of point sources, then the measured visibility coherency vector will be 

^ (Jyis.t ® Jvis,j) $^(JsKY,i(Pfc) ® JsKY,j(Pfc))S M 
k 

where Jsky(p)j which is a function of direction p, is the combination of all Jones matrices 
which dependent on direction (e.g. all non-isoplanatic propagation and primary beam 
effects), and Jyis is the combination of all direction-independent effects (e.g. telescope 
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signal path effects). The summation is over the set of point sources, and is the true 
Stokes visibility vector for the fcth source. Here we assume that all position-dependent effects 
precede the position-independent ones (remember matrix multiplication is not generally- 
commutative!) 

3 Implementation in AIPS++ 

We have seen above, that for a source expressible as a sum of point sources, the measured 
coherency vector is given by: 

Vlj — (JviS.t ® JviSj) ^2(JsKY,i(Pk) ® JsKY,j(Pfc))S Vsjjfa 
k 

The true visibility vector for the fc'th point source is given by: 

(2) 

Vs,ij,k = Is,k exp():<t>,j i.) (3) 

where 7s,A: is the Stokes vector of the point source (i.e. the vector of the point source /, 
Q, U and F), and is the usual Fourier phase term. 

To investigate further the case of direction-dependent effects, let us first turn to imaging 
in the presence of a priori known image-plane calibration terms. A simple example would be 
a model for the primary beam of the array antennas. Generally, when direction-dependent 
effects are present, the resultant point-spread function will be shift-variant, and so tradi¬ 
tional deconvolution approaches cannot be used. Cornwell [1995] shows that one viable 
approach is to use an algorithm in which an estimate of the sky brightness is iteratively 
improved. A plausible update formula can be derived from the gradients of the fit (x2) of 
the predicted coherency vectors to those measured. Using an approximate Newton-Raphson 
approach in which the diagonal elements of the second derivative of x2 with respect to Jg ^ 
are taken into account, one can define a generalized residual image: 

Td - 1S,k — - 
dls,kdllk\ 

dx2 

9Is,k 
(4) 

where: 

Qx2 

dls,k 

and: 

= -2 & [jsKY^Pfc) <8> JsKYj(Pfc) Ay AVij exp(-i$ijjk) (5) 

d2X2 

dh,kd% 
= 2 ft ^ S*T [jsKY ,i(pk) ® JsKYj(Pfc) 

*T 
Hj [jSKY,i(Pfc) JsKY,j(Pfc) 

(6) 
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where is the inverse of the covariance matrix of measurement errors on the coherency 
vector, and AV^ is the residual coherency vectors (i.e. prediction error of the coherency 
vector). This last equation may be interpreted as the covariance matrix of the errors in the 
Stokes (I,Q,U,V) representation (since the terms on either side of each serve to convert 
to the Stokes representation). Calling this term A^fc, the noise in the final image may be 
estimated by the sensitivity function: 

Thus, the residual image is approximately a Fourier summation of the residual coherency 
vectors, modified by multiplication with the adjoint of the image-plane effect. The residual is 
normalized by an appropriate sum of the self-products of the image-plane effects. Although 
this update formula looks quite fearsome, it is quite straightforward and does reduce to 
known cases (though with one subtlety described in the next section).For example, if the 

Jsky terms represent (only) the electric field reception pattern of the antennas then the 
normal mosaicing equations (see e.g. Cornwell, Holdaway and Uson, 1993) are obtained. 
Hence it would be reasonable to think of this as a generalization of mosaicing in which not 
just the antenna primary beams can be corrected but instead any factorizable image plane 
effect can be corrected. 

Note that since this is just an update formula, it must be used in an iterative algorithm 
to estimate the sky brightnesses 7s,k- In general, this formula cannot be reduced to a 
shift-invariant convolution equation, although an approximate convolution relation may be 
feasible. If so then an algorithm like the following can be used: 

1 Estimate starting model image /s,fc 

2 Calculate residual image for the current model image using above formula, an approx¬ 
imate point spread function, and a threshold in brightness below which the approxi¬ 
mation is no longer valid. 

3 Clean the residual image using the approximate point spread function down to the 
threshold. 

4 If the remaining peak residual is too high return to step 2 and continue. 

5 Smooth the set of point sources thus found and add the residual image to form a 
restored image. 

In AIPS++, the sky brightness is represented in two ways - via a set of discrete com¬ 
ponents and via images. Compact bright regions may be modelled by discrete components 
and more extended emission by images. Thus the calculations of Jones matrix application 
may be done with high precision (e.g. for every increment in parallactic angle), and those 
for the images with lesser precision (e.g. binned in parallactic angle). 

