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Abstract 

In receiving systems in which the analog signal voltage is sampled and quantized to allow further 
processing in digital form, the difference between the analog samples and their digital representation 
gives rise to a component of random quantization noise. The power spectrum of the quantization noise 
is close to being uniformly level across the receiver passband, even for large variation in the shape of 
the input spectrum. Thus in cases where the gain of the analog system varies across the passband, the 
addition of the quantization noise causes a variation in signal-to-noise ratio (SNR). This effect limits 
the allowable variation of analog gain and is particularly important in wideband receiving systems. The 
memorandum examines the definition of quantization noise and its relationship to quantization efficiency. 
Numerical simulation is used to determine the spectrum of quantization noise for a number of commonly 
used quantization schemes, with Nyquist and higher sampling rates. Examples are given of the limiting 
values of gain variation within the passband. These are modeled as slopes and sinusoidal ripples and are 
applicable to the EVLA and ALMA systems. Equations for precise calculation of quantization efficiency 
based on evaluation of the quantization noise are derived in Appendix A. 

1. Introduction. 
The degradation in signal-to-noise ratio resulting from quantization noise in systems that use digital corre¬ 
lators is well known for the case where the gain is uniform across the passband (see, e.g. Thompson, Moran, 
and Swenson, 1986, 2000, Ch. 8, and references therein). In the case where the gain varies significantly 
across the passband as, for example, where there is a linear variation of several decibels from one side to the 
other, the quantization noise can cause the SNR of the correlated signals to vary across the passband. This 
occurs even if the SNR before digitization is uniform across the passband. If a variation in gain across the 
receiver bandwidth results in a slope of the input power spectrum, the corresponding variation of the power 
of the quantization noise is generally very much smaller, that is, the spectrum of the quantization noise is 
generally close to flat. Thus the quantization noise, spread approximately uniformly across the passband, 
degrades the SNR of the correlated data more severely at frequencies where the gain is low, and less severely 
where the gain is high. This effect has been investigated for three-level1 quantization by Lamb (2002), and 
for quantization with larger numbers of levels by Carlson and Perley (2004). In the present memorandum 
we use numerical analysis to investigate the spectrum of the quantization noise for various quantization 
schemes. 

In the broadband analog stages increasingly used in radio astronomy systems, variation of gain with 
frequency becomes more difficult to control as the bandwidth increases. Digital filtering in the following 
stages offers a means for restoration of uniformity in the signal level. However, such compensation has the 
effect of inducing variation in the spectrum of the quantization noise, and this effect limits the extent to which 
gain variation in the analog stages can be compensated. It therefore becomes an important consideration 

1The number of levels is equal to the number of divisions into which the input data are partitioned for the assignment of 
quantized values. 
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in determination of the tolerance on the variation of gain with frequency across the passband of the analog 
stages. 

To explain what is meant by the quantization noise, we note that for each data point the initial, unquan- 
tized value minus the quantized value represents an inequality introduced by the quantization. In general, 
this inequality in a sequence of data contains a component that is correlated with the unquantized input 
data and a component of random noise. The first of these components has a spectrum identical to that of the 
input data, and thus after compensation for the gain variation is uniform across the spectrum. It does not 
degrade the signal-to-noise ratio. At the digitizer output the second (random and uncorrelated) component 
is flat across the passband to within about 10%, and thus after compensation for spectral gain variation 
becomes nonuniformly distributed. This random component is the one that the present memorandum is 
concerned with, and we refer to it as the quantization noise. To investigate quantization noise we have 
performed numerical simulations on various quantization schemes, including the effect of slopes and ripples 
in the IF passband. For the simulations we have primarily made use of the program Mathcad, and a number 
of Mathcad conventions are used in the equations that follow. 

2. Two-level Quantization. 
We begin by considering two-level quantization. Let x represent the voltage of the unquantized input data. 
Two-level quantization can be represented by2 

?/2 = sign(ar), (1) 

where the Mathcad function sign(x) returns 1 if x > 0, and —1 otherwise. The difference between the 
unquantized and quantized samples is A2, which we shall refer to as the quantization inequality: 

A2 = x - m/2, (2) 

where a is a scaling factor, two values of which are found to be of particular importance. Curves illustrating 
y2 and A2 as functions of x are shown in the top diagram of Fig. 1. Since we are concerned with the response 
of the quantizer to Gaussian noise, we consider that x and 2/2 are measured in units of <7, the rms level of 
the signal at the quantizer input. 

The quantization inequality A2 is partially correlated with x, so we can envisage it as containing a 
fraction of x plus a component of random noise that is uncorrelated with x. To demonstrate the correlation 
we calculate the correlation coefficient for x and A, which, for any quantization scheme, is: 

foA) _ (x2) - a(xy) ( , 
x A x A •LrmsL-*rms •ljrmsL-*rms 

Here the angle brackets () indicate the mean value. From Eq. (1), y2rms = 1- We take <7 = 1, and thus 
(x2) = 1. Since xy2 = |x|, 

(z2/2> = X e-l2/2 dx = (4) 

To evaluate A2rms we have, 

(A2) = J (x — a)2e~x /2 dx == (l+ a2>j. (5) 

For example, for an arbitrary value of a = 1, A2rms = 0.6358 and from Eq. (3) the correlation coefficient 
equals 0.3179. Thus A2 contains a component that is correlated with x. However, for a value of a which we 

