
EVLA Computing Memo #51
Preparing the VLA Legacy Archive Data for New

Archive Access Tool Ingestion
Bryan Butler
May 7, 2021

1. Introduction

Legacy VLA data (pre-EVLA upgrade, or prior to January 12, 2010) was written in
EXPORT format. This format is explained in great detail in Hunt & Sowinski (1996);
hereafter denoted “H&S”. It has been delivered to our user community via the Archive
Access Tool (AAT) since ~2000. This online tool, developed and maintained mostly by
John Benson, has been a fantastic resource for our users, and served NRAO well. The
AAT also delivers GBT and VLBA data, but I will not discuss those data in this document.
Despite the utility of the AAT, it has been recognized for many years that it needs an
updated look-and-feel, updated functionality, and updated architecture, which fits more
into the rest of the software in the observatory. The replacement for the AAT, which I’ll
call the New Archive Access Tool (NAAT, to distinguish from the existing AAT; the N
can stand for “NRAO” or “New” as you prefer) has been in development for several years.
It currently supports ALMA and post-upgrade VLA data, but needs to also support legacy
(pre-upgrade) VLA data. This document describes the details of preparing the legacy VLA
data for ingestion into the NAAT.

One might ask why the legacy VLA data has to be “prepared” at all? After all, we
have been serving up this data from the AAT for almost twenty years now. The reasons
are two-fold: 1 – the existing data that is in the AAT database has individual files that are
corrupt, and also missing files; and 2 – the organization of the data is not ideal. For this
second point, consider that the data was originally written on tapes, and the fundamental
files in the archive are one-to-one matches with these tape files. From 1976Jul13-
1987Dec31 these individual files are a maximum of ~35 MB of data (corresponding to how
much data could fit on a 9-track tape at 1600 bpi density, which is what the original
Modcomp computers wrote); from 1988Jan01-2003Sep06 they are a maximum of ~155
MB of data (corresponding to how much data could fit on a 9-track tape at 6250 bpi density,
which is what the upgraded Modcomp computers wrote). From 2003Sep07-2010Jan11 a
change was made in how data was recorded at the VLA – we moved from recording on 9-
track tapes to recording on EXABYTE or DAT tapes, with one day’s worth of data
recorded on each tape, and eventually to recording directly to disk, again with one day’s
worth of data recorded in each file.

There is no organization of the raw EXPORT data files beyond these files (for any of
the eras), so an observation can span many files. A much better organization is to have one
file per observation. What I mean by an “observation” is one contiguous set of data records
for a single subarray in the EXPORT files (i.e., the data coming from a single OBSERVE
file). It is akin to a Scheduling Block (SB) in our modern parlance. I don’t call it an SB
because we never used that term during the legacy VLA days (well, until ALMA planning
started happening around 2000). That organization is much cleaner in terms of access from
the NAAT software.

This document describes how I converted the legacy VLA EXPORT data files from
their format in the AAT (tape files and one-per-day files) to the format to be used in the
NAAT (one-per-observation files). It also describes errors I found in the archive files and
how I fixed them. Note that I’m not writing this for a general audience, but rather for
NRAO employees, so I take some liberty in usage of jargon.

2. Retrieving the raw EXPORT files from the AAT database

The raw legacy VLA EXPORT files are stored on a lustre filesystem, with NGAS
layered over it. Outside of using the AAT itself to pull them out (which would be extremely
painful), there are two ways to get such a file out of NGAS: 1 – John Benson provided me
with instructions on how to use the ngamsCClient program to do it; 2 – Stephan Witz
showed me how to use wget to do it (curl could also be used; I chose wget). In the end, I
used method (1) as it was more reliable. For either of these, however, you have to know
the name of the file you want to retrieve. Fortunately, there is a naming convention for
these files. From 1976Jul13-2003Sep06, the convention is:
VLA_XHYYMMM_fileNN.dat, where YY is the last two digits of the year, MMM is a
three digit EXABYTE tape number (left-padded with zeroes), and NN is a two digit 9-
track tape number (left-padded with zeroes). The EXABYTE tape number is an artifact
from when the 9-track tapes were copied over to EXABYTE tapes in 19XX; multiple 9-
track tapes were copied onto a single EXABYTE tape. From 2003Sep07-2010Jan11, the
convention is: vlaYYYY-MM-DD.dat, where YYYY is the year, MM is the month
number (left-padded with zeroes), and DD is the day of the month (left-padded with
zeroes).

I made a python script which loops over the years, and retrieves the files, using the
above information. Note that I did all of the scripting described in this document in either
python or perl.

For the 1976Jul13-2003Sep06 period, the difficulty is that you don’t know in advance
how many tape numbers there are, or how many files for a given tape, in a given year. To
address that, I simply loop through tape numbers, and retrieve file numbers until there is a
failure (at which point I increment the tape number). When there is a failure on file number
1 for a tape number, I know I’m done with that year.