1 
(7) 
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4 Coupling between I,Q,U, and V 

One subtle point was glided over in the previous section - the errors in I,Q,U,V are actually 
coupled. Physically, this occurs because we measure independent RR and LL, say, and then 
take linear combinations to obtain I and V. The effect gets worse when the different beams 
for R and L have different gains, as occurs for squinted beams. This general coupling must 
show up in the Stokes covariance matrix As as off-diagonal terms. Coupling occurs for 
other reasons as well - for example, suppose that some antennas cannot measure one hand 
of polarization or some antennas measure linear and some circular. Thus in the general 
case, the true inverse of the Stokes covariance matrix must be calculated for each pixel and 
applied to the residual image. 

For example, suppose that the gain differential between RR and LL beams at a given 
pixel at a give parallactic angle is a, then the covariance matrix for Stokes I, V is: 

('-Y ) <» 

As expected, I and V intermix with ratio a/g. This can be a significant effect on V, 
which is the reason for the inadvisibility of measuring circular polarization with a circularly 
polarized system as the VLA. 

While inverting each matrix is certainly feasible, let us first explore the consequences 
of using a diagonal approximation to A5. In that case, only the diagonal elements need 
be stored (a savings in disk storage) and the matrix may be inverted trivially (a savings 
in computing costs). The errors induced by this approximation affect the generalized dirty 
image defined above. If the generalized dirty image is used as a residual image in an iterative 
algorithm of ths sort described above, the effects of the coupling will be eventually removed 
as the iteration proceeds. This occurs because the slight errors made via this approximation 
are corrected in the full calculation of the residual image - as the residual image drives to 
zero, the slight errors become less and less important. Put another way, the model allows 
one to correct V for I and I for V. 

Hence the diagonal approximation does not limit an iterative algorithm but it does limit 
the usefulness of the generalized dirty image. Ideally, then, one should invert the full (4 by 
4) matrix for all pixels in the image. I defer this possibility to later work, and proceed for 
rest of this note with the diagonal approximation. 

5 Applying the CLEAN algorithm to mosaics 

In this note, we are concerned with the problem of imaging one primary beam with correc¬ 
tion for the primary beam. Since the primary beam must be accomodated in the deconvolu- 
tion, one can (and should) think of this as a single pointing mosaic. One key feature is that 
in the mosaic image, the noise level must vary according to the local sensitivity (since this is 
effectively divided out). This is acceptable for e.g. Maximum Entropy methods but not for 
the CLEAN algorithm. If one attempts to CLEAN the residual image (including primary 
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beam correction) then two errors occur - first, the wrong peaks may be found (amplified 
noise peaks instead of true signal), and second, the PSF removal will not account for the 
amplication of sidelobes where the sensitivity is low. 

Similar problems occur in applying CLEAN to e.g. photon-limited data where the noise 
level varies across the image. The fix there is to rescale the image to constant noise. Here 
I adopt the same trick. 

The algorithm above then becomes: 

1 Estimate starting model image 7s,k 

2 Calculate residual image for the current model image using above formula, an approx¬ 
imate point spread function, and a threshold in brightness below which the approxi¬ 
mation is no longer valid. 

3 Scale the residual image by the sensitivity function. Any CLEAN mask must be 
updated to limit the search to regions where the sensitivity is non-zero. 

4 Clean the rescaled residual image using the approximate point spread function down 
to the threshold. 

5 Scale the image of CLEAN components by the inverse of the sensitivity function. 

6 If the remaining peak residual is too high return to step 2 and continue. 

7 Smooth the set of point sources thus found and add the residual image to form a 
restored image. 

The extra work involved is in rescaling the residual and CLEAN component images. 
This is usually negligible. In the case of uniform sensitivity, this algorithm reduces (as it 
must) to standard CLEAN. 

6 Code and algorithm details 

The CLEAN algorithm described here is invoked by using imager. clean, having used 
imager.setvp to turn on primary beam correction together with squint correction. The 
clean algorithm can be performed using a faceted transform. Cleaning (in steps 3, 4, and 
5) then proceeds per facet. Currently only Hogbom and Clark CLEAN can be used, but 
Multi-scale CLEAN will be accomodated in upcoming revisions. 

The core C++ code used here has been present in AIPS++ since about 1997. The 
structure of the C++ classes was described by Cornwell and Wieringa (1997). In the 
C++ code, the SkyEquation class is responsible for applying image-plane effects, using 
any of a variety of components that can be plugged in. Mark Holdaway wrote a set of 
C++ classes PBMath* for applying the primary beam. These form a quite complete set 
of one-dimensional models (see the class implementation PBMath.cc for more details). In 
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addition, the two beams for right and left hand circular can be offset from each other by a 
given squint. 

