
 Page 1 

EVLA Architecture and Design 
Snapshot #1: 2001-03-26 
 
Contributors: Steve Blachman, Wayne Koski, Bill Sahr (ed.), Ken Sowinski, Boyd Waters 
 
 
1. Introduction .................................................................................................................................. 2 
2. Goals............................................................................................................................................... 2 
3. System Overview......................................................................................................................... 5 
4. Software Layering ........................................................................................................................ 8 
5. The Antenna Object ................................................................................................................... 10 
6. Antenna Objects and the Hybrid System ............................................................................... 12 

6.1. Serial Line Controller Interface .......................................................................................... 13 
7. Middleware................................................................................................................................. 14 

7.1. Middleware Candidates ..................................................................................................... 17 
8. User Interfaces ............................................................................................................................ 17 

8.1. Engineering Interfaces......................................................................................................... 17 
9. Data Characterization................................................................................................................ 18 

9.1. Visibility Data....................................................................................................................... 18 
10. Future Sections ......................................................................................................................... 21 
Index................................................................................................................................................. 23 
 

 
Figure 3-1  EVLA Conceptual Diagram........................................................................................ 6 
Figure 4-1 EVLA Software Layers ................................................................................................. 9 
Figure 5-1  Base & Derived Classes............................................................................................. 11 
Figure 6-1  Antenna Objects, Hybrid System............................................................................. 13 
Figure 6-2  Serial Line Cntrllr IF .................................................................................................. 13 
 

 
Table 1.  Integration Time, FFT time, and I/O Bandwidth...................................................... 19 
Table 2.  Correlator Output, per Month...................................................................................... 20 
 

 



 Page 2 

 

1. Introduction 
  This document presents a snapshot of the still evolving EVLA architecture and design 
document.  It is very much a preliminary draft – many sections will be added, and the 
material already included will change.  In its present form, it is a loose mixture of 
philosophy, requirements, architecture, and design.  Its purpose is to stimulate discussion 
and comments that can then be used to refine and expand what is written here.  Anyone 
who has contributed ideas that are included in this document is listed as a contributor, but 
responsibility for errors and/or misrepresentations lies with the editor. 

2. Goals 
  There are several general goals that the architecture and design of the EVLA must 
attempt to fulfill.   To date, the goals that have been articulated are: 
 

• Software that achieves a high degree of hardware/platform independence 
• Robustness w.r.t. modifications 
• Extensibility 
• Software reuse 

 
  Among these goals, hardware/platform independence is first among equals.  What is meant 
by hardware/platform independence is the ability to change the underlying hardware with 
minimal impact on the software.  The phrase “minimal impact” cannot be given an exact 
definition, and what is possible will vary from situation to situation.  However, it is absolutely 
essential that the EVLA be able to upgrade the hardware used for its computing systems 
without requiring major rewrites of the software.  The EVLA will be developed and deployed 
incrementally, over a period of many years.  It is certain that some of the hardware and 
software technologies initially used will become obsolete and unsupportable over the course of 
further development and deployment.  The EVLA must be able to incrementally upgrade and 
replace those obsolete technologies without perturbing the entire system.  The EVLA must be 
able to continually adapt to changes in the marketplace, price/performance ratios, available 
capabilities, and user expectations without requiring major software rewrites to do so.  A high 
degree of hardware independence in the EVLA software is a crucial, strategic component 
needed to address these issues. 
 
  A few examples to illustrate steps that can be taken toward the goal of hardware/platform 
independence may be useful.  One of the most obvious points is the use of multiplatform 
operating systems and languages.  For example, the use of VxWorks as the operating system in 
the real-time subsystems of the EVLA will help achieve a measure of hardware independence.   
VxWorks can use Sun Solaris, Windows NT, and RedHat Linux systems as a host platform, 
and the PowerPC, Pentium, MIPS, and ARM processor families as target CPU architectures.  
Use of VxWorks makes it possible to move within a CPU architecture, and to switch from one 
CPU architecture to another, while minimizing the changes needed in the application code.  
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The applications are written to the API presented by VxWorks, and that API is a constant 
across platforms.  Use of Java is another obvious and often cited example.  GUIs written in 
Java for Sun Solaris need not be totally rewritten to run, for example, under Windows NT.  
Yes, some coding changes and additional debugging may be required, but the time needed to 
implement the same GUI for a new platform is substantially decreased.  Yet another example 
might be the software library created to handle monitor and control requirements within an 
antenna.  If the software library for communication among modules consists of a few 
primitives such as read and write, with a few, generic parameters such as the number of words 
to transfer and a starting address, and if the library is layered to isolate and encapsulate the 
code specific to a particular fieldbus, then the underlying hardware can be changed without 
requiring changes in the software which uses the library primitives.  The layer of the library 
that interacts directly with the fieldbus must be rewritten, but as long as the API seen by the 
applications remains unchanged, the applications that use the library do not require 
modification. 
 