There is a known failure mode for this technique, however. Say file number N is
missing from the archive (there are missing files, because when the 9-track tapes were
copied to the EXABYTE tapes, some tapes were corrupt and could not be read at all). In
that case, file numbers N+1, N+2, … will not be retrieved. Even worse, say file number 1
is missing – in that case the script will think that the entire year is done, and will not try to
retrieve the files for higher tape numbers. There are some sanity checks to try to test for
these conditions. For instance, in the period 1976-1987, up to 40 9-track tape files could
be fit on an EXABYTE tape, so most tape numbers should have about that many files. In
the period 1988-2003, that number was 17. Visual inspection of the retrieved set of files
indicated some other problem areas (see below), which I fixed by hand. Finally, I got a list
of all of the files in NGAS from this period from Daniel Lyons, and compared it to the list
of retrieved files. That process found 7 missed files from the above process, which I
retrieved by hand.

For the 2003Sep07-2010Jan11 period, things are much simpler, since you can just loop
over years, months, and days, and retrieve the file for each day.

3. Problems with the retrieved files

There were a number of problems with the retrieved files, which I found in a variety
of ways (much of it was just by hand inspection). I’ll describe each of these, and how I
dealt with them.

a. Missing data in April 1989

In April 1989, the following files were missing:
 VLA_XH89016_file9.dat 89-Apr-12 15:13:10 to 89-Apr-13 10:47:40
 ...
 VLA_XH89017_file1.dat \
 VLA_XH89017_file2.dat | 89-Apr-15 22:54:49 to 89-Apr-18 10:02:59
 VLA_XH89017_file3.dat /
 VLA_XH89017_file5.dat \
 VLA_XH89017_file6.dat \
 VLA_XH89017_file7.dat \
 VLA_XH89017_file8.dat \
 VLA_XH89017_file9.dat | 89-Apr-18 13:34:00 to 89-Apr-26 06:42:35
 VLA_XH89017_file10.dat /
 VLA_XH89017_file11.dat /
 VLA_XH89017_file12.dat /
 VLA_XH89018_file1.dat /
 VLA_XH89018_file6.dat 89-Apr-27 15:53:40 to 89-Apr-28 02:40:09
My original idea was to go to the tape vault to see if I could find these tapes. When
I looked, however, I found those physical tapes missing! In one of the strangest

coincidences that has ever happened to me, that same day I went to talk to Juan
Cordova about a different topic. Turned out these tapes were sitting on his desk. He
said that when John Benson had moved offices, he found the tapes in a box, and
brought them to Juan for some reason (Juan is the media specialist, but that is really
for VLBA media)! The other 2 are: XH96055, XH99080, and it turned out that, sure
enough, there were also files missing from those two tapes. So, I recovered the files
from those tapes and put them in the right place. I put a description of how to do this
in Appendix A, just so if for some reason anybody ever has to go back to the
EXABYTE tapes, they have instructions on how to do it.

b. Other missing data requiring retrieval from the original tapes

In the course of all of my data file examination I found, much to my surprise, a
number of files that were duplicates of other files in the existing archive. There were
38 such files, on 7 tapes. When trying to retrieve from tape, I found that some of
these duplicate files did not exist on the original tapes; they were likely simply
erroneously created as copies of other files during the transcription process from tape
to disk. I did find 21 of these files, and retrieved them from the tapes:

VLA_XH01053_file7.dat
VLA_XH01053_file8.dat
VLA_XH01053_file9.dat
VLA_XH01053_file10.dat
VLA_XH01053_file11.dat
VLA_XH01056_file11.dat
VLA_XH01058_file3.dat
VLA_XH01058_file4.dat
VLA_XH01058_file5.dat
VLA_XH01058_file8.dat
VLA_XH01058_file9.dat
VLA_XH01058_file10.dat
VLA_XH01058_file11.dat
VLA_XH01060_file4.dat
VLA_XH01060_file11.dat
VLA_XH01105_file4.dat
VLA_XH01117_file2.dat
VLA_XH01117_file3.dat
VLA_XH01117_file11.dat
VLA_XH01117_file12.dat
VLA_XH03030_file4.dat

c. Missing data in 2003

My guess is that much of this was due to the change from writing data to 9-track
tape to writing it to DAT tape, which formally happened starting on 2003Sep07 (so
files were written one-per-day instead of one-per-tape, and the file naming
convention described above happened).

Most of the period 2003Aug17-2003Sep06 was missing. In addition, files for
2003Sep09, 2003Sep23, and 2003Oct24 were missing. In looking in the AAT, it
turned out that these files had a different naming convention, like:
VLA_XH03104_file7.uvfits.dat. Stephan Witz investigated, and found that there
were 292 files in 2003 that were named like this, but many of them have times that
overlap with other files (notably, many are after 2003Sep07, when the change to the
new file naming convention was made). 2003Aug17 starts in file
VLA_XH03104_file1.dat, so I ignored files prior to that. I need to only go to
2003Sep07 00:00 for that missing chunk of data, which is in the middle of
VLA_XH03116_file11.dat. So I retained all of the files up to that one, and made a
special script to trim all of the data beyond 2003Sep07 00:00 from
VLA_XH03116_file11.dat. That fixed up that chunk of missing data.