I have added support for two-dimensional beam models via a specialized class PB- 
Math2DImage. This class will regrid the beam model from Az-El to Ra-Dec coordinates 
before application. This must be done for every parallactic angle bin and can therefore be 
quite expensive. 

The computing costs of this algorithm are substantial. Since the bulk of the costs are in 
calculating residuals, the computing scales roughly as the number of parallactic angle bins 
used. For 15deg bins, the computing costs can therefore be an order of magnitude larger 
than when using an azimuthally symmetric primary beam model. 

7 Tests via simulations 

I performed two simulations - one using a grid of point sources and one using Conway's 
"Hydra" model. The latter is a model of a complicated extra-galactic radio galaxy, complete 
with complex polarization. 

7.1 Grid of point sources 

A grid of 9 point sources was specified, with separation between the points of 14.5 arcmin. 
Each source has the same flux: I = 1.0, Q = 0.5, U = — 0.3, V = 0.1. The script used for 
the simulation is shown in the appendix. 

The observation simulated has the following properties: 

• 1.4GHz with 50MHz bandwidth 

• VLA D-configuration 

• Source at declination +25 degrees. 

• Hour angle from -4 to + hours 

• Integration times of 60s every 300s. 

• No noise was added 

The simulations were calculated using a ID, beam-squinted model of the primary beam, 
and a 2D model (courtesy of Walter Brisken and Chris Clearfield). The images were then 
processed using the above CLEAN algorithm, and also once without any primary beam 
model. The Stokes I,V parts of the images are shown in figures 1, 2, and 3. 

The rms errors calculated in between the grid (shown in Table 1) show that the primary 
beam correction improves the Stoke I dynamic range, as expected. The improvement is 
moderate in Stokes I but very substantial in Stokes V. 
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Table 1. RMS error for I, V images of grid of point sources 

Primary beam model 
I V 

/uJy/beam 
No primary beam 
ID primary beam 
full 2D primary beam 

61 514 
39 23 
41 25 

7.2 Hydra 

John Conway's "Hydra" model provides a good test of this approach. The observation 
simulated has the following properties: 

• 1.4GHz with 50MHz bandwidth 

• VLA C-configuration 

• Source at declination +75 degrees. 

• Hour angle from -4 to + hours 

• Integration times of 60s every 300s. 

• Binning of 5 degrees in parallactic angle. 

• No noise was added. 

The model image is shown in Figure 4. This has a number of points sources of strength 
up to Uy in Stokes I, and diffuse emission peaking at about O.lJy/beam. Substantial 
polarization is present. The 1 or 2 percent instrumental cross-polarization should have a 
noticeable effect on this image, as should the beam squint. 

The CLEAN images are shown in Figures 5 (full primary beam model) and 6 (symmetric 
primary beam model - no squint). In Figure 7, I show the fractional polarization error. This 
is calculated from the ratio of the RSS of the Q,U errors to the RSS of the Q,U model flux, 
truncated to where the latter is greater than ImJy/beam. 

The CLEAN with the full primary beam model is clearly superior in the reconstruction. 
The fractional errors in the reconstructed polarization are mostly less than 10% compared 
to perhaps at least twice that for the symmetric primary beam case. Table 2 shows the rms 
errors for the two cases. The full primary beam I noise could probably be decreased by a 
deeper CLEAN, but the symmetric I noise is improving very slowly with increasing CLEAN 
number. Note that the V error is a very good diagnostic (as evident from the images). 

The timing for the hydra reconstructions are 9272s for the full primary beam (100000 
clean components, 4 major cycles) and 2422s (100000 clean components, 34 major cycles) for 
the symmetric model. Notice that many more major cycles are needed when a poor model 
of the primary beam is used. Per major cycle, the ratio of times is about 40 times worse 
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Table 2. RMS error for I, Q, U, V images of Hydra 

Primary beam model 
I Q U V 

/iJy/beam 

Full 2D 
Symmetric 

308 102 64 24 
782 172 143 622 

for full primary beam. This can be improved by further optimization of the calculation of 
equations 5 and 6. It may be possible to get the two overall times to become quite close thus 
illustrating the importance of using an accurate description of the measurement process. 

