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Abstract 

The imaging dynamic range of an aperture synthesis telescope 
for mosaicing and for fields with significant flux throughout the an¬ 
tenna primary beams can be limited by the knowledge of the indi¬ 
vidual primary beams projected on the sky. For high dynamic range 
imaging of such fields, one requires an accurate measurement of the 
shape of the primary beams and the pointing offsets as a function of 
time. The effect of antenna pointing errors remain separable in the 
visibility domain. With at least two, well separated sources along the 
RA and Dec axis each to constrain the solutions, it is possible to solve 
for these errors in an antenna based fashion in the visibility domain. 

Here we analyze the effect of antenna based pointing errors on 
the imaging dynamic range and fidelity and present an algorithm to 
solve for these errors using a model for the sky brightness distribu¬ 
tion. For a typical L-band eVLA simulation with typical pointing er¬ 
rors for the VLA antennas, the RMS noise can be reduced by a factor 
of ~ 10 using this algorithm. The improvement in the image fidelity 
is even larger. The formulation given here can be further extended 
to include other direction dependent effects - specially for applica¬ 
tion to mosaicing observation. Extension of this work for such, more 
sophisticated solvers is in progress. 

1 Introduction 

In the absence of pointing offsets, the image made with an ideal aperture 
synthesis telescope with identical antennas is the true sky multiplied with 
the ideal primary beam pattern of the antennas. The observed visibilities 
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are then expressed as Eij~kVTTUe, where Eij = E^Ej and Ei is the antenna 
aperture illumination pattern. With no pointing offsets Ey is identical for 
all the baselines which can be used as the gridding convolution function 
for computing model visibilities during the deconvolution major cycle. 
In the presence of antenna pointing errors, E^ is potentially different for 
each baseline, resulting in a systematic error pattern in the residual image 
which limits the dynamic range of images where there is significant flux 
throughout the field of view. 

The multiplicative antenna based complex gain, constant across the 
field of view, can be measured from the observation of even a single unre¬ 
solved source using the SelfCal algorithm. Antenna pointing errors on the 
other hand result in a gain which changes across the field of view. With at 
least two well separated sources along the RA and the Dec axis and a good 
model image, it should be possible to derive the antenna based point¬ 
ing offsets by minimizing the differences between the observed and the 
model visibilities. In the following sections we analyze the effects of an¬ 
tenna pointing errors and, using simulations, show that such errors can 
be solved for in an antenna based fashion. For a typical L-band eVLA sim¬ 
ulation with typical pointing errors for the VIA antennas, the RMS noise 
can be reduced by a factor of ~ 10 using this algorithm. The improvement 
in the image fidelity is even larger. Section 2 contains the theory and the 
mathematical description of an iterative solver. Section 3 contains the de¬ 
tails of the simulations and the results of applying the solver on the simu¬ 
lated data. Sections 4 discusses the implications on the imaging dynamic 
range and fidelity and section 5 discusses the implementation details in 
AIPS++. 

2 Formulation 

The measurement equation for a single pointing observation with an¬ 
tenna based pointing offsets is: 

V^=Eij*V^rue (1) 

where Ei is the complex aperture illumination pattern, Eij = Ei * Ej, Vfi 

and vTrue is the observed and the true visibility from the baseline i-j, and 
★ is the convolution operator. Let Pi(l) be the primary beam pattern for 

antenna i given by Pi(l) = Aie~^l~li>) where <7j is the inverse of the width 
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and li is the position offset with respect to the true pointing direction. Eij 
for <ji = gj — a and Ai = Aj = 1 (identical antennas), is given by: 
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where u is the conjugate variable in the visibility space. The first term in 
Eq. 2 correspond to the convolution of the ideal antenna illumination pat¬ 
terns = E°j). The second term is the loss in the amplitude of this 
ideal convolution due to the pointing offsets while the third term is the 
phase due to the pointing offsets. For li = lj = l0, the resulting power pat¬ 
tern in the image domain will be the same as the ideal one, but its center 
shifted by l0. In the Fourier domain, this would result in only a phase ramp 
and no amplitude loss. On the other hand if k — -lj, the power pattern in 
the image domain will be attenuated but still symmetrically centered at 
the nominal pointing direction. In this case there will be no phase change 
across the aperture but will have modified amplitude of the illumination 
pattern. 