  The need for robustness in the face of modifications and extensions to the system seems 
obvious, but a few comments may be merited.  The issue here is one of degree.  Hopefully, the 
EVLA will be a continually evolving entity not for the 5 or 7 years that pass during 
development, deployment, and refinement of its capabilities, but for the 20 or more years that 
will mark this phase of the life of the instrument.  As initially deployed, the EVLA will use 
only the same 27 antennas now used by the VLA.  However, the software must be written in a 
manner that allows the EVLA to be extended to include eventual use of VLBA antennas and 
the hoped for new antennas that will comprise the New Mexico Array.  These extensions are 
stated goals of the EVLA project.  Clearly, significant modification and extension of the 
baseline code and computing systems will be required to achieve these goals.  The EVLA 
software and computing systems must not become fragile under the impact of the required 
changes and extensions to the initially deployed system.  The decision to use object oriented 
analysis, design, and programming techniques for the EVLA was made, in part, with these 
considerations in mind.  Object oriented techniques, if correctly applied, can bring a higher 
degree and new forms of modularity to a software system.  That modularity, in turn, 
contributes to the robustness and extensibility of the system.  Interfaces can be used to isolate 
the impact of changes in subsystem implementations.  The use of commercial-off-the-shelf 
(COTS) hardware and software can also make important contributions.  For example, the use 
of Ethernet and standard protocols for communication among the components of a distributed 
system provides a well-defined and relatively inexpensive upgrade path, and a standards 
compliant API to which applications may be written.  The use of commercial or open source 
middleware for communication among functional units in a distributed system not only 
substantially reduces the in-house effort required for a portion of the software development, 
but can also greatly enhance the degree to which components of a system can be modified, 
relocated, and extended without requiring extensive changes in other components of the 
system. 
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  Software reuse can be a thorny and misunderstood issue.  Managers sometimes tend to 
treat it as the proverbial silver bullet that will cut development time, costs, and manpower 
requirements.  Developers tend to view it as an infringement on independence and 
creativity.  Both positions are probably wrong.  It is simplistic and impractical to interpret 
software reuse as consisting solely or in large part of the literal reuse of coding.  The first, 
best, and most frequent example of software reuse is the reuse of software analysis and 
design elements.  Most software and system developers welcome the opportunity to study 
the designs developed for projects similar to the one on which they are working.  Time 
can be saved, and pitfalls can be avoided, but the literal reuse of unmodified code from 
one project in another is often impossible.  Reuse of analysis and design is already 
happening for the EVLA.  Members of the EVLA design group have already visited Green 
Bank for the purpose of studying the design and code that was then being developed for 
the Green Bank Telescope.  There is little doubt that there will be additional visits and 
exchanges of information.  Computing staff members working on the EVLA have 
attended and will continue to attend both informal and formal presentations of various 
aspects of the software being developed for ALMA, and many of the computing division 
staff who are involved with the EVLA subscribe to the ALMA Software Announce 
mailing list, and read the ALMA documents announced via that list.  Recently, it was 
decided that the ALMA use cases document will serve as the starting point for a similar 
effort for the EVLA. 
 
  To say that the literal reuse of unmodified code is often impossible is not to say that code 
reuse does not happen.  If analysis and design converge, then code from one project may 
serve as an excellent starting point for the code used in another project.  If, for example, 
the manager object used in the Green Bank Telescope is a good fit for some class or classes 
of problems in the EVLA, there would be no good reason not to use the code for that 
object as a starting point for the code that addresses the same or similar issues in the 
EVLA.  However, it is likely that the Green Bank code would be a time saving starting 
point, rather than a final destination.  For a variety of good and telling reasons, such as 
differences between the two classes of problems and/or the development of new software 
technologies with new capabilities, substantial modification of the Green Bank code might 
be required.  For example, the use of RPC++ as a method of communication among 
distributed objects might be replaced by CORBA, and/or the parameter class or classes 
might be rewritten to use XML.  These coding changes, if they proved to be productive, 
might then serve as a starting point for future changes in the Green Bank software.  Literal 
code reuse is not only impossible, but to be avoided.  Past mistakes would remain 
uncorrected and present opportunities for new capabilities and standards compliance 
would be missed. 
 
  Of course, there is another type of code reuse that has not so far been considered.  
“Reuse” is the wrong term. Substitute the word “use”.  The design group working on the 
EVLA has no qualms about the use of AIPS++ and glish in the EVLA software.  Indeed, 
the use of AIPS++ and glish is viewed with relief.  The issues addressed by the 
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considerable and significant functionality being developed by the AIPS++ group removes 
a large burden from the EVLA development effort.  

3. System Overview 
  Figure 3-1, the EVLA Computing System Conceptual Diagram, is neither architecture nor 
design, but may serve to help orient the reader.  It shows the EVLA to be conceived as a 
heterogeneous, distributed system, i.e., multiple CPUs connected by a network.  It is 
heterogeneous because the CPUs will not all be of the same type or family, and because 
the various platforms connected to the network will not all run the same operating 
system.   
 
  Starting at the top left of the diagram, the various subsystems of an antenna are shown as 
connected to an antenna controller via a fieldbus.  The antenna subsystems will be custom 
devices, developed by NRAO.  It is possible that the more complex subsystems will 
contain microprocessors and may include a small real time kernal.  Hopefully, most of the 
software for these subsystems will be written in a higher-level language such as C rather 
than assembler.   
 