8 Conclusion 

For the EVLA (and for SKA), we can expect that this algorithm will be important for 
reaching the quality limits of the array. Furthermore, we can expect that similar algorithms 
that know about image plane effects (pointing, different primary beams per antenna, multi- 
frequency synthesis) will also be important. The framework in AIPS++ is well-suited to 
the development of such algorithms. However, the computing costs can become quite large. 
Roughly speaking, we can expect an order of magnitude increase in computing costs for this 
level of sophistication. Since we are a long way from the theoretical noise, we have to be 
concerned that additional computing costs may appear as we try to go deeper and deeper. 

A number of improvements to this existing algorithm can yet be made: 

• Optimization of the calculation of equations 5 and 6. 

• Adaptation to other deconvolution algorithms such as multiscale CLEAN and Maxi¬ 
mum Entropy. 

• Inclusion of component models in the image plane. Since the primary beam could be 
applied per component per visibility sample, binning in parallactic angle would not 
be necessary to deal with the brightest parts of the sky brightness. 
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Appendix: Simulation script 

Below I show the AIPS++ script for the simulations. 

include 'simulator.g'; 
# pass in an image and simulate away; 
const sim:=function(algorithms='wfclean') 

•C 
include 'logger.g'; 
dl.purge(0); 

testdir := 'sim'; 
if(sim) { 

note('Cleaning up directory testdir); 
ok := shell(paste("rm -fr testdir)); 
if (ok::status) { throw('Cleanup of ', testdir, 'fails!'); }; 
ok := shell(paste("mkdir", testdir)); 
if (ok::status) { throw("mkdir", testdir, "fails!") }; 

> 

msname := spaste(testdir, '/',testdir, '.ms'); 
simmodel := spaste(testdir, '/',testdir, '.model'); 
simpbmodel := spaste(testdir, '/',testdir, '.pbmodel'); 
simsmodel:= spaste(testdir, '/',testdir, '.smodel'); 
simtemp := spaste(testdir, '/',testdir, '.temp'); 
simpsf := spaste(testdir, '/',testdir, '.psf'); 
simempty := spaste(testdir, '/',testdir, '.empty'); 
simmask := spaste(testdir, '/',testdir, '.mask'); 

dirO := dm.direction('j2000', 'OhOmO.O', '25.00.00.00'); 
reftime := dm.epoch('iat', '2003/07/01'); 

note('Create the empty measurementset'); 

mysim := simulator(); 

mysim.setspwindow(row=l, spwname='LBAND', freq='1.4GHz', delt 
freqresolution='50.0MHz', nchannels=l, stokes='LL RR'); 

note('Simulating VLA'); 
posvla := dm.observatory('via'); 

# 
# Define VLA C array by hand, local coordinates 
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# 
XX := [41.1100006,134.110001,268.309998,439.410004,644.210022,880.309998, 

1147.10999,1442.41003,1765.41003,-36.7900009,-121.690002,-244.789993, 
-401.190002,-588.48999,-804.690002,-1048.48999,-1318.48999,-1613.98999, 
-4.38999987,-11.29,-22.7900009,-37.6899986,-55.3899994,-75.8899994, 
-99.0899963,-124.690002,-152.690002]; 

yy := [3.51999998,-39.8300018,-102.480003,-182.149994,-277.589996,-387.8399! 
-512.119995,-649.76001,-800.450012,-2.58999991,-59.9099998,-142.889999, 
-248.410004,-374.690002,-520.599976,-685,-867.099976,-1066.42004,77.1500015, 
156.910004,287.980011,457.429993,660.409973,894.700012,1158.82996,1451.43005 
1771.48999]; 
zz := [0.25,-0.439999998,-1.46000004,-3.77999997,-5.9000001,-7.28999996, 

-8.48999977,-10.5,-9.56000042,0.25,-0.699999988,-1.79999995,-3.28999996, 
-4.78999996,-6.48999977,-9.17000008,-12.5299997,-15.3699999,1.25999999, 
2.42000008,4.23000002,6.65999985,9.5,12.7700005,16.6800003,21.2299995, 
26.3299999]; 

# 
# We want something like D 
# 

xx /:= 3; 

yy /:= 3; 
zz /:= 3; 

diam := 0.0 * [1:27] + 25.0; 
mysim.setconfig(telescopename=,VLA', x=xx, y=yy, z=zz, 
dishdiameter=ciiain, 
mount='alt-az', antname='VLA', 
coordsystem=,local', referencelocation=posvla); 
mysim.setfieldCsourcename^MSlSIM', sourcedirection=dirO, 

integrations=l, xmospointings=l, ymospointings=l, 
mosspacing=l.0); 
mysim.settimes('60s', 'SOOs', T, '-14400s', '+14400s'); 
mysim.create(newms=msname, shadowlimit=0.001, 

