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Introduction 

In many applications in wide field and near field interferometry, we need to calculate approximations to distance 
terms. In this Mathematica notebook, I calculate first and second order approximations for both far and near field 
imaging. I rederive the well known formulas for far-field imaging, and the familiar results for small object near 
field imaging. There is one new result - a second order formula for near field imaging of large objects. This last 
application will be described in more detail in a later memo. 

I have used Mathematica for this work to avoid much tedious (and for me error prone) hand work. The Mathemat¬ 
ica commands are given here so that the document can serve as a starting point for other work. Ignore them if 
desired. 

The role of distance in interferometry 

Consider a single emitter and two sensors. We define the vectors of (ra) an emitter from the center of the source, 
(rl, r2) a sensor from the center of the array (Figure 1). Using these, we can express the vector (vl,v2) from a 
sensor to an emitter. 

Unprotect[l, m, n, d, xl, yl, zl, 
x2, y2, z2, XI, Yl, Zl, X2, ¥2, Z2, U, V, W] ; 

Clear[l, m, n, d, xl, yl, zl, x2, y2, z2, XI, 
Yl, Zl, X2, Y2, Z2, U, V, W] ; 

<< Calculus'VectorAnalysis" 
{1, m, n, d, xl, yl, zl, x2, y2, z2 e Reals}; 
ra = d {f 1, fin, Sqrt[l- (ff 1) *2 - (ff m) * 2] }; 
rl = {xl, yl, zl}; 
r2 = {x2 , y2 , z2 } ; 
vl = ra - rl; 
v2 = ra - r2 ; 
Ri = Sqrt[DotProduct[vl, vl]]; 
R2 = Sqrt[DotProduct[v2, v2]]; 
Show[Import[ 

"/Users/tcornwel/Projects/nearfield/papers/distance.png"]]; 



2 distance.nb 

Center Source a 

x. 

The propagation of the electric field from the emitter to the two sensors can be described by a Green's function: 
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The correlation between the electric fields at a and b is therefore given by 
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Gl2 = <Jl 92 } 
Gl2 / • S -* 1 

2 in J W/-xl)!+(</m-yl)J+(rf V-/J -m' + l -/.l) 2iit J W/-x2)2 +(i/m-y2): +(</ V-(2 -m'+l -z2) 

(rf/-xl)2 + (rfm-yl)2 +(rfV-/2 -rn2 + 1 -zl) 

(d I - x2)2 + (dm - y2)2 + (d V-l2 - m2 + 1 -z2) A2 

where /?a is the (scalar) distance of the emitter from the sensor a. Thus the essence of interferometry is expressed 
in the difference between the distances: Ra - Rf,. We want to calculate the difference in distances of a given 
emitter from two sensors. 

S = Ri - R2 

(dl^-x\)z + (dmt-yl)2 +(d V-/2£2 -m2£2 + 1 -zlf - 

^(dlf-x2)2 +(dmf-y2)2 +(d^-l2^ -m2f2 + 1 -zlf 

We will work with various approximations to the distance term, using Taylor series in the direction cosines. To do 
this we use a dummy variable in the expansion. The following are first and second order expansions: 

Sa[P_] '•= Normal [Series [S, {§, 0, p}] ] /. f -» 1; 

The first order term is: 

Sa [1] 

dlxl 

y] d2 - 2 zl d + xl2 + yl2 + zl2 
+ yld2 - 2zl d + xl2 + yl2 + zl2 - 

yjd2- 2z2d + x22 + y22 + z22 - 

dlx2 

dmyl 

yjd2 - 2zl d + xl2 + yl2 + zl2 

dmy2 

V d2 - 2 z2 d + x22 + y22 + z22 ^ d2 - 2z2d + x22 + y22 + z22 

The second order term is: 



4 distance.nb 

Sa [2] 

-2dlx\ - 2dmy\ 

2 yj d2 - 2zl^ + xl2 + yl2 + zl 

^ dzll2 + dm2 zl 

2 z 
2 zl + xl2 + yl2 + zl2 

(-2d Ixl -Idmyl) 

d2 - 2zld + \l + yl +zl 4(^2-2zlrf + xl2 +yl2 +zl2) 

- yld2 -2z2d + x22 + y22 + z22 

2 ' 

dz2l2 + dm2 z2 (-2d 1x2- 2 dmy2) 

-2z2d + x22 + y22 + z22 4(^2 -2z2J + x22 + y22 + z22)2 

yjd2-2zld + x\* +yl' +zr 

-2dlx2-2dmy2 

2 y/d2 - 2 z2 d + x22 + y22 + z22 

|2 , .,i2 , ,,12 _ iT^2 , ^T2 2z2d + x2 + y2 + z2 - 

To be able to calculate quickly, we need versions of these equations that are amenable to being used in a Fourier 
transform. Thus we would like to obtain equations of the form ul+vm+wn+c. There are two principal forms that 
we need to consider, far field and near field. 

The far field distance term 

For a source on the celestial sphere, the distance D can be taken to be infinity, and the direction cosines add 
quadratically to unity. In doing this, we have to take into account the on-line tracking which takes out the nominal 
difference between the two z coordinates. 

Sff[p_] := {Collect[Limit[ 
Normal [Series [S + zl-z2, {f, 0, p}]] /. {d-» Infinity} ] / . 

{x2->-u + xl, y2->-v + yl, z2-»-w+zl}, {u, v, w}]} 

First order: 

The first order term is appropriate for small field of view: 

Sff[l] 

(-lu — mv) 

Second order: 

The second order term describes the problems induced by the non-coplanar baselines: 
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Sff[2] 

( — I u - m v + y (I2 + m2) w ) 

As shown by Comwell, Golap, and Bhatnagar (2003), this form is amenable to filtering in w, followed by Fourier trans¬ 
form in u,v. 