The other three dates were a bit trickier. 2003Sep09 is MJD 52891. MJD Start
and stop times for the appropriate files:
 VLA_XH03118_file1.dat 52890.702911 52891.283891
 VLA_XH03118_file2.dat 52891.284007 52891.747356
 VLA_XH03118_file3.dat 52891.747357 52892.054300
I needed to strip out the 2003Sep08 stuff from VLA_XH03118_file1.dat, then
APPEND VLA_XH03118_file2.dat to that, then strip out the 2003Sep10 stuff from
VLA_XH03118_file3.dat and append it. Did that with the scripted mentioned above,
and put the result in vla2003-09-09.dat. Now 2003Sep23, which is MJD 52905:
 VLA_XH03123_file11.dat 52904.893498 52905.186495
 VLA_XH03124_file1.dat 52905.186611 52905.238232
 VLA_XH03124_file2.dat 52905.238347 52905.289968
 VLA_XH03124_file3.dat 52905.290083 52905.341357
 VLA_XH03124_file4.dat 52905.341472 52905.393556
 VLA_XH03124_file5.dat 52905.393671 52905.505882
 VLA_XH03124_file6.dat 52905.505940 52905.604493
 VLA_XH03124_file7.dat 52905.955188 52906.697549
Similar to how I did 2003Sep09, I needed to strip data before 2003Sep23 out of
VLA_XH03123_file11.dat, strip data after 2003Sep23 out of
VLA_XH03124_file7.dat, then concatenate them all into vla2003-09-23.dat.
Finally, 2003Oct24, which is MJD 52936:
 VLA_XH03141_file2.dat 52935.862093 52936.060205
 VLA_XH03141_file3.dat 52936.060321 52936.645622

 VLA_XH03141_file4.dat 52936.645737 52937.081485
I did the same thing here, to produce vla2003-10-24.dat.

d. Other missing files in the 1976Jul13-2003Sep06 era

These were found as a result of the investigation described above, where I
compared the list that Daniel Lyons pulled out of the AAT database to what I had
retrieved via script. In 1996, there were two files missing from my repository,
VLA_XH96055_file9.dat and VLA_XH96055_file10.dat. Those were retrieved and
added. But missing in the AAT database are files 2 through 8. The missing date/time
range is: 1996-08-07 15:17 through 1996-08-10 17:44; I don’t know what projects
that covers. It is unclear why these files are missing, but they may have been bad 9-
track tapes that couldn’t be read. In 1999, there were five files missing from my
repository: VLA_XH99080_file8.dat, VLA_XH99080_file9.dat,
VLA_XH99080_file10.dat, VLA_XH99080_file11.dat, and
VLA_XH99080_file12.dat. Those were retrieved and added. But missing in the
AAT is file 7. Interestingly, there is no gap in time between files 6 and 8; no idea
what happened there.

e. Other missing files in the 2003Sep07-2010Jan11 era

Other missing data in the 2003Sep07-2010Jan11 era are:
 vla2005-02-15.dat (period 2005-02-14 14:32 to 2005-02-16 19:38)
 vla2006-01-01.dat (entire day)
 vla2006-06-22.dat (entire day)
For the 2005Feb15 data, it appears that the array was down and not taking data at all.
From the operator's log webpage:
 Date Time Code File
 2005-02-17 01:27 MAINT pdf
 2005-02-14 12:32 AR545 pdf
 2005-02-14 02:04 AP452 pdf
 2005-02-14 00:04 AC789 pdf
 2005-02-13 23:05 AB1156 pdf
 2005-02-13 17:05 BD103 pdf
 2005-02-13 14:06 AH869 pdf
 2005-02-13 05:08 AD506 pdf
 2005-02-13 04:08 AR545 pdf
So it looks like there is simply nothing there. The 2006Jan01 data looks the same.
There is a gap in logs, so it's likely that no observing was happening.
The 2006Jun22 data is different. Stephan Witz found the following files in NGAS:
vla2006-06-22.AA304.dat, vla2006-06-22.AG715.dat, vla2006-06-22.AM868.dat,
vla2006-06-22.AR604.dat. They have the following timeranges:
 vla2006-06-22.AA304.dat - 2006-06-22 04:10:17.156 to 2006-06-22 09:38:51.323
 vla2006-06-22.AG715.dat - 2006-06-23 04:36:17.156 to 2006-06-23 09:35:07.156

 vla2006-06-22.AM868.dat - 2006-06-22 23:39:28.927 to 2006-06-23 04:35:58.927
 vla2006-06-22.AR604.dat - 2006-06-22 09:41:37.208 to 2006-06-23 12:12:01.844
vla2006-06-21 goes right to the end of the previous day. After that the sequence in
time is:
 1: vla2006-06-22.AA304.dat
 2: vla2006-06-22.AR604.dat
 3: vla2006-06-22.AM868.dat
And vla2006-06-22.AG715.dat isn't even on 2006Jun22. vla2006-06-23.dat starts
right at the beginning of that day. So periods of missing data are 00:00 to 04:10 and
12:12 to 23:39 (between AR604 and AM868). There is really nothing to be done
about that. Fortunately, no science observing was occurring then; the operator logs
from that day show that in the first missing period, START was running (startup after
a maintenance day), and in the second missing period, SOFTW was running (software
work). To make the final file for that day, take vla2006-06-22.AA304.dat + vla2006-
06-22.AR604.dat + the portion of vla2006-06-22.AM868.dat on June 22, using the
script noted above, and put them into vla2006-06-22.dat.