  The antenna controller will be a COTS general-purpose computer.  Likely candidates for 
the computer are either a Pentium or PowerPC CPU in a VME or CPCI crate.  For reasons 
of costs, it may be desirable to look at ruggedized PC hardware as a candidate for the 
antenna controller.  The likely OS for the antenna controller is VxWorks.  The antenna 
controller and possibly some of the antenna subsystems will include ports for connection 
of a laptop computer to support work done at the antenna. 
 
  The fieldbus may or may not be a COTS device.  Likely candidates for the fieldbus are 
CAN, a modification of the NRAO-developed MCB, and Ethernet running TCP/IP.  CAN 
is to be used by ALMA, and the MCB is currently used by the VLBA, the GBT, and 
NRAO’s Orbiting VLBI ground station.  As noted earlier, care must be taken that 
communications software developed for the fieldbus isolates hardware dependencies and 
presents a generic API to applications using the fieldbus (clients) that allows the fieldbus 
to be replaced without requiring a rewrite of the client applications.  
 
  The antenna controller will communicate with the array controller in the control building 
via a conventional network, probably gigabit Ethernet, running conventional protocols, 
probably TCP/IP & UDP.  The physical connection between the antenna and the array 
controller will be fiber optic cable. 
 
  The combination of antenna subsystems, fieldbus, antenna controller, and array 
controller defines the path for monitor and control of the antennas. 
 
  In addition to the connection between the antenna controller and the array controller, a 
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connection is shown between the samplers in the antenna and a filter bank in the control 
room.  This connection is the path for the raw scientific data.  The physical connection will  

 
Figure 3-1  EVLA Conceptual Diagram 
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be fibre optic cable, however this path will not use conventional network protocols. 
 
  Most of the hard real-time control tasks will be contained in the cluster of devices shown 
in the lower left hand portion of the diagram - array controller, model server, correlator 
controller, and the correlator.  The monitor, control, and data interfaces to the correlator 
are still being defined.  To the degree that the other components are distributed, they will 
be interconnected via a conventional network running industry standard protocols, 
probably gigabit Ethernet running TCP/IP.  Communications within this cluster will be 
isolated from other traffic, probably by use of a switched network. 
 
  The right hand side of the network is devoted, chiefly, to showing components of the 
system whose functions are related to control on human timescales - operator stations 
located at the VLA control building, other buildings at the VLA site, the AOC building, 
and locations connected via the internet.  That the ability to monitor and control the array 
is to be possible over all of these domains will necessitate a very thoughtful approach to 
the issue of user interface software.  It is strongly to be desired that only one suite of user 
interface software be written and maintained.  Across these domains, the expected 
platforms will be Sun Solaris, Linux, and some variant of Windows.  Some combination of 
an Internet browser with downloadable java classes, and/or a java “fat client” which must 
be installed on a user’s system are strong possibilities.  The need to support ASCII 
terminals is to be avoided.  Currently, an ASCII based control program is used by both the 
VLA operators and by off-site personnel who need to view the status of the array.  It may 
be necessary to insure that NRAO employees who may need to log into the site from their 
homes for first-order troubleshooting have the hardware needed to run the graphical 
control software.  In the long run, money spent on such equipment will be more than 
recovered by the elimination of the need to develop and support multiple versions of the 
user interface to the array. 
 
  The center of the diagram shows an operations server, and two high-level controller 
devices.  The operations server links the hard real-time portion of the system to the 
domain of human interactions with the array.  That portion of the system that has 
knowledge of observing strategies and operations will reside in the operations server.  As 
for the pulsar timing controller and for the VLBA controller, all that is meant by their 
inclusion in the diagram is the fact that the system must be designed to accommodate 
special purpose “engines” which can drive the array according to a set of needs peculiar 
to their purposes.  The diagram shows these engines as not connected directly to the hard 
real time cluster to emphasize the need to keep the hard real time portion of the system 
isolated from the impact of non-realtime traffic. 
 
  Finally, the bottom and lower right hand side of the diagram is devoted to the archive 
and to the image pipeline.  “Archive” is a term that is not yet defined w.r.t. the EVLA.  
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Portions of it will be memory resident, yet other portions stored on disks, other portions 
on tape, and the total archive may eventually span multiple physical locations.  Data to 
support current operations will be drawn from the archive.  The task of the image pipeline 
is to produce first order &/or default images, on a timescale of minutes, that can be used 
by the observer both to refine further observations to be made during the current 
observing run, and as the scientific results of the observation.  The image pipeline will be 
implemented using AIPS++. 
 
  EVLA software will be designed and written using an object-oriented approach.    
Middleware will be needed for communication among objects that are running on 
different processors.  Corba, NDDS (a real-time publish-subscribe system), and solutions 
using XML are all being considered.  Middleware to handle communication among 
distributed objects is a good candidate for a COTS solution. 
 

4. Software Layering 
  Figure 4-1 presents a diagram of the high level layering of the software for the EVLA 
software.  Again, the archive must be considered a currently unresolved object that plays 
a central role.  What the diagram does show is a separation of functionality into distinct 
layers, with defined paths of communication among the layers.  The goal will be to write 
the EVLA software in a manner that adheres to the layering as strictly as possible.   
 