In a least squares minimization scheme to solve for /;s, the step size 
will be computed using the derivative of the x2 as: 

Vx2 = -23ft [vrTVVr (3) 

where VR is the residual visibility vector and the superscript T represents 
the transpose operator. Using Eq. 2, we get: 

VEij — [(/j - /;)cr2 — mulj] Eij (4) 

E^ itself, to the first order of the last two terms of Eq. 2, can be written as: 

* E°j [1 - Rij - Kij + RijKij] (5) Ei 

where Rij = (li - lj)2G2/2 and -I- lj)u. If we can use a functional 
form for Efj, Eqs. 4 and 5 can be evaluated for every trial /j and used as the 
de-gridding function to compute the two terms of Eq. 3. The last term in 
Eq. 5 is a third order term (the phase curvature across the aperture) and 
probably should be dropped (since we are working under the assumption 
that the pointing offsets are small). The third term is the first order error 
signal, which appears as a phase ramp. The second term is a second or¬ 
der term in pointing offsets, which appears as an amplitude modulation. 
This however should be retained since if we drop this term, the solver will 
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be insensitive to the case were the two antennas have the same pointing 
offsets in magnitude but opposite in direction Hi = -lj). Such a case will 
produce an error signal only as a change in the amplitude with respect to 
the ideal illumination pattern. 

2.1 Point source case 

For a test case of a collection of point sources of amplitude Ik located at 

Ik (model image IM(lk) = Ik$(1 - h))> Eq- 3 gets further simplified. The 
corrupted visibilities are given by: 

V§ = Eij * Vjf = f IM(l)Pi(O-PjO-e2"""' dl (6) 

and VVy® = -2a2 [Vjf -UV?] whereof = / IM(l)lPi(l)Pj(l)e
2nm'>' dl. 

This and Eq. 6 can be used to compute the update direction given by Eq. 3. 
The update equation for the estimated pointing offset at the nth iteration 
{If) is then given by: 

'? = '?-1 + a ^x'U-i (7) i 

where a < 1.0 is the step size. The iterations are stopped when \xn - Xn-i I ^ 
e. 

3 Simulation 

The algorithm was tested using a VLA C-array multiple snapshot sim¬ 
ulated observation at 1.4 GHz. The sky was simulated using 49 NVSS 
sources within the field of view with flux density in the range ~ 2 - 200mjy. 
The primary beams of the antennas were assumed to be a gaussian of 
HPBW = X/(Dy/\og(2)) (where D is the antenna diameter) and similar ex¬ 
cept for the random pointing offsets. The antenna offsets were uniformly 
distributed between ±20" about the pointing center. A baseline based 
gaussian random RMS noise corresponding to image plane RMS noise of 
~ I/Ltjy was added to simulate the thermal noise. The dirty image without 
the pointing offset calibration is shown in Fig. 1 and the typical pointing 
offsets as a function of time are shown in Fig. 2. The convergence of the 
algorithm for a noise free case is shown in Fig. 3 which shows the x2 as a 
function of the iteration. The resulting residual image without applying 



Figure 1: Figure showing the simulated dirty image (right) for a VIA C-array 
observation at L4GHz using 49 point sources extracted from the NVSS source list 
(left). The antenna based pointing offsets were uniformly distributed between 
±20". The overlaid contours show the ideal primary beam at 0.09, 0.18, 0.36, 
0.54, and 0.72 times the peak value of 1.0. The dominant source near the center 
has a flux density of 195mjy. 

the pointing offset calibration (V^ = Vg - V^) is shown in the top panel 
of Fig. 4. The RMS of ~ 12/4y in this image is dominated by the antenna 
based pointing errors. Eq. 7 was then used in an iterative loop to esti¬ 
mate the individual antenna pointing offsets with e = 10-5. The residual 
pointing errors after calibration (difference between the solved and actual 
pointing offsets) as a function of time are also shown in Fig. 2. The resid¬ 
ual RMS pointing offset is ~ 1". The estimated pointing offsets were then 
used to correct the observed visibilities. The residual image using these 
corrected visibilities (V^ = V°- - Eij ★ V^) is shown in the lower panel of 
Fig. 4. The RMS noise in this image is consistent with the expected ther¬ 
mal noise (~ l/ijy). In a realistic case, where the model image may not 
be a collection of point sources, computation of will require the use of 
FFT and de-gridding. Since this can be an expensive operation, improv¬ 
ing the rate of convergence is important. A fixed step size (a in Eq. 7) was 
used in this iterative scheme. Rate of convergence can probably be signif¬ 
icantly improved by estimating the step size from the inverse Hessian. 