2 We use subscripts 2, 3, 4, 8, N(even), and N(odd) to y, A, and q to indicate when these symbols refer to specific quantization 
schemes. In expressions that apply to all quantization schemes these subscripts are omitted. 
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Figure 1: Two-, three-, and four-level quantization. The abscissa is the amplitude of the unquantized signal 
in units equal to the rms amplitude a. The full (red) curves show the quantization characteristic. The dotted 
(blue) curves show the quantization inequality, for which an arbitrary value of a = 1 is used. 
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designate as ai, the correlation coefficient is zero. From Eq. (3) this is given by (a:2) — ai{xy2) = 0, that is, 
in general, ai = (x2)/(xy), and for the two-level case, ai = y/7r/2. Thus the random component of A, i.e. 
the quantization noise, is given in general by 

q = x — a\ y, and, in the 2—level case, by <72 = x — y — 2/2• (6) 

From Eq. (4) the factor y/2/n is the correlation coefficient of a Gaussian function with its own 2-level 
quantization (i.e. x with 7/2)- Thus a fraction ai of y is fully correlated with x. In Eq. (6) y is weighted 
by the reciprocal of this fraction, so that the x component is exactly canceled, leaving only the random 
component. 

Investigation of A2 using numerical simulation as described in Section 4 shows that although the condition 
a = ai results in A2 containing only the quantization noise q, this condition does not minimize the rms value 
of A2. As a is decreased below ai, the sum of the variances of x and ay2 decreases. We now investigate the 
value of a that minimizes the rms value of A2. Since the quantized signal y is partially correlated with x, 
as shown for two level quantization by Eq. (4), we shall assume that in the general case y can be expressed 
as a scaled version of x plus a component of the uncorrelated quantization noise, q. Then Eq. (2) becomes, 

A = x — a{ax + bq) = x{\ — aa) — ctbq, (7) 

where a and b are constants. From Eq. (6), when ct = ai, the x components of A and y cancel, leaving A 
equal to q. This requires that a = l/a\ and b = —1/oti. Thus Eq. (7) becomes 

A = (8) 
\ ai / V cti/ ai 

The variance of A (noting that x and q are uncorrelated) is 

2 / Q; \ 2 
J +(  ai/ Vai 

(A2> = (x2>(l-^)2+(^)2(9
2>. (9) 

Differentiating the right-hand side with respect to a, and equating the derivative to zero, we obtain the value 
of a that minimizes A2, which we denoted by 0:2. Thus, 

a* (x2) 

<*1 <z2> + <<?2>' ( ' 

In Eq. (10) the right-hand side is the variance of an analog signal (for which q is zero) as a fraction of the 
variance of an equivalent quantized signal. The square root of this ratio is the SNR for the digitized signal 
divided by the SNR for the unquantized analog signal. Therefore the ratio of the SNR at the correlator 
output for the correlation of two digital signals, to the SNR for the equivalent analog signals, which is 
referred to as the quantization efficiency tjq, is equal to the ratio in Eq. (10). That is, 

VQ = (11) 
oti 

For the 2-level case, ai = yjisjl from Eq. (6), and the quantization efficiency equals 2/7r, the well-known 
result originally derived from the work of van Vleck and Middleton (1966). Thus ai = yjljis, which is in 
agreement with the result from numerical analysis described below. Also we have 

^ = = (12) 
\x ) \ol2' r]Q 
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This is the variance of the quantization noise expressed as a fraction of the variance of the unquantized input 
data, which provides a useful way of quantifying the power level of the quantization noise. 

3. Numerical Analysis 
To determine how the spectral shape of the input (unquantized) signal affects the spectral shape of the 
quantization noise, we have performed numerical analyses in which either a power-linear slope, or a sinusoidal 
ripple is introduced into the input spectrum. In practice, variations in the frequency response of IF systems 
can largely be modeled in terms of such slopes and ripples. Mathcad was used for these programs. The 
essential steps are as follows. 

1) Generate 2n samples of random noise (Mathcad function rnorm) with zero mean and a 
standard deviation a = 1: values of 16 to 20 were used for n. 
2) Use an FFT (Mathcad function fft) to generate the frequency spectrum of the noise, 
(2n—1 + 1) complex values. 
3) Insert a slope or ripple into the spectral data. With the slope the power level varies 
linearly from 1 at the low frequency end of the band to a value varying between 1 and 100 at the 
high end. With a ripple, the power level is proportional to [1 + msin(2nkf /F)\ where m 
is the modulation index, / is the spectral frequency, and k is the number of ripple cycles 
across the input passband, which extends from zero to F. The value of k used was 
generally about 100 and the value of m was in the range 0 to 1, that is, 0% to 100% 
modulation. 
4) Scale the frequency data so that the rms value remains equal to one, as before the slope or 
ripple were added. 
5) Use an FFT (Mathcad function if ft) to transform the data back to 2n real values of the 
amplitude in the time domain. These data with spectrum modulation and unit rms level provide 
the input data for the quantization process. 
6) Apply quantization (e.g. Eqs. (1), (14), etc.) and the appropriate expression for 
the inequality, A. 
7) Use an FFT (Mathcad function fft) to transform the inequality data to the frequency 
domain (2n-1 + 1 complex values), and take the squared moduli of these data. 
8) For the slope investigation, fit a straight line (rms best fit) to the squared moduli as a 
function of frequency (Mathcad functions intercept and slope). For the ripple 
investigation, determine the amplitude and phase of the Fourier component at the frequency of 
the input-data ripple. 
9) To obtain the desired accuracy, repeat the sequence of steps above taking the average of the 
results. For each repetition a different seed value for rnorm must be used in step (1) 
to provide an independent set of random data. 