  An observer interacts with the system via the boxes labeled “Programmatic UIs” and 
“Observing Languages/Scripts”.  These layers include items such as monitor and control 
GUIs, card files produced by JOBSERVE, output from a dynamic scheduler, goal-oriented 
descriptions of an observing run, and GUIs/programs used by engineers and technicians.  
With the exception of the technician and engineering GUIs, these entities will 
communicate only with the Observing System layer.  It is in the Observing System layer 
that objects with knowledge of observing and observing strategies will reside.  Examples 
of Observing System knowledge would include methods for reference pointing, strategies 
for mosaicing, special considerations relevant to solar observing, etc.   
 
  The Observing System Layer communicates with the Control System layer.  Control 
system objects will understand devices.  Communication with actual devices will be via 
only those objects that reside in the Control System layer.   
 
  A box labeled “Image Processing” is also shown in Figure 4-1.  This box represents the 
Image Pipeline.  It is shown as having connections to those layers used to drive the array.  
Those connections represent the requirement that feedback from the image pipeline will 
be used in conjunction with goal-oriented observing to drive the array toward satisfaction 
of the stated observing goals. 
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Figure 4-1 EVLA Software Layers 
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5. The Antenna Object 
  Over the life of the project, the EVLA will be required to support as many as four 
different types of antennas – 
 

• The current VLA antennas 
• Upgraded VLA antennas 
• VLBA antennas 
• New antennas for the New Mexico Array configuration 

 
Support for multiple antenna types is an EVLA requirement, and the strategy used to 
satisfy this requirement must be an integral part of the EVLA architecture and design.  
The definition, creation, and use of antenna classes and antenna objects is seen as central 
to providing the ability to monitor, control, and acquire data from different types of 
antennas.   
 
  It would be highly desirable for the observing system to be able to use different types of 
antennas without requiring the observing system to have detailed knowledge of the 
special characteristics of each antenna type.  For this goal to be achieved, all antenna 
objects must present the same API to the observing system.  The goal is not to hide the 
type of an antenna and its special characteristics.  Rather, the goal is to encapsulate the 
differences among antennas within the antenna classes.  All antenna classes will inherit 
from a common base class.  Differences among types of antennas will be contained in the 
derived classes, and in the derived classes associated with an antenna.  For those cases 
where detailed knowledge of the specific capabilities of an antenna is needed, query 
interfaces can be provided.  Figure 5-1 illustrates the point being made.  It shows base 
classes for an LO chain, an antenna, and a baseband set, from which classes specific to the 
EVLA have been derived.  Please note that this diagram is meant only for illustrative 
purposes. 
 
  At this point in time an antenna is not conceptualized as a collection of devices. (An “is-
a” relationship.)  Rather, an antenna is viewed as “having” devices.  This distinction 
translates, in terms of UML, to defining an antenna as an aggregation of component parts 
rather than as an entity composed of parts.  Aggregation is a less stringent relationship 
than composition.  This distinction is being made because it may have an impact on code 
design and implementation.  This same distinction may be applied to the correlator. 
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.  
Figure 5-1  Base & Derived Classes 
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6. Antenna Objects and the Hybrid System  
  Figure 6-1 illustrates how antenna objects might fit into a hybrid system, i.e., a system 
composed of old, unmodified VLA antennas, upgraded VLA antennas, and even VLBA 
antennas.  Functionally, antenna objects are sources for monitor data and sinks for 
commands.  For the case of the EVLA, the antenna objects will almost certainly run in the 
computers identified as “Antenna Controller(s)” in the conceptual diagram presented in 
Figure 3-1, i.e., the antenna objects will reside in computers that are located in the 
antennas, and will communicate with devices in the antenna via the fieldbus.  This 
arrangement is not possible for unmodified VLA antennas because there are no computers 
in the antennas.  For the unmodified VLA antennas, the antenna objects could run in a 
computer or computers that are positioned between the observing system and the serial 
line controller.  The VLA antenna objects would obtain their data from the serial line 
controller, but still serve as sources of monitor data with respect to the observing system.  
Similarly, the VLA antenna objects would serve as sinks for commands from the 
observing system, forwarding the commands to the actual antenna via the serial line 
controller.  In effect, the serial line controller would be the “fieldbus” for the VLA 
antennas.  VLBA antennas are still something of an unknown.  For the VLBA antennas, 
the antenna objects could run in a computer(s) in the control building, or in a computer at 
the antenna, or both.   
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Figure 6-1  Antenna Objects, Hybrid System 

6.1. Serial Line Controller Interface 

  The Serial Line Controller Interface (SLC/IF) is a project currently under development.  
Its purpose is to provide the means by which antenna objects can be connected to 
unmodified VLA antennas.  The figure to the left  (Figure 6-2) gives one possible 

architecture for the combination of antenna objects, the Serial 
Line Controller Interface, and the Serial Line Controller.  The 
MVME162 is the CPU board being used for development of 
the Serial Line Controller Interface.  The CPU board, the IP 
modules, and the Serial Line Controller are hardware.  All 
other elements are software entities.  Before proceeding to a 
more detailed description, it should be noted that the Serial 
Line Controller used at the VLA is a dual ported device.  One 
of the two ports is currently unused, allowing the SLC/IF to 
be connected to the Serial Line Controller with no impact on 
VLA operations. 
 