f. Zero size files

There were two files that had zero file size: vla2009-12-25.dat and vla2010-01-
12.dat. The first is during the Christmas shutdown, and the operator logs show no
observing that day. The second was after we had transitioned to automatic ingestion
of data into NGAS (post-EVLA upgrade). I deleted both of these files; I’m not sure
why they got created in the first place.

g. Files that have corrupt data in them

There are many files with corrupt data in them. Attempts to parse them without
care fail, because following the various pointers into different areas, and reading data
in the expected amounts, will cause you to end up in random places in the file, and
then you’re stuck. Per-year, I found the following numbers of such files: 1976: 1;
1981: 1; 1982: 4; 1983: 16; 1984: 39; 1985: 23; 1986: 35; 1987: 11; 1988: 29; 1989:
9; 1990: 5; 1992: 4; 1993: 1; 1994: 5; 1995: 3; 1996: 8; 1997: 35; 1998: 22; 1999: 6;
2000: 11; 2001: 5; 2002: 4; 2003: 9; 2004: 11; 2005: 18; 2006: 10; 2007: 9; 2008: 9;
2009: 1. This is a total of 344 files, which is not bad out of 30775 total files (about
1%). Even more nefariously, there are two files in that group that have pointers which
point backwards in the file, but land on a record boundary! I made a script to repair
these files. The script checks a number of variables in the RCA area of the EXPORT
file, and if any of them are outside their expected value, the read pointer in the file is
advanced one byte at a time until a valid RCA record is found. This was run on all
of the corrupt files to fix them.

h. Duplicated data at year boundaries

In the process of stitching the years together (see discussion below), I found
many instances of duplicated data. I don’t see a similar situation with the
Thanksgiving or Christmas shutdowns, so I don’t think it’s directly related to the
New Year’s Day shutdown, but is rather some combination of that plus the year
boundary plus what the operators were doing with tapes at those times. There were
four instances of files that had data that was entirely duplicated in another file (either
the preceding or succeeding file), and four other instances of files that were partially
duplicated. I made modifications to those latter four, to avoid overlaps in time in the
data.

i. Other problems found with the data in the files

There are a number of small problems with actual data in the files that I found
as I read through them, which I had to put checks and fixes for in the final conversion
script. I list these here.

i. Corrupt data in SDA string values

The “Observing Program ID” (as called in H&S) in the SDA is an ASCII string
with six characters. Normally there is no leading whitespace. However, there is at
least one example where there is a leading space in this field. Furthermore, there
exist Observing Program IDs that contain a “/” in them – this is a problem in dealing
with such a file because of disk directory structure and the file naming convention
described below. In those cases, I have replaced the “/” with a “_”. Finally, in
some records, there are non-printable characters as part of this string. The ones I
found when I discovered this problem were all 0x00, or all bits = 0, but there may
be different values. Additional variables in the SDA that are of interest for the
NAAT metadata (see below) that have the same problem (non-printable ASCII
values in string variables) are: “Source Name” (sixteen character ASCII string);
“Correlator Mode” (four character ASCII string); “Observing Mode” (two
character ASCII string), and “Array Processor Options” (four character ASCII
string, though only the first three characters are used). These corrupt string values
are almost certainly a casualty of the copying of the 9-track tapes to EXABYTE
tapes in the 1990’s.

ii. Bad data in source coordinate

The “Source RA, at standard epoch (Radians)” and “Source Dec at standard
epoch (Radians)” (as called in H&S) in the SDA are double precision values. In
some records these are non-sensical. For example, a right ascension that is greater
than 2𝜋 or less than 0, or a declination that is less than -𝜋 or greater than 𝜋.

j. Program code conventions and oddities

Program codes went through various conventions throughout the years, and there
was little enforcement of what went into the OBSERVE files and hence ended up in
the EXPORT files, even in later years. In early days (prior to 1982) program codes

were simply abbreviations of last names, or other convenient labels. In later years,
the convention of using the first letter ‘A’, then the first letter of the last name of the
PI, then a proposal number, was used, for VLA projects. However, even this was not
strictly enforced, so you could have one project, say AB123, that might have a
program code in the EXPORT file of ‘AB123’ in one observation, ‘AB0123’ in
another, and ‘AB 123’ in yet a third (note the space). I decided to try to regularize
all of these by stripping out spaces, and stripping out leading (padded) 0’s in program
codes, so there should be no program codes like ‘AB0123’ in the new archive – only
‘AB123’. This may lead to some irregularities, but I believe it is a better situation
than the present. Valid science codes, after those early years, were of the form: ‘Z[A-
Z][0-9]+’ (using regexp notation) where Z was one of: ‘A’ (VLA – 1982-2010); ‘B’
(VLBA – 1990-2010); ‘G’ (Global VLBI – 1990-2009); ‘S’ (joint spacecraft – 2003-
2009); ‘U’ (other VLBI – 1990-1993); ‘V’ (VLBI network – 1982-1998); ‘W’ (Halca
– 1999-2002).