Since the simulations are based on the use of random noise as the input data, the accuracy is limited by the 
number of data values used. With 216 to 220 samples of white noise, the expected precision of the results 
is approximately 1 part in 28 to 210, or about 0.4% to 0.1%. However, the insertion of the slope or ripple 
(step 3) results in a non-white noise spectrum, and the noise power becomes concentrated toward the high 
frequency end of the band, or the positive peaks of the ripple. As a result, the effective bandwidth decreases, 
and so does the statistical independence of the noise samples. Also, for high slopes, the data at the low edge 
of the spectrum are very small compared to the overall noise level. As indicated in step (9), computations 
were repeated with independent data and averaged. The aim was to reach a level of accuracy that would 
illustrate the behavior of the quantization noise, for which, in general, of a few tenths of a percent was 
sufficient. 

Note that in describing the results, we use the term "slope ratio" to indicate the ratio of the power 
spectral density at the upper end of the band to that at the lower end. With this definition a slope ratio of 
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Figure 2: The ordinate is the slope ratio of the quantization noise power spectrum on a linear scale. The 
abscissa is the slope ratio of the power spectrum of the input data on a dB scale. Moving downward from 
the top, the curves are for: 2-level (red, crosses), 3-level (blue, diamonds), 4-level (green, circles), 8-level 
(magenta, squares), N(even)-level (cyan, crosses), N(odd)-level (black, diamonds). The standard deviation 
of the points is approximately 3 x 10-3. Thus the values do not differ significantly from unity for all curves 
at 0 dB on the abscissa, or for all points on the curves for N(even) and N(odd) levels. 

1.0 indicates a uniform power level. 

4. Results for 2-level Quantization. 
With a = ai, a slope or ripple modulation inserted in the input data should be strongly minimized, since 
this condition eliminates the component of Athat is correlated with x. Using the program outlined above, 
the value of a that minimizes the modulation was found to be 1.248 from investigation using the slope, and 
1.255 from investigation using the ripple. Both of these values are statistically consistent with the theoretical 
value of \AV2 (= 1.2533). Note that, as in the example in Fig. 3, the minima are not sharp. Then with a 
set to 1.2533 the slope of the quantization noise spectrum as a function of the slope of the input data (step 
3 of the program) was investigated. The results are shown by the upper curve in Fig. 2. The spectrum of 
the quantization noise is flat for a slope ratio of 1 in the input spectrum, but shows a small residual slope 
with increasing slope of the input data. However, this is not a large effect: an input slope ratio of 100 
(20 dB) results in a residual slope ratio of 1.09 in the quantization noise. Similarly, a ripple modulation of 
100% in the input data produces a peak-to-peak modulation of only 8% (i.e. 4% modulation depth in the 
two-level curve of Fig. 4). The value of a that minimizes the rms value of <72 was investigated by including 
an evaluation of this rms in step 6, and was found to be a = 0.797 with an uncertainty of about ±0.001. 
This is consistent with the theoretical value of o;2 obtained from ai and t]q: see Table 1. In the investigation 
of the residual modulation resulting from a sinusoidal ripple in the receiver passband, we found that the 
amplitude of the residual is dependent on the phase of the input ripple. We believe that this is explained 
by the aliasing back into the passband of higher frequency quantization noise introduced by the digitization 
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Figure 3: Minimum in slope of the quantization noise spectrum for 2-level sampling as a function of a. The 
slope ratio of the input power spectrum is 20 dB. Further points, not shown, provided a value of cti — 1.248. 

process. Note that for both slope and ripple input spectral shapes, the envelope of the quantization noise 
mimics the spectral shape but with much reduced amplitude; however the actual noise voltage under this 
envelope is completely uncorrelated with the original input noise. 

5. Aliasing. 
For most of the numerical analysis we have used Nyquist-sampled data. The passband of the input data, 
which may contain gain modulation in the form of a slope or sinusoidal ripples, extends from frequency 0 to 
F, and the quantized data are sampled at frequency 2F. However, to investigate the effects of aliasing, some 
simulations were made using oversampled data. As the oversampling factor is increased the spectrum of the 
quantized data resembles more closely the spectrum of a continuous (unsampled) but quantized function. 
Oversampling is simulated by zero-padding the data, that is, inserting zero values in the frequency domain 
beyond the original non-zero spectrum, before transforming back to an oversampled voltage in the time 
domain. For n-times oversampling the number of zeros is (n — 1) times the number of data values within 
the 0-to-F baseband spectrum. Figure 5 shows a power spectrum of the quantized signal (2/2) from 32:1 
oversampled data. For frequencies greater than F, the envelope of the quantization noise power follows 
approximately an inverse square law. In the graphs in Fig. 5 the envelope shows an extended plateau or tail 
which we attribute to multiple aliasing of frequencies greater than 16F. Similarly, the detailed shape of the 
spectrum of the quantization noise in our Nyquist sampled simulations is the result of multiple aliasing back 
into the input passband of higher frequency components introduced by the quantization process. 

In a qualitative way, the effect of aliased quantization noise can be visualized as follows. Consider first 
the quantization, the sampling being a separate operation performed subsequently. The quantized signal 
contains abrupt steps as the analog signal moves between digitization thresholds. Each such step can be 
considered as the addition of a Heaviside step function to the mean signal at the level-crossing instant. 
A Heaviside function has 1/f frequency spectrum in amplitude, i.e. I//2 in power. With purely random 
noise, the precise instant at which these abrupt steps occur is largely random, so the frequencies generated 
by individual steps can be considered as random in phase. The power spectrum of the quantization noise 
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Figure 4: The effect of sinusoidal ripple modulation. The abscissa is the ripple amplitude (modulation depth) 
for the input data, and the ordinate is the amplitude of the resulting residual modulation of the quantization 
noise. The curves are for 2-level quantization (red, crosses), 3-level (blue, diamonds), 4-level (green, circles), 
8-level (magenta, squares). 

resulting from the combination of multiple steps will also have a 1 //2 power slope. This is consistent with 
the spectral shape seen in Fig. 5. In the subsequent sampling, the high frequency tails of these I//2 spectra 
become aliased back into the baseband frequency range zero to F. 