  Starting, more or less, in the middle of the diagram, the 
buffer/common receives monitor data from the Serial Line 
Controller, and commands from the antenna object.  The 
format of the buffer is oriented toward the needs of the 
antenna object.  The adapter handles the format requirements 
of the driver and perhaps other issues.   
 
  The devices, which are shown as “attached” to the antenna 
object, will contain methods for all R/W parameters, and will 
encapsulate the knowledge of device behaviors and 
peculiarities.  The devices are also the point at which “pseudo 
registers” used to remember commands sent to devices 
containing write only registers will be implemented.  Devices 
will communicate with antenna objects.  It has not yet been  

  
Figure 6-2  Serial Line Cntrllr IF 

decided if devices will communicate directly with the serial line controller interface via 
the buffer/common.  Devices may be restricted to access to the buffer/common only via 
the antenna object.   
 
  At this time, hardware development and the software driver for the Serial Line 
Controller Interface is nearly complete.  The ability to obtain monitor data from the Serial 
Line Controller has been demonstrated.  No attempts have yet been made to send 
commands.  It is likely that development of the software for the SLC/IF beyond the stage 
of a driver will be stopped until an antenna object has been developed in sufficient detail 
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to allow specification of the remaining components.  It is unlikely that the EVLA will 
simply duplicate the memory resident database of monitor data as currently used by the 
VLA.  The issue must be re-examined.  It is entirely possible that the current format used 
for monitor data will not map well into an object-oriented system. 
 

7. Middleware 
  Middleware can be loosely defined as software that handles some or all of the work 
required to achieve communication among elements in a distributed system.  For an 
object-oriented system, middleware would be responsible for some or all aspects of 
method invocation on remote objects.  In a publish-subscribe system, middleware would 
handle the distribution of publications to subscribers.  There are a number of 
characteristics that are desirable in middleware.  A list of such characteristics would 
include: 
 

• Elimination of the need for software developers to write networking code. 
• Location independence, i.e., objects or entities are not required to know the location 

of other objects or entities in order to communicate with them. 
• Low latency, with low variability.  A definition of latency is to some degree context 

dependent, but it could be roughly defined as the total elapsed time between a 
method invocation and the response or the total elapsed time to transport a 
publication from publisher to subscriber. 

• Adequate throughput 
• Rollover/failover features.   This characteristic would include provisions to detect 

network failures, to provide alternate suppliers of a service or publication, and to 
gracefully handle the dropout and addition of nodes. 

 
  So, what are the subsystems within the EVLA that could make use of middleware, and 
what are the characteristics of the communication needed by these subsystems?  Referring 
back to the conceptual diagram (Figure 3-1), and starting at the antenna – 
 

• The antenna controller and the antenna subsystems must exchange monitor and 
control data over the fieldbus. 

• The antenna controller and the technicians control station, connected at the 
antenna, must exchange monitor and control data. 

• Monitor and control data will be communicated between the array controller and 
each of the antennas. 

• The model server will send information to the array controller (and thence to the 
antennas), the correlator controller, and to some element of the archive system. 

• The array controller and the correlator controller will exchange monitor and control 
data with the operations server. 

• Monitor data, and perhaps control data will be sent to some element of the archive. 
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• Ancillary subsystems (represented by the pulsar timing controller and the VLBA 
controller in the conceptual diagram) will exchange monitor and control data and 
probably other forms of data with the operations server. 

• The image pipeline will exchange data and control information with the operations 
server and some element of the archive. 

• Operator stations at the EVLA Control Building, at other locations on the VLA site, 
at the AOC Building in Socorro, and at other locations around the world will 
exchange monitor and control data with the operations server, and data of many 
types with the archive server. 

 
  Notable omissions from this list are the transmission of visibility data from the antenna, 
and the output of data from the correlator.  It is unlikely that middleware will have a role 
to play in these particular data paths.  There is simply no reason to add the complexity 
and additional overhead.  They are likely to be straightforward in the sense that they will 
be point-to-point connections. 
 
  Reviewing the list of subsystem communication exchanges for which middleware might 
be useful, it is clear that the exchange of monitor and control data is the most frequently 
occurring element.   
 
   There are two items in the list that involve user interfaces – the technician control station 
connected at the antenna, and operator control stations that interact with the operations 
server and the archive.  Will middleware be used as a component of user interfaces?    
 