If the array is coplanar, we can eliminate vv: 

Splane = Collect [Sff [2] /. {w-*Au + Bv}, {u, v}] 

((j A (I2 + m2) - I) u + ( y B (I2 + m2) - m) v) 

This is simplified to a Fourier transform by redefining the direction cosines: 

Splane / . {1/2A(1~2 + 1^2) - 1 -► -L, 1/2B (l"2+mA2) -m-* -M} 

(—Lu-Mv) 

Third order: 

We can demonstrate that only the second order expansion is needed: 

Sff[3]-Sff[2] 

(0) 

The near field distance term 

The topic of near field imaging via interferometry was investigated by Carter (1988, 1989). His results were 
limited to the case of a small source. We can derive his results by taking the first order term for the near field. 

First order: 

Snf [p_] := {Simplify [Sa[p] //. {d"2-2dzl + xl"2+yl~2+zl"2-> dl^, 
d"2 + x2 A2 + y2/v2 + z2"2 - 2 d z2 -> d2~2}, {dl > 0, d2>0}]} 

Collect[Snf[1] , {1, m}] 

, fd\2 d\l\ idyl dyl\s 
ld,-d2+,hr-^r)+"1hi--^r)) 

There are two ways to transform this equation to a simpler form. If we set up the array to be focused on the center 
of the target area then all of the square-root terms are equal to d. 
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toFocus = {dl -*■ d, d2 -* d}; 
Simplify[Snf [1] //. toFocus, d >0] 

{/ (x2 - xl) + m (y2 - yl)} 

Thus we obtain a simple Fraunhofer term (leading to a Fourier transform). Alternatively, the sensor coordinates 
may be redefined by correcting for the extra distance to each sensor. 

toSphere = {yl -* dl Yl / d, y2 -» d2 Y2 / d, 
xl-> dlXl/d, x2 -» d2 X2 / d, zl-» dl Zl/d, z2 -> d2Z2/d}; 

Collect [Snf [1] //. toSphere //. {X2 -U + Xl, Y2 -» -V + Yl}f {1, m}] 

{dl -d2-/t/-m V} 

Thus again we obtain a Fourier transform, but with an additional differential focus term for the center of the target 
area. 

Second order: 

The second order term can be simplified in the same two ways: by focusing the array or by working in a modified 
coordinate system. 

First, the equation for refocussing: 

FullSimplify[(Snf[2]-Snf[l])//.toFocus//.zl->W+z2, {d>0, dl d2 > 
0}]? 
Collect! %, {lA2+nr2,l,in}] 

, (x2 - xl) (xl + x2) 12 m ((-xl - x2) (yl - y2) + (x2 - xl) (yl + y2)) I 
' Id + Id + 

1 , , m2 (y2 - y 1) (yl + y2) > 

Now the equation for coordinate redefinition: 

Snf 2 = 
Collect [FullSimplify [ (Snf [2] -Snf[l]) //.toSphere//. Z2-+-W + Z1, 

{d > 0, dl d2 > 0}] , {1*2+111*2, l,m, W}] 

, (dl X22 - d2 XI2) /2 

 + 1 2dld2 

m(2dlX2Y2-2d2Xl Yl)/ 1 , , m2 (dl Y22 - d2 Yl2).  __ + _(;w)H,+ _ 1 

An alternate representation of this is the sum of two terms: 
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Snf2al=(d2(m XI - 1 Yl)"2 - dl(m X2 - 1 Y2)A2)/(2 dl d2); 
Snf2a2=(W+((dl X2"2-d2 Xl"2)+(dl Y2~2-d2 Yl"2))/(dl 
d2))(l"2+m"2)/2; 
Snf2a=Snf2al+Snf2a2 

— General::spell 1 : Possible spelling error: new symbol name "Snf2a" is similar to existing symbol "Snf2". More... 

d2(mXl -/Yl)2 - dl (mX2-lY2)2 

2 dl dl 
+ 

— (I2 + m2) W + 
2 

-d2XI2 + dl X22 -d2 Yl2 + dl Y22 N 

dl d2 

To demonstrate that this is equivalent: 

FullSimplify[Snf2-Snf2a] 

{0} 

The first Snf2al is a shear term that couples together the x and y axes. This is quite troublesome! It originates 
in the distortion of the parabolic part of the distance term as seen from off axis.We can evaluate the ratio for 
typical values, and for the asymptotic case where the baseline length is much smaller than the distance to the 
source. 

(Snf2al/Snf2a2)//.{l->A/R,m->A/R/dl->d,d2->d,Xl->B,X2->0,Yl->-B,Y2 
->0,W->B}//.d->Infinity 

Thus the shear term can normally be neglected, and so a good approximation to the second order distance term is: 

0 
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Cancel[Collect[FullSimplify[Snf2a2+(Snf[1]//.toSphere//.{X2-» 
-U+Xl/Y2->-V+Yl}) ], {l,m,l/v2+m/v2}] ] 

, (Z2 +m2)(-d2Xl2 +dlX22 -d2Yl2 +dl Y22 +dld2 W), 
\d\ - d2 -1U - mV +     -) 1 2d2dl 1 

This form is amenable to calculation - the first term is a constant per pair of sensors, and the rest may be per¬ 
formed by w projection. 

Summary: 

We have calculated first and second order approximations to the distance term in interferometry for both far and 
near field cases. These approximations have been found previously, except for the second order near field case for 
which we find a form allowing w projection to be used. 
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