For the Nyquist sampling rate of 2F, signals will be aliased back into the O-to-F frequency band in such 
a way that at frequency fo within the band there will appear additional components from outside the band 
at frequencies (2nF — fo) and (2nF + fo), where n is an integer. The aliasing is alternately from initially 
negative and positive frequencies, respectively. The resultant baseband power at frequency fo will be the 
sum of all the (2nF — fo) component powers and the (2nF + fo) component powers, corresponding to aliased 
negative and positive frequencies. If those aliased components themselves have amplitude proportional to 
1 //, then an infinite series 

l/(2nF — f)2 + l/(2nF + /)2, (13) 

where n goes from 1 to oo, will define the additional power in the O-to-F baseband due to aliased quantization 
noise. This is valid for any quantization scheme. For a model I//2 profile, Fig. 6 shows the power spectral 
density profiles for the first six orders of components aliased back. Note, however, that in Fig. 5 the profile 
of the noise spectrum shows some deviation from the I//2 profile in the range from channel number 128 to 
about 300, so the first order (top) curve in Fig. 6 and possibly others do not accurately represent the behavior 
of the quantization noise derived from numerical simulation. The curves in Fig. 6 help visualize the aliasing 
back in a qualitative way, but the quantitative details of the effect on the slope of the quantization noise 
within the passband are not determined. Different numbers of quantization levels will change the amplitude 
of this aliased noise, but its spectral shape should be the same: see for example the curves for two-level 
sampling in Fig. 5. However, for Nyquist sampling the individual data points are statistically independent, 
and for a flat input spectrum this results in a flat spectrum of quantization noise within the passband. Thus 
in the Nyquist case the components that are aliased back into the baseband spectrum exactly compensate for 
the roll-off of the oversampled spectrum. Figure 6 illustrates how multiple alias terms are folded back into 
the original baseband. If the high frequencies contain sinusoidal terms, as is generally true for gain ripples in 
the passband, then depending on the phase of the original ripple, the structure in the aliased spectrum may 
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Figure 5: The red curves are plots of the power spectrum of a two-level quantized signal (3/2) with 32:1 
oversampling. The blue curves show the power spectrum for quantization noise with 2:1 oversampling. 
Spectral data resulting from 218 oversampled time-domain points were averaged in blocks of 32 to simulate 
frequency channels. There are 128 channels within the input passband, which is indicated by the black 
lines. To reduce the noise on the curves, the smoothed spectra were repeatedly averaged using independent 
random input data for each iteration. The original input spectrum was flat and the noise beyond channel 
128 is created by the quantization process. As shown in the upper plot, the power spectrum falls off 
approximately inversely as the square of the frequency, as predicted by the simple theory described in the 
text. For comparison the magenta (dashed) line shows a slope of -2 on this log-log plot. The lower plot 
shows the first 512 channels of the same data plotted on linear scales to reveal the variation of the level 
within the passband frequency range. 
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Frequency within baseband 

Figure 6: Power spectral density of I//2 components aliased back into the baseband spectrum of the input 
signal, for 2-level sampling. The ordinate is on a log scale. The top curve is for the first-order alias, the 
next curve down for the second order, etc. down to the bottom curve for the sixth order. They are derived 
from Eq. (6) for n = 1 to 3. Odd-order components slope upward toward the right and even orders slope 
downward. 

reinforce or partially cancel the residual of the original ripple in the passband. This explains the dependence 
of the original ripple amplitude on the phase of the IF passband ripple, as mentioned in Section 4. 

Oversampling by a factor of two is sometimes used to improve the SNR when using two-level sampling. 
The quantization efficiency is then increased from 0.6366 to 0.7442, the latter figure being from Thompson, et 
al. [2001, see Eqs. (8.32) and (8.34)]. Deriving the continuum noise degradation factors involves integrating 
the variances of the power spectral densities over frequency3. Using this method for 2-level sampling with 
2-times oversampling, we obtain r}Q = 0.7443 ±0.0004 by averaging 16 independent runs of 219 data samples. 
From the two curves in the lower graph of Fig. 5, it is seen that when oversampling is used the quantization 
noise level varies by about 1.2:1 over the passband of the input signal. Thus, in using oversampling to 
improve the sensitivity of spectral line observations, the noise will no longer be uniform across the band, 
but for a baseband IF should be a little better at the high-frequency end. Figure 7 shows the spectrum of 
oversampled quantization noise for an IF passband in which the low frequency does not extend down to zero 
but only to half the upper frequency. In this case the quantization noise is highest near the center of the 
passband and decreases toward the edges. Subsidiary maxima in the spectrum are seen at odd harmonics of 
the intermediate frequency. 

3Specifically, tjq = y/(vf + v%)/v%, where vi is the variance of the squared modulus of the frequency-domain data integrated 
over the passband, V2 is the variance of the equivalent quantity integrated over frequency outside the original passband, and vq 
is the of the squared modulus of the pre-quantization frequency-domain data. 
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Figure 7: Relative spectral power of a two-level quantized signal with 32:1 oversampling, for the case where 
the signal (IF) spectrum does not have a baseband characteristic, but has a cutoff at low frequency equal to 
half that at the high frequency. 