  For the technician control station, the issue is the functionality of the station.  Will it 
connect directly to the antenna controller, directly to the fieldbus, and/or directly to each 
of the subsystems individually?  Obviously, middleware would serve a useful role only 
for those connections that see complementary software on the other end of the connection.  
If the antenna controller uses Corba or real-time publish-subscribe, then the connection 
between the antenna controller and the technicians control station must also do so if the 
use of a special port and/or special software for antenna controller access is to be avoided.  
However, that requirement does not speak to the possibility of a direct connection to the 
fieldbus or to each of the antenna subsystems.  It is conceivable, but unlikely that the 
individual subsystems of the antenna will run a middleware package.  If they do not, then 
test/diagnostic software that has been tailored to each subsystem must also avoid the use 
of middleware.  These requirements appear to conflict with one another – a connection to 
the antenna controller which does require complementary middleware and subsystem test 
suites which do not.  If the fieldbus is a true network, all that is really needed by the 
technician control station is a connection to the fieldbus.  The technician control station 
can then communicate with the antenna controller, using the same middleware, if any, 
that is used by the antenna controller, and with the antenna subsystems using whatever 
scheme is used by those subsystems to communicate with the antenna controller.   
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  If, in the course of developing the antenna subsystems, special ports (non-fieldbus) 
running software used for development, debugging, and diagnostics are created, then the 
technician control station should be equipped with hardware capable of connecting to this 
port, and with the software that uses this port.  Two implications follow – 1) the special 
ports must use a protocol/standard which can be installed/implemented on the 
technician control station (probably a laptop computer) and 2) in accordance with the 
system requirements stated in the NSF proposal for the VLA Expansion Project, the 
functionality of the software which makes use of the special port must be duplicated in 
the software which uses the fieldbus.  Section 6.3.2 of the project proposal, entitled System 
Requirements, in the 2nd paragraph of the subsection entitled “Antenna Monitoring and 
Control” (p. 70) states “No separate, privileged interface to the electronics will be 
developed.  All monitor and control capabilities needed to test and support a device 
should be available over the standard monitor and control interface.”     
 
  For the operator stations, the issues are somewhat different.  One balks at the thought of 
requiring software that includes Corba or a proprietary real-time publish-subscribe 
system for Internet access to the system.  Corba is very complex, and proprietary software 
raises the issues of distribution, licensing, and fees.  There is also the issue that the 
machines used for network/Internet access may be running Solaris, Linux, varieties of 
Windows, or products not yet anticipated.  It is not known that middleware which runs 
on all of these platforms and that also satisfies other functional requirements could even 
be found.  Even if such a product does exist, will it continue to be a viable technology for 
10 or 20 years, will it be extended to new platforms over time, etc, etc, are all questions 
with unknown answers.   Additionally, multiplatform support for both installation and 
versioning would be required.  Attempting to support middleware-based user interfaces, 
for remote access via a variety of platforms would seem to be a major mistake.  The 
required support would soon become a huge and endless timesink.  This logic pushes one 
to the conclusion that network and Internet access to monitor and control data, and to the 
archive be pushed into the arena of  Internet-mediated communication that uses generic 
methodologies that exist in the commercial marketplace.  Currently, there are two 
approaches to this issue – the J2EE (Java 2 Enterprise Edition) framework, and the .NET 
framework.  J2EE is a single language, multiple platform approach, while .NET is a 
multiple language, single platform approach.  It is likely that J2EE will be the framework 
of choice, but the development of .NET must be monitored for possible expansion to non-
Windows platforms. 
 
  In the foregoing paragraph no distinction is made between operator stations used by the 
VLA Operators and operator stations at remote locations.  This lack of such a distinction is 
deliberate.  The current plan is to use the same software suite for both purposes.  Suitable 
provisions for authorizing and revoking authorization of control functions must be 
provided.  It would be desirable to develop some mechanism that would give the 
operators in the EVLA control building priority access with respect to all other operator 
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stations.  The level(s) at which this issue can be most effectively addressed is currently 
unclear. 
 
  One interesting result of this discussion of middleware is that communication among the 
elements of the EVLA begins to be characterized as falling into two domains – one for 
which middleware is a relevant issue, and one for which it is not.  Middleware, be it 
corba, publish-subscribe, XML messaging or whatever, has a role to play in the real-time 
elements of the system – the antenna controller, array controller, model server, and 
correlator controller, with the operations server demarcating a boundary at which 
middleware stops and the domain of network/Internet solutions begins. 

 

7.1. Middleware Candidates  
  Discuss candidates for middleware: Corba (multiple orbs to get the language bindings), 
NDDS (proprietary, licensing issues), Java RMI (By then will it require Corba?), RPC++, 
XML messaging, other?  
 

8. User Interfaces 

8.1. Engineering Interfaces 
  Test suites which can be used during development, troubleshooting, and system 
maintenance must be developed for each device in the system.  Development of this 
software will necessarily involve close collaboration among hardware and software 
engineers.  The goal is write once and use everywhere - the same test suite can be run on 
an operator station, regardless of location and on a technician control station, again 
regardless of location. 
 