There were 37 program codes that were simply blank in the entire observation.
For these, I manually inspected the data and tried to match it to a science program, if
appropriate (16 were of this sort), or a related test program (I could usually tell
because the sources and bands would be the same in surrounding data, the program
code just somehow got blanked).

There are a number of program codes that start with a number. Particularly in
the era from 1992-1997 there are a number with a prepended ‘0’, so, for instance,
instead of ‘AD303’ the program code is ‘0AD303’. There was a reason for doing
this at the time, but nobody can remember what it was. There are other instances
where the letters and numbers of the program code were transposed, so, for instance,
the program code is ‘79AM’ instead of ‘AM79’. There are others that I’m not sure
how the ended up like they are. For all of these I either fixed them, or manually
inspected (as for the blank program codes described above) to get a reasonable
program code.

There are program codes that follow the naming convention above (or close to),
but are clearly not related to a project with that code. An example is AQ1159 – the
highest proposal number for AQ was AQ13! Other examples are things like
‘AH0000’, ‘AX3C28’, ‘AX’, etc. I could not think of a rational way to catch all of
them, so left them as-is.

There is one program code of ‘<666>’ which I left as that (Kevin Marvel, I’m
looking at you!).

4. Characteristics of the resulting dataset
The final legacy VLA archive input dataset comprises 30,775 files with total volume

~5.37 TB. Table 1 shows the breakdown by year.

Table	1.	Number	of	files	and	data	volume	by	year	for	the	legacy	VLA	archive	input	dataset.	

Year Number of files Data volume (MB)
1976 17 577
1977 92 3263
1978 160 5986
1979 235 9006
1980 428 15121
1981 821 27027
1982 952 30864
1983 1333 41111
1984 1460 43304
1985 1472 45421
1986 1632 51918
1987 1503 47225
1988 588 63940
1989 646 88015
1990 637 89680
1991 814 114664
1992 924 129859
1993 910 137006
1994 1048 153081
1995 1095 169837
1996 1071 161925
1997 1161 172266
1998 1420 218457
1999 1266 192299
2000 1890 295624
2001 1720 267110
2002 1851 290618
2003 1434 324487
2004 365 276864
2005 363 271071
2006 363 243774
2007 364 445773
2008 365 521640
2009 364 391745
2010 11 23786
Total 30775 5365343

5. Converting the files

Here I describe the various elements of the python script that I wrote to convert the
input dataset to the output dataset (the output dataset being per-observation).

a. Metadata
As the data files are processed, certain metadata needs to be stored in the

program, per subarray. This is to enable the check for a change in observation (by
checking Observing Program ID), the check for a scan change (see definition below),
and other checks. In addition, since I’m crawling all of the data, I may as well keep
track of metadata that might be of interest to the NAAT, and write it to a file that can
be used during the NGAS ingest process to populate the metadata database that the
NAAT will use to enable searches. This could be done on-the-fly, but would
significantly lengthen that ingest process. In fact, some of the metadata could be
retrieved on-the-fly by the NAAT as searches are requested, but, again, it would slow
down the search process, which would annoy users. As a result, the metadata I keep
track of and write is a combination of various values displayed and allowed to be
searched on in both the AAT and the NAAT (for current VLA or ALMA data). I
made the decision to write the observation metadata as an XML file, because I’m
familiar with XML, and it’s well-supported in almost every programming language,
so should be easy to parse. I have an XML schema (an .xsd file) that can be used to
validate the XML if desired. The final list of metadata is:
 Observing Program ID (a)
 Observing “Segment” (b)
 Configuration (a)
 Observer Name (b)
 Subarray ID (a)
 Observation Start Time (MJD UTC)
 Observation End Time (MJD UTC)
 Input File Names (c)
 Associated Raw (EXPORT) Data File Name (b)
 Associated Raw (EXPORT) Data File Size (bytes)
 Associated Subarray Metadata File Names (b)
 Observing Bands (b)
 Scans
 Scan Number
 Source Name (a)
 Start Time (MJD UTC)
 End Time (MJD UTC)
 Integration (Dump) Time (LST seconds)
 Observing Mode (a)
 Correlator Mode (a)
 Number of Antennas (a)
 Source RA at Standard Epoch (radians) (a)
 Source Dec at Standard Epoch (radians) (a)
 Source RA J2000 (radians) (b)
 Source Dec J2000 (radians) (b)
 Epoch year (a)
 Array Processor Options (a)
 Spectral Windows
 Center Frequency (GHz) (b)