6. Three- and Four-level Quantization. 
Curves representing the quantization characteristic and the quantization noise for 3 and 4 levels are also 
shown in Fig. 1. 

Three-level can be represented by: 

2/3 = if[\x\ > 0.612cr,sign(:E),0], (14) 

where the Mathcad function if() indicates that if |a;| > 0.612a is true, 7/3 is assigned the value sign(x), and 
if it is false, 1/3 is assigned the value 0. Threshold levels of ±0.612cr provide optimum SNR for the correlated 
signal. The quantization noise is given by: 

q3 = x- aiy3. (15) 

The mean value of xys is 
pOO 

(xys) = a/S/tt / x e-*2/2 dx = 0.6616, (16) 
J0.612 

where the integral is evaluated numerically using Mathcad. Then following the equivalent discussion for the 
2-level case the value of Qi for three-level quantization is 1/0.6616 = 1.5114. 

Four-level quantization can be represented by: 

yt = if[\x\ > 0.996,3 sign(x), sign(x)], (17) 

where, for optimum SNR, the quantization thresholds are equal to ±0.996cr (Schwab 2005), and the inner 
and outer levels are assigned values of ±1 and ±3 respectively. The quantization noise is: 

q4 = x-aiy4. (18) 

The mean value of xy4 is 

/.0.996 
(xy*) = y/zjir / 

L Jo 

poo 
xe~x/2dx + 3 / xe~x2/2dx 

J 0.996 
1.7696, (19) 
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where the integrals are again evaluated numerically using Mathcad. We thus obtain a value for a\ of 
1/1.7696 = 0.5651. 

As in the case of two-level quantization, the values of ai and 0:2 for three- and four-level quantization 
derived by numerical simulation are in good agreement with the analytical values, as shown in Table 1. 
The slope of the quantization noise as a function of the slope of the input data is shown in Fig. 2, and the 
ripple modulation of the quantization noise is shown in Fig. 3. For both slopes and ripples, the resulting 
modulation on the quantization noise for a given modulation level of the input data is relatively small and 
decreases as the number of quantization levels increases. 

7. N-Level Quantization 
When the number of quantization levels N is larger than four, the levels are usually uniformly spaced4 in 
voltage at intervals e (in units of the rms level a). An input sample that falls between levels me and (m + l)e 
is assigned a value (m-j-l/2)e, and one that falls between —me and — (771 +l)e is assigned — (m-|-l/2)e. The 
partitioning of the samples into level intervals and the assignment of values can be thought of as separate 
operations5. In this section we consider cases where the number of levels is large enough that the range of 
the quantization levels extends over several times the rms level. Thus the probability of occurrence of values 
that lie outside the range of the quantization levels is very small and such values can often be ignored6. 
Figure 8 shows the characteristic curves for both even and odd numbers of levels. For an even number of 
levels, one can also describe the system as one in which x/eis truncated toward the more negative level, and 
then e/2 is added. The quantization scheme can be expressed in terms of the Mathcad functions trunc(x), 
which returns the integer part of x, and sign(x): 

yN(even) — e 

and 

trunc0 + deM] (20) 

QN(even) — ^iVN^even) (^1) 

The corresponding scheme for an odd number of quantization levels can be represented by: 

^)=£trunc(f + «), (22) 

and 
QN(odd) = x — aiyN(0dd) (23) 

In applying the program to the N(even) and N(odd) cases in Fig. 8, a value of a/2 is used for the interval 
between levels (i.e. e = 0.5), as proposed for the 256-level (8-bit) quantizer of the EVLA. For both even 
and odd cases a value of 1.0 is used for ai. From the curves for the inequality in Fig. 8, it is seen that 
this quantity changes sign as the amplitude of the input data x varies through each level increment e. This 
variation in the sign of A can be expected to greatly reduce any correlation with the input data and thus 
A consists mainly of the quantization noise component. As a result, there is a broad minimum in the rms 
value of A which is centered on ai = 1.0. As noted in Section 2, ai = (x2)/(xy), so in higher level schemes 
in which the individual input data values x are more accurately represented by the quantized values y, cti 
approaches unity. 

4Small improvements (of order a few tenths of one percent) in quantization efficiency can be obtained by varying the level 
spacings (see e.g. Jenet and Anderson, 1998; Schwab 2005), but the simpler case of uniform increments is satisfactory for 
investigation of the main features of the quantization noise. 

5Partitioning and assignment of values may, in practice, take place in different locations. If the signals are digitized at the 
antennas, the level partitions are first encoded in a manner that is most efficient for transmission of the large data streams to 
the correlator, and numerical values then assigned as part of the correlation process. 

6It is becoming a common practice in radio astronomy systems to allow for a level of RFI (radio-frequency interference), in 
addition to the noise, within the operating range of the quantizer. For some bands of the EVLA, 256-level (8-bit) quantization 
is being used for this reason. The noise alone is then well within the range of the quantization levels. 
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Figure 8: Quantization characteristics, full (red) curves, and quantization inequality, dot 
The abscissa is the amplitude of the unquantized signal in units equal to the rms amplit 
An arbitrary value of o: = 1 is used for the quantization inequality. 
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Figure 9: The quantization efficiency r)Q as a function of the increment between quantization levels e, for 
256-level (8-bit) quantization. Note that tjq starts to decrease when e is decreased below 0.03. 