  The technician control station raises some interesting issues.  One desirable goal is that 
the technician control station be useable in the absence of a functioning antenna control 
computer.   If CAN or Ethernet is chosen as the fieldbus, one component of the solution is 
to provide a port on the fieldbus for connection of the technician control station.  As 
discussed in the section on middleware, this connection will allow testing of all devices on 
the fieldbus, including the antenna controller.  However, there is the issue of the 
addressing scheme to be used for devices.  This issue will be considered in the context of 
Ethernet as the fieldbus, to help make the discussion more concrete.  The question is what 
addressing scheme can be used that will satisfy the requirements of troubleshooting and 
maintenance?   These requirements include dealing with the issues of swapping modules 
and replacing modules.  For example, in each VLA antenna there are two L6 modules.   
Sometimes it is desirable to swap the modules, for example, to see if an intermittent 
problem follows the module.  So, to what is the address used by test suite software 
anchored?  The answer must be that the address used by the software to address a 
functional unit of a subsystem must be anchored to a location, not to the module.  The 
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software that tests L6A and L6B must always look at the locations used for the L6A and 
L6B modules regardless of the particular board occupying that location.  So, for the case of 
Ethernet, IP addresses and names must be anchored to locations with some method of 
mapping the MAC on the network interface to the proper IP address &/or name.  This 
issue raises the larger issue of addressing within and across antennas.  Wayne Koski 
estimates that from 20 to 50 devices will be present on the fieldbus within each antenna.  
So, how is the address space for some 30 antennas to be configured or partitioned?  There 
are a number of possibilities.  One that appears attractive, at this point, is to assign unique 
IP addresses to all devices, system wide, with all devices within each antenna on the same 
subnet.  As an aside, the point has been raised that this approach may give rise to the 
opportunity for certain efficiencies.  For example, a subnet specific broadcast message 
could be used to request that all devices in an antenna report their status. 
 
  If the device test suite software is written with careful attention to modularity it should 
be possible to include it in the antenna controller.  Inclusion in the antenna controller of 
the same test suite software that is used in the technician control station would make it 
possible to run the same tests on any or all of the antenna subsystems without requiring 
the presence of someone at the antenna.  (Assuming, of course that the antenna controller 
is up and running normally.)  This capability would be very useful for first order 
troubleshooting from the AOC, or from someone’s home. 
 

9. Data Characterization 

9.1. Visibility Data 
  The WIDAR correlator, as currently planned, will have 240 baseline boards.  Each 
baseline board will be capable of an output rate of 100 Mbytes/sec.  By simple 
multiplication, the maximum aggregate output rate of the correlator will be 24 
Gigabytes/sec.  The “aggregate” output rate is taken to be the summed output across all 
baseline boards.  For 86,400 seconds/day, if the correlator were to run at its full rated 
output for an entire day, the result would be roughly 2 petabytes of data. 
 
  The initial specification for the EVLA is to accept data from the correlator at a maximum, 
aggregate output rate of 25 Megabytes/second.  While that specification may sound 
modest compared to the capabilities of the correlator, it is roughly a X25 increase over the 
VLA and the current correlator.  Ken Sowinski, in an email of 12/21/2000, provided a set 
of estimates and calculations that relate this figure of 25Mbytes/sec to the VLA and the 
EVLA.   
 
  Begin with the 27 antennas that comprise the VLA.  For the 27 antennas, there are 351 
baselines.  Now suppose the goal is to handle 16 subbands of 1024 (2048 ?) channels each, 
for a total of 16,384 channels (32,768 ?).  Again, this goal is modest in comparison to 
WIDAR’s capabilities.  It subdivides the entire 16 GHZ bandwidth per antenna into 16 



 Page 19 

subbands rather than making use of the correlator’s ability to subdivide each 2GHZ 
baseband into 16 subbands.  Multiplying 351 baselines by 16 subbands results in 5,616 
1024-point real to complex FFTs per integration.  The amount of data that must be moved 
is given by 351 baselines * 16 subbands /baseline * 1024 channels/subband * 8 bytes = 
43.875 Mbytes of data.  This amount of data must be accepted by the correlator backend 
processor, and then output by it, so the figure of 43.875 Mbytes must be multiplied by 2 
for the total amount of I/O required per integration.  The result is a total I/O requirement 
of  86.75 Mbytes.  Call it 100 Mbytes to keep the calculations simple.  Now, for the case of 
a 10 sec integration time, the backend processor will be required to perform the 5,616 
1024-point complex FFTs within one integration period.  Dividing the integration time by 
the number of FFTs gives 1.78 ms per FFT, and dividing the 100 Mbyte I/O requirement 
by the 10 seconds available results in 10 Mbytes/sec of sustained I/O. 
 
  The table given below illustrates the logic of the preceding paragraph for several 
integration times.  The 1.78 ms per FFT is rounded to 2ms and then halved to allow for 
other work that must be done by the backend processor. 
 
 
Integration Time FFT time I/O Bandwidth 
10  sec 1 ms   10 Mbytes/sec 
 1   sec 100 microsec 100 Mbytes/sec 
 0.1 sec   10 microsec 1 Gbyte/sec 

Table 1.  Integration Time, FFT time, and I/O Bandwidth 

 
For a system that accepts data from the correlator at a rate of 25 Mbytes/sec, a 10 second 
integration time is never a problem.  A 1 sec integration time will require a reduction in 
the number of channels by a factor of  4.  A  0.1 second integration time requires a 
reduction by a factor of  40.  The total of 16,384 (32,678 ?) divided by the factor of 40 gives 
409.6 channels, or, rounded to the nearest power of two, 512 channels per baseline to 
remain approximately within the I/O spec of 25 Mbytes/second. 
 
