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Abstract 

Some times ago the algorithm of optimization of an array configuration minimizing side lobe was 
designed ([1]). The math basis of the algorithm, although being correct, still was not completely 
apparent in details. The purpose of this memo is to clarify the math basis of the algorithm of an 
array configuration optimization minimizing side lobe. 

The purpose of an array configuration optimization minimizing side lobe is minimizing the worst 
side lobe of the Point Spread Function (PSF) - the response of the antenna array to the point source. 
Having found the direction to the worst side lobe (e) we should want to diminish the value of PSF(e) 
finding the optimal position of the array elements. To do that we have to answer on the following ques¬ 
tions: 
Ql. What direction should each of the N antennas of the array be moved to decrease the value of PSF(e) 

Q2. How much should each of the N antennas of the array be moved along the found direction to 
decrease the value of PSF(e) ? 
Having known the answer on these two questions, we can move all N antennas of the array to the new 
positions and as a result get lower value of PSF(e). But another side lobe (may be even bigger) can 
appear at other direction. So we should move all N antennas of the array to the new positions again 
following the known answers on the questions 1,2. To make this iteration process smoother we recom¬ 
mend to move the antennas at small portion of the recommended move. Such an approach makes a fast 
convergence to a lowest level of the side lobes at the sky area of optimization. Practically the algorithm 
produce PSF with equal low side lobes at the area of optimization. 

Now lets find the answer on the questions 1,2 formulated earlier. 

PSF(e) is described by the following equation: 

^ N N N N 
PSF{e) = exp(-j27r(rfc - rn)e) = — ^ exp{-j2nfke) • — ^ exp{j27rfne) = \U (e)\2 (1) 

fc=l n=l fc=l n=l 

where e is vector directed to the point at the sky; 
7n,ffc are vectors determining the position of antennas n and k; 
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ffc — fn is the baseline vector from antenna k to antenna n; 
N is number of antennas in the array; 
U(e) = jj exp^^Trfne) is voltage beam pattern of the array; 
the scalar product is the vector operation at the exponent degrees. 

The splitting of the double sum to the product of the single sums at the equation 1 is possible 
only if all baselines including zero baselines are used. If zero baselines axe not used then the bias has to 
be added (see [2]). 
For simplicity we'll consider the plane array. Then it is clear from the equation 1 that only components 
of vectors fk,fn along the projection of vector e on the array plane (xn,Xk at figure 1) determine the 
value of the PSF function at the direction e. Any antenna shift at the direction perpendicular to the 
projection of vector e on the array plane (ex„ at the figure 1) does not change the PSF(e) at all. Taking 
into account this statement we can simplify the equation 1: 

N N 
PSF{e) = 53 S exp(-j27r(a;fc - xn)e) (2) 

fc=l n=l 

where e is the length of the projection of the vector directed to the sky point on the array plane 
or sin of the angle between the sky point and the perpendicular to the array plane; 
Xk and xn are projections of the antenna k and antenna n 
on the projection of vector e on the array plane (vector eXy at figure 1). 

Figure 1: Geometry of the array. The PSF value at the direction e is completely determined by the 
antenna projections on the vector eXy - projection of the vector e on the array plane. Therefore, if we 
want to minimize side lobe at the direction of vector e, we need to move array antennas exclusively 
along the vector eXy. Move at the perpendicular direction does not change the PSF value 
at the direction e. 

So if we want to minimize the value of the PSF(e) moving antenna n we have to move it exclu¬ 
sively along the projection of the vector directed to the sky point on the array plane (vector 
eXy at figure 1). 
This is the answer on the question 1, pointed out early. 

2 



Figure 2: Example of PSF dependence (black) on position of antenna n. The relevant first (red) and 
second(blue) derivatives are shown also. To have the derivatives at the same plot, the first derivatives 
are divided by 10 and the second derivatives are divided by 300. So to restore the actual values of the 
first and second derivatives we need to multiply the plots values by 10 and 300 respectively. 

Now question 2: How much should each of the N antennas of the array be moved along the found 
direction to decrease the value of PSF(e) ? 