Results for the slope of the quantization noise spectrum as a function of the slope of the input data 
spectrum are shown in Fig. 2. For the N-level cases, with both even and odd numbers of levels, the rms 
amplitude of the quantization noise is consistent with a constant level across the band (i.e. slope ratio = 
1.0), for values of the input slope ratio of up to 20 dB. For large numbers of levels (e.g. 256), as in the 
EVLA, the requirement for a linear response to interfering signals, in addition to considerations of SNR, is 
a major consideration in the choice of e. Figure 9 shows the quantization efficiency tjq as a function of e for 
the range over which rjQ remains relatively high, calculated using Eqs. (31) and (34) derived in Appendix 
A. Over a range of e up to approximately 1.5, the quantization noise spectrum remains essentially flat for 
input slopes up to 20 dB. As e is further increased, the abscissa scales in Fig. 8 are expanded so that an 
increasingly large part of the input spectrum falls between the two quantization thresholds on either side of 
zero. For even values of N, the quantization action then begins to resemble that for three-level quantization. 
For odd values of N, the data falling between the two inner thresholds are quantized to zero and only the 
outlying values remain. 

8. 8-Level Quantization 
Eight-level (3-bit) quantization, which is used in the EVLA, and in ALMA for digitization at the antenna,7 

is a case of N(even) in which values of the input signal that lie outside the range of the quantization levels 
cannot be ignored. The quantized values run from -3.5ecr to +3.Sea. The quantization characteristic can be 
represented by 

Note that when using Eq. (24) it is necessary also to use Eq. (20). The quantization noise is represented by 

7In ALMA the digitized signal may be passed through a FIR filter before being correlated. The output of this filter is 
quantized to either 4 or 16 levels, with Nyquist or twice-Nyquist sampling at that point. A later memo will address this issue. 

(24) 

qs = x- aiy$. (25) 
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Also we can write, 

/2 fc 2 /*^e 2 f00 

- 0.5 e / xe~x l2dx+ 1.5 e / xe-x/2dx + 2.5e / xe~x2/2dx + 3.5€ xe~x2^2dx =0.9670, 

(26) 
from which c*i = 1/0.9670= 1.0341. The quantization characteristics corresponding to Eqs. (24) and (25) 
are shown in Fig. 8. For a rectangular passband, the signal to noise ratio for 8-level correlated signals is 
optimized with a level increment very close to8 e = 0.60cr (Thompson et al. 2001: see Table 8.2), and we 
use this value in computation of the slope of the quantization noise. This slope is shown by a curve in Fig. 
2, and for 20 dB input slope ratio the slope ratio for the quantization noise is approximately 1.05. 

9. Accuracy of the quantized signals 
With respect to the accuracy of the representation of the spectral slope, it is also of interest to examine 
briefly the response of the quantized signal data to the slope of the unquantized spectrum. For this we use 
the quantized data y rather than the inequality A as the input to step 7 in the program. Results are shown 
in Fig. 10. The quantized data reproduce the slope of the unquantized data to an extent that increases with 
the number of quantization levels. The top curve shows the result obtained from the program when the 
quantization is omitted, that is, by going directly from step 3 to step 8 in the program, and fitting a straight 
line to the unquantized spectral data. Ideally, this should be a straight line from the lower left to the upper 
right corner of the graph, but instead the response has fallen by about 1 dB for a 20 dB input slope ratio. As 
mentioned above, the accuracy of the analysis is expected to decrease as the slope increases. This reduction 
of the actual slope values in the quantized representation of the data is, however, is not important in the 
investigation of the quantization noise, for which the slope ratios from the line-fitting do not exceed 1.1 in 
the results shown in Fig. 2. 

1 2 3 4 5 6 7 
Quantization VQ Oil ai 012 012 Ot2/OLl 

type (anal.) (anal.) (sim.) (anal.) (sim.) (sim.) 

2-level 0.6366 1.2533 1.251 0.7980 0.797 0.637 
3-level 0.8098 1.5114 1.510 1.2239 1.223 0.810 
4-level 0.8825 0.5651 0.567 0.4987 0.499 0.880 
8-level 0.9626 1.0341 1.035 0.9954 0.996 0.962 

Table 1. Column 2, values of tjq from Schwab (2005). Col. 3, analytical values of ai, from equations for (xy) 
in the text. Col. 4, ai from numerical simulation, based on results using both slope and ripple modulation. 
Col. 5, analytical values of a2 (product of values in Cols. 2 and 3). Col. 6, 0:2 from numerical simulation. 
Col. 7, ratio of values in Cols. 4 and 6 from numerical simulation: compare with values in col. 2. 

10. Values of ai and a2 
We have shown the relationship between the factors ai and <22 to the quantization efficiency rjQ (Eq. (11) 
and how the relative variance of the quantization noise can be expressed in terms of these quantities (Eq. 
(12). Theoretical values of ai are derived for Gaussianly-distributed input data from equations for (xy), 
and theoretical values of t/q are available from Schwab (2005) and from various analyses summarized in 
Thompson et al.(2001). From these data, and Eq. (11), theoretical values of £*2 can be obtained. Table 1 

8A more precise value for maximization of t]q is e = 0.586: see Table 3. 
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Figure 10: The ordinate is the slope ratio of the power spectrum determined from application of the line- 
fitting step of the simulation program to the quantized data (that is, the quantized signal y). The abscissa 
is the slope ratio of the input data x. Moving upward from the lowest, the curves are for 2-level (red, 
x crosses), 3-level (blue, diamonds), 4-level (green, circles), 8-level (magenta, squares) and N(even)-level 
(cyan, + crosses). The top curve (black, no symbols) shows the result obtained when quantization is omitted. 

shows both theoretical values and values from numerical simulation for ai and 0:2. Values of the ratio a^/ai 
from the numerical simulation can be compared with the theoretical values of r)Q. In all cases the agreement 
is within the expected statistical uncertainties of the simulations and better than 0.5%. We take this as 
verification of the assumption in Eq. (7) that the quantized data can be expressed as a linear combination 
of the unquantized data and a component of random quantization noise. 