 Bandwidth (MHz) (b)
 Number of complex frequency channels per baseline for
each CDA (a)

 Polarizations (b)
(a) Taken	directly	from	the	input	data,	as	defined	in	H&S.	
(b) See	relevant	section	below	on	derivation	of	this	quantity.	
(c) This	is	the	list	of	files	that	the	observation	came	from	in	the	legacy	VLA	input	

dataset.	
For	the	detailed	definitions	and	allowed	values	for	most	of	the	above	quantities,	
please	see	H&S.	

b. Converting Modcomp float & double formats
The Modcomp computers (both the original and upgraded) wrote floats and

doubles in a non-IEEE format. This is described in detail in H&S, Appendix B. How
I convert these to IEEE is shown in the python code in Appendix B.

c. Converting Modcomp “nibbles”
A nibble is 4 binary digits (bits), or half of an 8-bit byte. In the EXPORT files

there are two quantities of interest that are defined this way: “Number of complex
frequency channels per baseline for each CDA,” and “Bandwidth Codes for IFs A-
D.” The former is explicitly part of the metadata listed above; the latter is used in the
calculation of Bandwidth, for revisions 20-23 (see description below). The four
values (for IFs A-D) are packed into two bytes. I used the standard method of
masking off bits and converting to integers to extract these values.

d. Observer Name
In many observations, especially early on, the “Observer’s AIPS Number” was

filled in in the OBSERVE file, and is available in the SDA. The observer’s name can
then be pulled from the USERNO.LIS file in the standard AIPS distribution. For
many observations, however, this value is 0, meaning it wasn’t provided in the
OBSERVE file. In those cases, I use a list provided by Barry Clark that has every
legacy VLA observing project’s PI name. Some observations (notably tests and
operations observations) will not be covered by this, so I define the Observer Name
as “Unknown.”

e. Observing Bands
Observing bands (4, L, C, X, Ku, K, Q, for legacy VLA) are not listed explicitly

in the SDA. I determine the observing bands for an observation by cycling through
all of the spectral windows, and checking the center frequency. I use the band edges
defined in FILLM in AIPS, but expanded somewhat (because I found them too
restrictive).

f. VLBA segments
VLBA observations, both Y27 and Y1, often had an observing “segment”

associated with them, appended to the end of the Observing Program ID, which

incremented from “a” to “b”, etc. These have to be trapped, and the segment
extracted and removed from the Observing Program ID. I use a regex to trap this:
"^(B[A-Z][0-9]+)".

g. Subarrays

When the array was being used for a single observation, but broken into
subarrays, one EXPORT file and associated metadata file will be written for each
subarray. These individual subarray files are associated, however, and can be
identified by inspecting the program ID and the start and stop times of those
individual subarray files. I have made a script to do just that, and put the results into
the Associated Subarray Metadata File Names element of the XML file. So, if there
are 3 subarrays, then the metadata file for subarray 1 will have the names of the
metadata files for subarrays 2 and 3, the metadata file for subarray 2 will have the
names of the metadata files for subarrays 1 and 3, and the metadata file for subarray
3 will have the names of the metadata files for subarrays 1 and 2.

h. Coordinate conversions
There are two coordinates stored in the SDA: coordinates of “epoch,” and

coordinates of “date.” The epoch is stored in the SDA in the Epoch year quantity,
though that quantity was only added in revision 10. There are four possible values:
0 (this is only true for revisions 1-9); -1 (indicates an “of date” coordinate, which was
used for observations of moving objects); 1950 (B1950.0); and 2000 (J2000.0). For
the 0 values, there are really only two possibilities: B1950.0 or “of date.” Which it
is can be determined by whether the coordinates of epoch and coordinates of date are
different or the same. For consistency with post-upgrade VLA data, it seems
advisable to calculate J2000.0 positions for all scans, and store them in the metadata,
although I’m retaining the epoch coordinates in the metadata so we could decide to
stick with those if desired. I do this conversion using the Astropy SkyCoord class.
For conversions I use the SkyCoord frame ‘icrs’ for J2000.0. For B1950.0 I use ‘fk4’
and for “of date” I use ‘cirs’ (see Figure 2 in the SOFA reference for the definition
of this frame).

i. Time conversions
Times in the SDA are all IAT, as this was the fundamental timeframe in the

Modcomp online system. For consistency with post-upgrade VLA data, it seems
advisable to convert these times to UTC, which is the fundamental timeframe in the
new online system, and what is stored in the SDMs and BDFs. I do these conversions
with the Astropy Time class. I add the “Date (MJAD)” value from the RCA, to get
full MJD UTC date/time.