For a typical L-band field and thermal noise of l/ijy, the RMS noise in 
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Solution interval 

Figure 2: Figure shows the typical antenna based pointing offsets as a function 
of time. The continuous line (red) shows the pointing offsets used in the simula¬ 
tion and the dashed line (green) shows the residual pointing offsets after pointing 
calibration. The RMS residual pointing errors are ~ 1". 
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Figure 3: x2 as a function of the iteration number using a fixed step size for 
a noise-free case. For a case with noise, the x2 saturates at approximately the 
value of the square of the L2-norm of the noise vector. 

the image due to the random antenna based pointing errors of ±25" is 
~ 12/iJy. The strongest source in this field was 195mjy and was located 
close to the nominal pointing center where the effects of pointing errors 
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is minimized. With a O.SmJy source located at the half-power point of the 
primary beam, the RMS noise due to pointing errors is ~ 50/zJy. For a RMS 
thermal noise of ~ 1//Jy in the image, the SNR per baseline was sufficient 
for estimating the antenna based pointing errors to an accuracy of ~ 1". 

The pointing errors for the VIA antennas is ~ 25" without reference 
pointing. With reference pointing done every ~ 30m, the residual RMS 
pointing error is ~ 2". A more realistic pointing error model for the VIA 
antennas is an RMS error of ~ 2" with a different mean for each antenna, 
uniformly distributed between the various antennas in the range of ±20" 
and a coherence time of ~ 30m. With such a pointing error model in the 
above simulations, the pointing noise was ~ 15/LtJy and the peak resid¬ 
ual of ~ 250/iJy. The noise after pointing calibration was consistent with 
the thermal noise ~ l/ijy and the peak residual was ~ 5/Jy. The residual 
images before and after pointing selfcal are shown in Fig. 5. The typi¬ 
cal antenna based pointing offsets and the residual pointing offsets after 
pointing calibration as a function of time are shown in Fig. 6. 

4 Implications for imaging 

Since the image model used in this simulation is exact, the residual visi¬ 
bilities are a convolution of the model visibilities and the function AEij = 
Efj - Eij where E°- = E°*E°* and E° is the ideal electric field pattern. To 
get an understanding of the error pattern in the residual image, consider 
the case where only one antenna has pointing errors. The residual vis¬ 
ibilities on all baselines not involving this antenna will be exactly zero. 
This would correspond to a uv-coverage consisting of all the baselines 
with only this antenna and the corresponding "error PSF". For small off¬ 
sets, the error pattern will be a small residual amplitude convolved with 
this error PSF in the image domain. When more than one antenna has 
pointing errors, the modified PSF will correspond to the uv-coverage of 
baselines involving all these antennas. The convolving error pattern seen 
in the first image in Figs. 4 and 5 is this error PSF. Note that the error PSF 
is significantly different from the true PSF (more clearly seen in Fig. 5). 
Note also that the systematics in Fig. 4, where the mean of the pointing 
offsets of the antennas was zero but the RMS was 20", is less pronounced 
than in Fig. 5 where the antennas had a non-zero mean pointing error as 
a function of time with a smaller RMS. This shows that the systematics in 
the residual image are dominated by constant antenna pointing offsets as 
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Figure 4: Figure shows the residual images before (top panel) and after apply¬ 
ing the antenna based pointing calibration (bottom panel). The two images are 
shown at the same scale. The RMS noise in the top and bottom images is ~ 12/iJy 
and ~ l/xjy respectively. 
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Figure 5: The image on the left is the residual image with the mean antenna 
pointing offsets between ±25" with an RMS of 2" (see Fig. 6). The image on the 
right is the residual image after applying the pointing offset correction. Both 
images are at the same scale (±150/ijy/beam). 

a function of time. The case of all antennas with the same pointing offset, 
will correspond to a primary beam with its peak centered away from the 
pointing center. This will apply a systematic amplitude gain error across 
the field of view. The error PSF will be same as the normal PSF, and the er¬ 
ror pattern in the image domain will appear as the normal PSF convolved 
with the residual flux due to the differential gain across the field of view. 
For a given pointing error, the value of AEij will be maximum at the half 
power point. Its amplitude will be proportional to the square of the sum 
of the offsets of the two antennas (a second order effect) and the phase 
will be proportional to difference of the two offsets (a first order effect) 
(see Eq.2). Since the residual visibilities are a convolution of the true (not 
tapered by the primary beam) visibilities and AE^, pointing errors will 
not have a significant effect on the imaging performance if either the flux 
density at the half power point is small, or the pointing offsets are small 
compared to the primary beam. Clearly, for mosaicing observations of a 
source larger than the primary beam, the effect of pointing errors will be 
significant. 