11. Limitations on Variation of Gain with Frequency for EVLA and ALMA Systems. 
Numerical simulation shows that modulation of the power spectrum of the unquantized input data in the 
form of slopes and sinusoidal ripples results in only minor, residual, reproductions of these features in the 
quantization noise spectrum. For two-level quantization, a slope ratio of 10 in the power spectral density 
of the input data results in a slope ratio of only 1.05 (see Fig. 2) in the quantization noise power, and this 
residual slope becomes smaller as the number of quantization levels increases. Uncertainties in these figures 
resulting from the random-noise nature of the input are of order 0.3%. 

Consider a system in which the SNR is constant across the passband. Let P be the power spectral density 
at any point within the passband before quantization. Then, from Eq. (12), and with the assumption that 
the quantization noise is uniformly distributed in frequency, the noise level after quantization is P-f < P > 
(l/r]Q — 1), where < P > is the mean power level across the band. The SNR at the same frequency is 
proportional to P/[P+ < P > (l/rjQ — 1)]. For values Pi and P2 of the power spectral density at two points 
in the passband, the ratio of the values of SNR is 

In the case of a linear slope in the power spectrum, one can put Pi/ < P >= 1+5 and P2/ < P >= 1—5, 
where 5 = (r —l)/(r + l),r being the slope ratio. For sinusoidal ripple across the passband, Fig. 11 shows the 
variation of Rsnr> in which Pi represents the levels at the ripple maxima and P2 the levels at the minima. 

(27) 
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Figure 11: The abscissa is the ratio of the input power levels at the peaks and troughs of the ripple mod¬ 
ulation, on a dB scale. The ordinate is the ratio of the highest to the lowest SNR in the power level of 
the resulting quantized signal, again on a dB scale. From the top down, the curves are for 2-level quan¬ 
tization (red), 3-level (blue), 4-level (green), and 8-level (magenta). The curves include the residual slope 
of the quantization noise determined from numerical simulation. The crosses are the corresponding values 
calculated with the assumption that the spectrum of the quantization noise is flat. 

The solid curves show the result when residual ripple in the quantization noise is taken into account, based 
on the results of numerical simulation shown in Fig. 4. The crosses show the equivalent values for which 
the residual modulation is ignored, that is, the spectrum of the quantization noise is assumed to be flat. 
The crosses give slightly higher values, as can be seen for a few of the points. However, the differences 
are so small that for estimation of the tolerable slope or ripple in the data at the quantizer input, the 
assumption of a flat spectrum for the quantization noise is clearly justified. Although Fig. 11 was calculated 
for a gain variation in the form of a sinusoidal ripple, it can with reasonable precision be applied to any 
shape of variation across the receiver passband. As noted above, the amplitude of variations in quantization 
noise with frequency is dependent on the relative phase of gain variations across the passband, and whether 
multiple aliasing of higher frequency noise into the baseband enhances or partially cancels the variations. 
For cases in which cancelation occurs, the assumption of a flat quantization noise spectrum becomes an even 
better approximation than is indicated in Fig. 11. 

The question of how the quantization noise relates to the tolerable variations in the passband response at 
the input to the quantizer is complicated by the wide range of measurements encountered in radio astronomy. 
The search for weak spectral lines is one of the activities in which good SNR across the full observing band 
is most important. A drop in sensitivity by a factor of \/2 (-1.5 dB) in some part of the spectrum could 
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require doubling of the observing time, which in practice is not always possible. Here we take 1 dB variation 
in SNR relative to the mean value as the maximum tolerable. If P2 in Eq. (27) represents the mean value 
< P >, and Pi represents the minimum value Pmin, then 

En 
<P> 

VQi^ + VQl-i) 

Here Rsnr is the ratio of the minimum SNR to the mean SNR, and 

Pmin   1 VQ 
< P > Rsnr ~ VQ 

Rsnr = —yp—. n—— • (28) 1 * m. ?. n I t * v ' 

(29) 

For 1 dB decrease in SNR relative to the mean, Rsnr = 0.7943, and the corresponding values of Pmin/ < P > 
are given in Table 2 for different quantization schemes. These values represent the minimum tolerable level, 
with respect to the mean level, of the power spectral density at the quantizer input. They can be applied 
directly to a single-dish instrument. In the case of an array, the receiving channels for different antennas 
may contain both individual and common features of their deviations from the ideal flat response. For 
example, if signals are transmitted from the antennas to the correlator in analog form individual variation 
resulting from different transmission path lengths may be important, but these are avoided if the signals 
are digitized at the antennas. The individual deviations may tend to average down when all of the visibility 
data are combined. The values in Table 2 are more directly applicable to the common deviations, or to the 
mean frequency response of the different receiver channels. Thus, the application of the tolerances resulting 
from quantization noise to the individual frequency responses of an array is difficult to assess, until data on 
both the individual and common variation of the receiver channels from the ideal spectral response can be 
determined. A proposed hardware design for reduction of unwanted slopes in the analog frequency response 
is described by Hayward, Morgan, and Saini (2004). 