The function PSF as it is determined by equation 1 is real and positive for any configuration and 
any direction e. So the PSF(arn) for fixed exy looks like parabola at some vicinity of the optimum value 
of xn. At the optimum value of xn the function PSF(a:n) has a minimum which in many cases is equal 
zero. The derivative of PSF by xn determines how far is the given antenna n located from the optimum. 
In particular this derivative is equal zero at the optimal position of the antenna n. Indeed if the antenna 
n locates at Axn from the optimal position, then the value of PSF and its first two derivatives are 
determined by the following expressions at some vicinity of the optimum: 

PSF(Axn,e) ~ A-Axle2 

dPSF 
d(Axn) 
(PPSF 
d(Axn)2 

= 2A • Axn e2 

= 2A e2 (3) 

The question is how close the expressions (3) describes the actual function PSF(Axn) and its derivatives 
at the vicinity of the minimum (Axn = 0). Intuitively clear that PSF(Axn) looks like a sequence of 
maxima/minima (figure 2). 

Using equations 3, we can find the two expressions for required shift of the antenna n to minimize 
the PSF side lobe at the direction of vector e: 

dPSF 1 ^ 
" d{Axn) 2Ae2 ( * 
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dPSF 

= -IS- (5) 
d(Asn)2 

I have calculated the ratio of and us*n8 P^ots at figure 2 for different position 
of the antenna relatively the minimum at the PSF(Axn) and found the expected result: the closer the 
point to the minimum the better the ratio of the derivatives describes the deviation of the antenna of the 
minimum at PSF(Axn). 

Taking into account that both baselines x* — xn and xn — Xk present at the equation 2, we can infer 
that complex exponents can be substituted by cosines, and we can obtain the following simple expressions 
for PSF and its derivatives. 

2 N N 

PSF(e) = cos(27r(xk - xn) e) 
k=l n=l 

dPSF 2 N 

-faT- = ]y227re5Zsin(27r(x* - xn) e) 
fc=l 

N 
cPPSF 2 . \2 /n / \ \ fr>\ 

dx2 = — ( e) 5^ cos(27r(arfc — xn) e) (6) 
n fc=i 

Substituting expressions for the derivatives from 6 to 4, 5 we finally find the two expressions for 
the value of shift of the n array element to minimize the side lobe at the direction e. 

27r 1 N 

Aa?n = ~iV2A e Zlsin(27r(Xfc -Xn)e) (7) k=i 

Ar J_ 1 E£=i sin(27r(xfe - xn) e) 
27r e YLiV»&<Xk-Xn)e) 

Actually it is not recommended to shift the array element n on the full value calculated by equations 
7, 8 for the two reasons: 
Reason 1. Shifting the n'th array element on the large distance changes the configuration and calculation 
of the other array element shift has to use the new position of the n'th array element. 
Reason 2. Shifting the array elements following equation 7, 8 will definitely suppress the value of the 
side lobe at the direction e (quite possible to zero). But another side lobe (possibly bigger) can appear 
at another direction. 
Instead it is recommended to use multi iteration process of optimization the configuration minimizing 
side lobes. At each iteration each array element is shifted by the small portion of the shift determined by 
equation 7, 8. The value of this portion is determined by so called gain — G 1. Then the algorithm 
suppresses the given side lobe for several iteration and go to the next side lobe until there is no more 
reduction of the worst side lobe value. The factors at the equation 7 and ^ at the equation 8 do not 
depend on neither position of the corrected antenna n nor the direction of the worst side lobe. Therefore 
those factors can be included in the gain and equations 7, 8 can be rewritten: 

1 N 

Axn = -G - ^sin(27r(xfc -xn)e) (9) 
fc=l 
\N 

= a I -«.)«) (10) 
e Efc=i cos(27r(a;jk - xn) e) 

Comparing the two expressions (9,10) for the recommended shift of the antenna n we find some advantage 
using the expression 9. In particular the expression 9 gives the right direction of the correction at all 
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range between the two maxima of PSF function edged the minimum of the PSF function. Although 
the value of the shift near the maxima is decreased in comparison with the desired shift (figure 2). The 
expression 10 can be used only if the initial position of the array element is closer to the PSF minimum 
than the inflection point. Outside of this range the second derivative changes the sign to negative and 
the algorithm of the expression 10 will pull the array element to a maximum instead of the minimum. 
The algorithm of the expression 10 will pull the array element to indefinite when the array element is 
located near the inflection point where the second derivative is equal zero. Therefore the expression 10 
can be used only at the last stage of optimization when almost all antennas are close to the optimum 
and therefore the PSF as a function of the nth antenna position is described by parabola. 

The algorithm is realized at AIPS as a task CONFI. The expressions 9 for the recommended shift 
of the antenna n is chosen. 
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