The effect of random antenna based pointing offsets is to create a com¬ 
plex aperture illumination pattern whose amplitude symmetrically de- 
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Solution intervol 

Figure 6: Figure shows the typical antenna based pointing offsets as a function 
of time used for the images shown in Fig. 5. The continuous lines show the point¬ 
ing offsets used in the simulation and the dashed lines show the residual pointing 
offsets after pointing calibration. The RMS residual pointing errors are ~ 1". 

creases away from the center with a phase gradient across the aperture 
proportional to the pointing error. As a result, apart from decrease in the 
amplitude, the function Ey has a phase ramp proportional to the differ¬ 
ence in the pointing errors of the two antennas (Eq.2). This can masquer¬ 
ade as an antenna based complex gain. Roughly speaking, applying the 
standard amplitude gain correction to such a data will take out the aver¬ 
age of the amplitude error as a constant term. For a trivial case of a single 
unresolved source in the field, the solutions for the pointing calibration 
and the multiplicative constant (across the aperture) complex gains are 
indistinguishable from each other. However since the errors due to the 
pointing errors are not constant across the aperture, for more than one 
source in the field, residual errors will be left in the data. It is easy to see 
that one needs at least two well separated sources along the RA and the 
Dec axis each to constrain the solutions for the pointing errors. To de¬ 
termine the extend to which the complex gain calibration will be able to 
remove the errors due to the antenna pointing, an amplitude and phase 
selfcal was done. For the simulation shown above, after correcting for 
complex gains the RMS noise in the image was ~ 6/iJy (taken over the en¬ 
tire image). Clearly, selfcal is not sufficient to remove all the errors. Also, 
this residual noise will be a function of the brightness distribution and will 
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be significant where there is significant flux distributed all over the field of 
view. In general the errors due to the pointing offsets will depend on the 
fractional pointing offsets and the flux density at the nominal half-power 
point of the primary beam. 

The linear phase ramp across the aperture due to the pointing errors 
has an intercept of zero (the phase at the peak of Ey is zero). In the pres¬ 
ence of multiplicative antenna based complex gains, this intercept will be 
non-zero (a phase ramp with an offset). The effect of the standard phase 
selfcal will be to remove this phase offset. This offset however can be eas¬ 
ily incorporated as part of the pointing offset calibration. 

The success of the pointing error calibration also depends on the ac¬ 
curacy of the model image. For an observation were the noise is limited 
by the pointing errors, typically the pointing calibration should be used 
in a calibration and imaging cycle. Since the pointing calibration can ab¬ 
sorb the multiplicative complex antenna based gains, it can replace the 
amplitude and phase selfcal to produce an improved model image in the 
deconvolution phase. 

5 Implementation details 

For a simple case of a collection of point sources for the image model, 
we implemented the solver in Glish and used DFT to compute the model 
visibilities at each iteration. The results shown in this note were gener¬ 
ated using only Glish script in AIPS++. The crucial and the most com¬ 
pute intensive steps in the algorithm are the computations of the x2 and 
its derivative. In general, this needs a modified version of the FFT based 
gridding/de-gridding operation where the gridding convolution function 
is evaluated for each baseline using the Eqs. 4 and 5. We discuss below the 
details of implementing such a gridder/de-gridder using existing AIPS++ 
classes. 

The machinery for solving for antenna based quantities of the inter- 
ferometric measurement equation is implemented in the class tree of the 
Vis Jones class. The solve () method of the derived class Solvable Vis Jones 
implements iterative solver to solve for various Jones types. For frequency 
independent Jones types, this method first averages the data over the avail¬ 
able frequency range and then loops over time, using the services of the 
VisEquationto compute the x2 and its first derivative and the diagonal 
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terms of the Hessian. These are then used for the Conjugate Gradient it¬ 
erations. The pseudo-code for this method is as follows: 