  25Mbytes/second if sustained for a full day would result in 2 Terabytes of data.  This 
figure ignores slews and setup times during which no visibilities are produced, but it 
counts only visibilities and ignores other data product. 
 
  The next question to answer is what fraction of the time will the VLA run at the rate of 
25Mbytes/second.  For the A array configuration, only experiments which look at objects 
that vary quickly will require integration times less than 1 or 2 seconds.  The integration 
time is set by time-smearing considerations and will shrink inversely with increasing 
baseline length.  Widefield continuum mapping requires delta nu/nu to be less than 
approximately 1/10,000.  This figure implies about 4000 channels at K band to cover 8 
GHZ of total bandwidth; probably the worst case.  4096 channels at a 1 sec integration 
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time is about 25 Mbytes/sec.  The conclusion is that the throughput goal of 25 Mbytes/sec 
supports all continuum work, and except in the A array configuration, it will never even 
come close to being a problem.  The spectral line case will not be considered at this time, 
except to note that spectral line work (1/2 to 2/3 of the allocated time) is done in D array.  
Very little spectral line work (less than 1 day per month) is done in A array, and it is not 
obvious that the new correlator will change this fact.  Observations at wavelengths longer 
than K band cannot provide a full 8 GHZ of bandwidth, so the 25 Mbytes/sec 
specification is adequate as long as there is no requirement to use the otherwise unused 
baseband pairs to produce additional channels.  
 
  The initial goals of the EVLA w.r.t. to the correlator capabilities are modest, but still an 
enormous improvement over the VLA.  By the time the EVLA is deployed, and the 
correlator requirements are more fully understood, technology may have advanced to the 
point where phase II of the EVLA may be considered: 40 antennas, 780 baselines, antennas 
farther away by a factor of 10, requiring 0.1 sec integration times and 40,000 channels for 
untainted widefield continuum mapping. 
  
  A second approach to characterizing the correlator output is to apply a few simple 
estimates to the output rate.  The month of October 2000 was used as a basis for the 
estimates.  October has 31 days, which is 744 hours.  During that month maintenance, 
startup, move/operations and software test time consumed 138.5 hours.  Assuming that 
data was not taken during 95% of the time allocated to those activities, there remains a 
total of 612 hours during which data was recorded.  October 2000 had more antenna 
moves than the average month, so the figure of 612 hours is biased in the direction of 
fewer hours than might be the average case.   
 
  Next, one must estimate the correlator output rates for an average month.  No attempt 
was made to analyze the observing schedule.  Instead, a completely arbitrary utilization 
model was used.  The assumptions are 1) that the correlator will be run at the maximum 
initial spec of 25 Mbytes/sec for 10% of the time, at ½ the maximum initial rate 30% of the 
time, and at 1/5 the maximum initial spec for the remaining time (60%).  The results of 
these assumptions are given below. 
 
 
Data rate      # of hours per month Data produced, Mbytes 
25    Mbytes/sec             61.2 hours           5,508,000 
12.5 Mbytes/sec           183.6 hours           8,262,000 
  5    Mbytes/sec           367.2 hours           6,609,600 
Table 2.  Correlator Output, per Month 

 
 
The total for the month is 20,379,600 Mbytes = 19,901 Gbytes = 19.44 Terabytes.  Dividing 



 Page 21 

by the 31 days in the month gives approximately 642 G bytes/day, or 26.75 Gbytes/hour.   
 
  The most likely conclusion to be drawn from these figures is that the usage model is 
incorrect.  The attempt to develop a more realistic usage model will be deferred until the 
correlator, especially the spectral line modes, are more fully understood. 
 
  The calculations developed by Ken Sowinski, and the statistical approach are both “back 
of an envelope” types of estimates.  As plans develop and knowledge increases, estimates 
that better reflect the realities of anticipated correlator usage will be developed.  However, 
the estimates given in this section are of use in forming a sense of the size of the problem. 
Obviously, a very thoughtful approach must be taken to the issue of archiving the 
visibility data. 
  

10. Future Sections 
  Many additional sections will be added to this document.  The chief impediment to 
doing so has been time.  Sections for which some amount of material has already been 
accumulated include 

• The EVLA Network 
• Data Characterization (data rates, data volume) 

o Monitor Data 
o Visibility Data (some initial work already done) 
o Other Data Products 

 
Sections which are anticipated, but as yet undeveloped include 

• Time, Timing, and Synchronization 
• Time System and Representation 
• Device Control 

o Antennas 
• The WIDAR Correlator 

o Front End setup 
o Backend 

§ Setup 
§ Interface 

• Correlator Operation and the Hybrid Array 
o The new correlator controller 

• Other Subsystems 
o Weather 
o Site Interferometer 

• Monitor Data 
o Antennas 
o Correlator 
o Other Subsystems 
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§ Weather 
§ Site Interferometer 

• Logging, Errors, Alarms 
• Security 
• Data Production 
• System Tests and Tuning 
• Image Pipeline 
• Failure Analysis (Identification of points of failure, with contingency plans.) 
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