elevationlimit='8.Odeg', autocorrwt=0.0); 
mysim.done(); 

imsize:=512; 
cell:='15arcsec' 
stokes:=MIQUVM 

note('Make an empty image from the MS, and fill it with the points') 
myimager := imager(msname); 
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myimager.setdataCmode^'none" , nchan=l, start=l, step=l, 
mstart="OkIn/s,, , mstep=,,Okiii/sM , spwid=l, fieldid=l); 

myimager.setimage(nx=imsize, ny=imsize) cellx=cell , celly=cell , 
stokes=stokes , fieldid=l, facets=l, doshift=T, 
phasecenter=dirO); 

myimager.make(simmodel); 
myimager.done(); 

myimg2 := image(simmodel); 

arrl := myimg2.getchunkO ; 
for (iy in [3*imsize/8+10,imsize/2,5*imsize/8-10]) { 

for (ix in [3*imsize/8+10,imsize/2,5*imsize/8-10]) { 
arrl[ix,iy,,1]: = [1.0,0.5,-0.3,0.1] ; 

> 
> 
myimg2.putchunk( arrl ); 
myimg2.done(); 

mysim := simulatorfromms(msname); 
mysim.setvp(dovp=T, usedefaultvp=T, dosquint=T, parangleinc^ISdeg' 
mysim.predict(simmodel); 
mysim.done(); 

myimager := imager(msname); 
myimager.setdata^ode^'none" , nchan=l, start=l, step=l, 
mstart=M0km/sM , mstep="0km/s,, , spwid=l, fieldid=l); 

myimager.setimage(nx=imsize, ny=imsize, cellx=cell , celly=cell , 
stokes=stokes , fieldid=l, facets=l, doshift=T, 
phasecenter=dirO); 

myimager.setvp(dovp=T, usedefaultvp=T, dosquint=T, par^Lngleinc=,15d 

myimager. weight (type=,,unif orm") ; 

bmaj:=F; bmin:=F; bpa:=F; 
myimager.makeimage('psf', simpsf); 
myimager.fitpsf(simpsf, bmaj, bmin, bpa); 

myimager.make(simempty); 

im:=image(simempty); 
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shape:=iin. shape() ; 
cs:=im.coordsys() ; 
cs.summary(); 
im.doneO ; 
myimager.smoothCsimmodel, simtemp, F, bmaj, bmin, bpa, normalize=F); 
im:= image(simtemp); 
im.regrid(outfile=simsmodel, shape=shape, csys=cs, axes=[l,2]); 
im.doneO ; 

myimager.pb(simsmodel, simpbmodel); 
myimager.regionmask(simmask, drm.quarter()); 

for (algorithm in algorithms) { 

simimage := spaste(testdir, testdir, 
simrest := spaste(testdir, V, testdir, 
simresid := spaste(testdir, testdir, ', 
simerror := spaste(testdir, testdir, 

tabledelete(simrest); 
tabledelete(simresid); 
tabledelete(simimage); 

if (algorithn^^wfhogbom') { 
myimager.clean(algorithm='wfhogbom', niter=100, gain=1.0, 

displayprogress=F, 
model=simimage, image=simrest, residual=simresid, 
mask=simmask); 

> 
else { 

myimager.make(simempty); 
myimager.residual(model=simempty, image=simrest); 

> 
if(tableexists(simrest)) { 

imagecalc(simerror, spasteC"', simrest, '" - "', simsmodel, '",)).don 

> 
> 
myimager.done(); 

> 
sim(algorithms=ndirty wfhogbom"); 

algorithm); 
algorithm, '.restored'); 
algorithm, '.residual'); 
algorithm, '.error'); 
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Figure 1: Cleaned image of grid of sources. Data was simulated with a ID primary bean 
model (including squint) but imaged withoutj^ny knowledge of primary beam. Top: Stoke 
I, Bottom: Stokes V 
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Figure 3: Cleaned image of grid of sources. Data was simulated and imaged \ 
primary beam model. Top: Stokes I, Botton^^ Stokes V 
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Figure 4: Model image for Conway's Hydra, Stokes I, Q, U, V 
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ure 5: Error in CLEAN image for Conway's Hydra - full primary beam model, Stokes 
U, V 
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Figure 6: Error in CLEAN image for Conway's Hydra - azimuthally symmetric prima 
beam model, Stokes I,Q,U,V 
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Figure 7: Fractional polarization error in CLEAN images for Conway's Hyd: 
imuthally symmetric primary beam model, bottom: full primary beam model, 
that of the RSS of errors in Q and U to the RSS of the Q and U model valu< 
to where the latter is greater than ImJv/beam. 