SolvableVisJones::solve 0 
for all chunks of the VisSet 

{ 
VisEquation::initChiSquare;# Apply any existing Jones 

# and average in frequency 

# Resize and initialize the 
# arrays for first and the 
# second derivatives 

# Implemented in 
# TimeVarVisJones. 

# Use the cache for the 
# antenna based gains 
# (antGainCache_) to 
# compute Ji * conj(Jj) 
# and store in cache 
# for the interferometer 
# gains (intGainCache_) 

# Compute the Chisq and its derivatives. This also 
# computes the residual visibilities (using 
# VisJones:: apply 0). 
# 
VisEquation::gradientsChisSquared(); 

for all iterations 
{ 

::updateAntGains(); # Take a step 
::invalidateCache 0; 
::updateCache(); 
: : initizlizeGradientsO ; 
VisEquation::gradientsChiSquaredO; 
Check for convergence; 

> 

Setup the initial guess; 
: : initializeGradientsO ; 

:invalidateCache(); 

:updateCahce(); 
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The VisEquation:: gradient sChiSquaredO method internally uses the 
SolvableVis Jones:: apply 0 method to apply the current solutions to the 
model visibilities (equivalent of the left hand side of Eq. 1) referred in the 
code as the "corrupted visibilities" and the SolvableVis Jones:: applyGradier 
method to compute the first derivatives of the x2 (equivalent of the Eq. 3). 
Since the operation of applying the effects of pointing errors to the visibil¬ 
ities is different from that required for multiplicative errors (convolution 
as against multiplication), apply () and applyGradient () methods needs 
to be overloaded in a specialization of the SolvableVisJones class. 

Model visibilities at the sampled (u,v) values are computed by con¬ 
volving the model visibilities sampled on a regular grid by a convolution 
function and re-sampling the result at the observed (u,v) values. The usual 
convolution gridding function used is the Prolate Spheroidal function, 
which has a limited support and is designed to minimize the aliasing and 
attenuation due to its roll-off in the image domain. To incorporate the 
pointing offsets in the measurement equation, the de-gridding method 
needs to use a different gridding function for each of the baselines (namely, 

-Eij). 

Gridding and de-gridding services in AIPS++ are provided by the put () 
and get () methods respectively of the FTMachine class. The MosaicFTMachine 
specialization of the FTMachine class implements the gridding and de- 
gridding algorithms for the mosaic imaging. It uses the w-projection tech¬ 
nique (Comwell et al. 2003) for gridding/de-gridding which is a more effi¬ 
cient algorithm. The f indConvFunctionO method of this class computes 
the gridding convolution function used by the underlying FORTRAN rou¬ 
tine. This method needs to be overloaded in a specialization to pre-compute 
the functions Eij for each baseline and the underlying FORTRAN routine 
modified to use the appropriate ones in the gridding/de-gridding opera¬ 
tion. These services will then be used in the SolvableVisJones:: apply () 
method to compute the corrupted visibilities. Note that SolvableVisJones: 
also needs to use these services, with a different convolution gridding 
function per baseline (Eq. 4). Pre-computation of all the convolution func¬ 
tions can be potentially memory demanding. Where memory usage needs 
to be traded for CPU time, Eq. 5 can be used to compute the approximate 
convolution functions. Since E° is same for all the baselines, Eij and its 
derivative need not be cached for each baseline separately. 
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5.1 Errors due to the approximations 

Incorporation of antenna based pointing offsets in the equation implies 
a different gridding convolution function for every baseline (Eij in Eq. 1) 
during de-gridding. This function needs to be computed for each mini¬ 
mization step making the algorithm compute intensive. A first order ap¬ 
proximation can be used (Eqs. 4 and 5) for a faster computation of these 
functions on-the-fly for each baseline. For a pointing offset of 1% of the 
primary beam, the maximum amplitude and phase error due to the ap¬ 
proximation is ~ 4 x 10_3% and 10-3 degree respectively (Fig. 7). However 
such an approximation will limit the level to which pointing errors can be 
solved. For observations which are limited by the errors due this approx¬ 
imation, Eq. 2 will need to be computed at an higher accuracy, possibly 
using look-up tables for the exponential function. Ey is same for all the 
baselines, and can be computed once (possibly using measured primary 
beam shapes). 

Fractional pointing error* 1% 

Figure 7: The percentage amplitude (the continuous curve) and phase (the 
dashed curve) errors across the aperture due to the approximations in Eq. 5 for a 
pointing error of 1% of the primary beam. 
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