j. Channel width problem
As noted in H&S, revisions 20-23 in the archive have various issues with

recorded channel widths (the “Channel separation codes for IFs A-D (the k in
50MHz/2**k)” field). For these revisions, the channel width is re-calculated from
the bandwidth code (“Bandwidth codes for IFs A-D”), with additional information
about whether Hanning smoothing was used or not (from the Array Processor

Options field) and the number of IFs (which can be deduced from the correlator
mode). Given a bandwidth code value 𝑏!for each bandwidth code 𝑖, and a Hanning
value, ℎ, which is 0 if Hanning smoothing was not used, and 1 if it was, and a number
of IFs, 𝑛"# the channel width 𝑐𝑤 can be re-calculated:

𝑐𝑤 = 	
6.25		𝑛"# 	2$

2%!
For bandwidth codes 5 and less, 𝑏! = 2	𝑖. For bandwidth code 6, 𝑏! = 11 , for
bandwidth code 8, 𝑏! = 12, and for bandwidth code 9, 𝑏! = 13. The number of IFs
is 4 if the Correlator Mode starts with “4” or “P”, 2 if the Correlator Mode starts with
“2”, and 1 if the Correlator Mode starts with “1”.

k. Channel offset problem and center frequencies
With the legacy VLA, it was possible to select a channel offset for recorded data

(in the Offset card in the OBSERVE file). When this was selected, the center
frequencies recorded in the “Sky Frequency at Band Center (channel 0) for IFs A-D
(GHz)” field of the SDA are not correct, and they must be re-calculated. This is done
using information in the “Signed sum of LOs for IFs A-D (GHz)” field, the “Channel
offsets for IFs A-D” field, the “Number of complex frequency channels per baseline
for each CDA” field, and the “Channel separation codes for IFs A-D (the k in
50MHz/2**k)” field (or the re-calculated channel width described above. Given that
information, the center frequency for each IF is re-calculated via:

𝑓&'(=	𝑓))*+ +
𝑛,--&./ +

𝑛0$12
22

𝑐𝑤
Note that for revision 20 (dates from 88Jan02 to 89Jan18) channel offsets are
identically 0 in the EXPORT files. The only way to try to remedy this situation would
be to recover the original OBSERVE files (see discussion below), but it doesn’t seem
worth the effort.

l. Polarizations
The polarizations present in a spectral window can be determined from the

Correlator Mode. The legacy VLA could observe either in continuum or spectral line
mode. I have chosen to define continuum observations as having two spectral
windows, with polarizations RR, LL, RL, and LR. For spectral line observations, the
mapping between IFs and polarizations is that IFs A and B were RR, IFs C and D
were LL. For spectral line observations with a Correlator Mode that starts with “P,”
all four polarizations are present: RR, LL, RL, and LR. The second character of these
modes defines only which IFs were used (AC or BD), and the distinction is
unimportant as far as defining the spectral window is concerned. For spectral line
observations with a Correlator Mode that starts with “1,” the second character of the
Correlator Mode defines the polarization from the above IF-to-polarization mapping,
e.g., for Correlator Mode “1A” the polarization is RR. For spectral line observations
with a Correlator Mode that starts with “2,” the two polarizations are defined by the
second and third characters of the Correlator Mode, e.g., for Correlator Mode “2AC”
the polarizations are RR and LL, and for Correlator Mode “2AB” the only
polarization present is RR.

m. Defining scan boundaries
Because of the way the observing system worked for the legacy VLA, where

“scans” that were defined in the OBSERVE file (the Source cards) didn’t actually
correspond to what happened on the array, and hence went into the EXPORT file.
This is because the operator or staff running the observation could go back and forth
in the OBSERVE file, so interpreting when there is a new “scan” can be tricky. I
define a new scan as satisfying three conditions:

1. The	“Start	Time	(LST	radians)”	field	in	the	SDA	changed;	
2. This	is	not	a	subscan.	 	For	scans	that	contained	submodes	(effectively	

subscans	in	the	new	parlance),	which	includes	raster	modes,	pointing	
modes,	etc.,	the	value	in	item	1	above	changes,	but	it’s	not	really	a	new	
“scan;”	

3. Important	 information	 changed.	 	 I	 define	 “important”	 information	 as	
anything	contained	in	the	above-defined	metadata.	

n. Output file naming convention

The per-observation EXPORT and metadata files are named with the
convention:
 ObservingProgramID_subarray_MJDstart_MJDend.exp
where the “exp” is replaced with “xml” for the metadata files. MJD_start and
MJD_end have fractions, with five digits after the decimal (to be accurate to seconds).
An example is: AG566_1_57934.77672_57934.94258.exp.

o. Script structure and dealing with the whole dataset
The script is designed to deal with all EXPORT files in the current directory. It

first makes a list of all of them, then determines the start time of each of them, then
treats them in time order. This is critical, of course, because observations cross file
boundaries. As it processes each record, it fills the metadata information in for each
subarray, and writes the record to an output file. When the Observing Program ID
changes for a subarray, the output file is closed, and renamed (I have to wait for the
last record to know what the final time is), and the metadata XML file is written.
When the last record of the last file is read in, all the subarrays with active data are
dealt with (file closed, renamed, and metadata XML file written).