Quantization type 
2-level 3-level 4-level 8-level 
0.584 

-2.34dB 
0.423 

-3.73 dB 
0.312 

-5.06 dB 
0.126 

-8.99 dB 

Table 2. Lower limits by which the level at the correlator input can differ from the mean value across the 
passband to prevent variations in which the SNR is decreased by more than 1 dB. The upper figure in each 
column is the minimum power level as a fraction of the mean level and the lower figure is the same quantity 
in decibels. Both the values in this table and the points in Fig. 11 are based on Eqs. (27) and (28), but 
the data in the table and the figure are not directly comparable because one is based on minimum-to-mean 
ratios and the other on minimum-to-maximum ratios of the power spectral density. 
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Appendix A. Precise Expressions for Quantization Efficiency. 

The quantization efficiency tjq can be defined as the ratio of the signal to noise amplitudes (SNR) at the 
output of the correlator of a digital system, divided by the same quantity for an analog system. The 
quantization efficiency is also equal to the variance of the noise at one input of the correlator for an analog 
system divided by the equivalent quantity for a digital system. A formula for tjq for eight and higher 
numbers of levels, based on this ratio of the variances, can be found in Thompson (1998) and Thompson 
et al. (2001, see section 8.3). In this formula, however, the quantization inequality with a = 1 was used as 

18 



an approximation for the quantization noise, as defined here. This is a good approximation if the number 
of quantization levels is not too small. Also, a piecewise linear approximation of the Gaussian probability 
function was used to eliminate the need for numerical evaluation of a number of integrals. Using the definition 
of quantization noise in Eq. (6) we can now revise the earlier treatment to avoid any approximations. 

Consider the case for an even number of equally spaced levels as discussed in Sections 7 and 8. It is first 
necessary to determine cti =< xy >-1. Note that we use < x2 >= 1.0. The 8-level expression for < xy > in 
Eq. (26) provides an example. For the general case it is convenient to define TV = N/2, i.e. half the number 
of levels. The values of x that fall within the quantization level between me and (ra + l)e are assigned values 
y = (m + l/2)e and their contribution to < xy > is 

1 r(m+l)€ 
j= / (m + \)exe~x ^ dx. 

v27r Jme 
(30) 

The contribution from the level between —me and —(m + l)e is the same as the expression above, so we sum 
the integrals for the positive levels, include a factor of two, and take the reciprocal of the whole expression: 

ai =< 
r— /N—1 /.(m+l)e \ t-oo 

xy>~l=^J— J (m+?i)exe~x2/2 dxj + J (M - \)exe~x2/2 dx 

-i 

(31) 

The summation term contains one integral for each positive quantization level except the highest one. The 
integral on the right covers the highest level and the range of x above it, for both of which the assigned value 
is y = (TV — l/2)e. 

To evaluate the quantization noise, again consider first the contribution from values of x that fall within 
the quantization level between me and (m + l)e. For this level the quantized data y all have the value 
(m+l/2)e, and the amplitude of the quantization noise is [x—ai (m+1/2) e]. The variance of the quantization 
noise for all values of x within this level is 

— / 

(m+l)e 
[x — ai(m + |) e]2 e x2/2dx. (32) 

Since the variance for the level —me to — (m + l)e is also equal to the expression above, we again include a 
factor of 2, sum over all positive quantization levels except the highest, and add a term for the highest level 
and the range of x above it. Thus the total variance of the quantization noise < q2 > is: 

< q >= 
W 2) / /»(m+l)e ' f Hm+lje \ r-oo 
T l / [x — ai(m +^)e]2 e~x2/2 dx) + / [x - - |) e]2 e~x2/2 dx 
m=0 ^Tne / J 

(33) 

Since we are considering the case in which the variance of the input data x is equal to one, the total variance 
for the digitized data is 1+ < q2 >, and tjq = 1/(1+ < q2 >). Thus, 

VQ = < l + A/- 

W-2)  "> / Am+l)e \ /.oo 
Y. (/ [x-a1(m+^)e]2e~x2/2 dx)+ [x-ai(A/'-|) e] 
m=0 / J(Af-l)e 

-h)e}2e-x2/2dx (34) 

Equations (31) and (34) provide values of rjQ from starting values of e and Af, and can be evaluated rapidly 
in Mathcad. For the upper limit on the right-hand integrals in these equations it is satisfactory to use 20J\fe. 
The integrals can also be expressed in terms of the error function and exponential functions and Eq. (31) 
then reduces to: 

ai 
Vl6"1 [(E <rmV/2) + | 

L m=l ' 
(35) 
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Reduction of Eq. (34) results in a slightly more lengthy expression: 

i / v 
VQ = + -2aic^^e 1712(2/2\ - laiee ^ 1)2c2/2 - aie - 2ale2(y^j merf 

t L ^m=l ' J ^m=l 

+ ^1 + a\e2(N — 1.5)2^erf 
{M -1)6 

V2 
+ ^1 + a\€2(N — 0.5)2^erfc 

(^-1)6- 
(36) 

Since no approximations are made, the same method can be used for cases where the number of quanti¬ 
zation levels is not small. For example, for 3-level quantization the expression for a\ is the reciprocal of Eq. 
(16), and the expression for r]Q is 

VQ = \ 1 + \ Z 

r0.612 
x2 e 

lyo 

r20 o 1 
X*l2dx + / (x — ai)2 e_x ^2dx 

J 0.612 

-1 

(37) 

Values of ai, e, and tjq derived using Eqs. (16), (31), (34), and (35) are shown in Table 3. In each case 
the values of e are chosen empirically to maximize r]Q. The values of r]Q are in exact agreement with the 
equivalent values derived by Schwab (2005). 

Table 3 

No. of Levels Af e ai VQ 
3 1.51144 0.809826 
8 4 0.586 1.0389 0.962560 
16 8 0.335 1.0117 0.988457 
32 16 0.188 1.0035 0.996505 
256 128 0.0308 1.000088 0.999912 
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