I kept all of the data in directories by year and processed them one at a time, then
stitched the boundaries between the years together by hand. In principle, I could have
done it all in a single directory, but that directory would have had more than 100,000
files in the end, and filesystem operations become cumbersome in that situation.

There is the main script that does the bulk conversion (convert_export_files.py),
the script that does the subarray association finding and metadata editing
(fix_subarrays.pl), the scripts mentioned above for retrieving the EXPORT files from
NGAS, the script for repairing EXPORT files (repair_one_export_file.py – which
can also be used to only copy certain record numbers), and any number of utility
python and perl scripts to parse and print EXPORT files, check various things, driver
files for bulk repair, etc. All of these are available upon request.

6. Associated files
Each “observation” has a number of associated files, which we could ingest into the

archive and then serve up with the NAAT. The main three associated files are: 1 – the
OBSERVE file which drove the observation; 2 – the operator log of the observation; 3 –
the proposal for the overall project. Not all observations have all of these; for instance, test
observations do not have an associated proposal. Furthermore, we don’t have access to all
of this data for all observations. We have all of the science proposals digitized now (that
was done after we sent them to CV), but it is the full proposal, and only the cover sheets
are public, so those cover sheets would have to be stripped out. We have operator logs
going back to 2003, but prior to that we only have the paper copies. For OBSERVE files,
Ken Sowinski made a backup on disk of all OBSERVE files from 1988-2010, but there are
many missing, and there would need to be some code written to link those OBSERVE files
with the observation files.

This effort is beyond the scope of what I have done to date with the VLA legacy
archive EXPORT files, but I feel like we should not lose sight of it, and in the future it may
be worth pursuing getting these associated files into the archive, and able to be served up
from the NAAT.

Acknowledgements

I couldn’t have written this memo or done this work without the expert input of Ken
Sowinski. Both from his memo 188 (with Gareth Hunt), and from me pestering him with
innumerable questions when I ran across things I didn’t understand in what I saw in the
data. His depth of understanding on the topic is unmatched. I also could not have done
the work without the ability to retrieve the raw EXPORT files from NGAS, provided by
John Benson and Stephan Witz. And, lastly, I couldn’t have retrieved the files I needed
from the ExaByte tapes without Schlake’s help.

References

Hunt, G. C., and K. P. Sowinski, VLA Archive Data Format, VLA Computer Memo 188,
1996.

IAU SOFA Board, SOFA Tools for Earth Attitude, 2019.

Appendix A – Extracting files from EXABYTE tapes

The VLA EXPORT EXABYTE tapes are organized like:
 1. 80-byte ASCII volume header file
 2. First data file
 3. Second data file
 4. etc.
Each data file is comprised of a number of 26624-byte blocks. If you set the blocksize on
the tape device to variable, and then retrieve the files using dd, with an input block size
that is larger than 26624, you don't have to specify that value precisely. To read the files
off of one of the tapes:
 1. Get CIS (Schlake) to put one of the old EXABYTE readers on a public machine.
 2. Load the tape into the drive.
 3. Set the block size to variable:
 phecda% mt -f /dev/nst0 setblk 0
 4. Get the header:
 phecda% dd if=/dev/nst0 of=header.txt ibs=27k
 5. Read the EXPORT files:
 phecda% dd if=/dev/nst0 of=file1.dat ibs=27k
 phecda% dd if=/dev/nst0 of=file2.dat ibs=27k
 phecda% dd if=/dev/nst0 of=file3.dat ibs=27k
 ...

Eventually you'll get a message that 0 bytes were read:
 phecda% dd if=/dev/nst0 of=file15.dat ibs=27k
 0+0 records in
 0+0 records out
 0 bytes (0 B) copied, 0.00808578 s, 0.0 kB/s
which means you're at EOT.

If you encounter an error on tape (e.g., file 1 of XH89017), like:
 phecda% dd if=/dev/nst0 of=file1.dat ibs=27k
 dd: reading `/dev/nst0': Input/output error
 0+2374 records in
 113952+0 records out
 58343424 bytes (58 MB) copied, 257.874 s, 226 kB/s
then you have to rewind and skip over that file and start from there:
 phecda% mt -f /dev/nst0 rewind
 phecda% mt -f /dev/nst0 fsf 1
 ...

Appendix B – Converting Modcomp floats and doubles to IEEE

def modcomp_to_IEEE_float (modcomp_value):

Convert from Modcomp float to IEEE.

 u4 = struct.unpack('>I', struct.pack('>f',modcomp_value))[0]
 sign = 0x80000000 & u4
 if sign != 0:
 sign = 1
 u4 = ~(u4 - 1);
 exponent = ((u4 & 0x7fc00000) >> 22)
 mantissa = u4 & 0x003fffff
 IEEE_value = (-1)**sign * mantissa/(2.0**22) * 2.0**(exponent-256)
 return IEEE_value

def modcomp_to_IEEE_double (modcomp_value):

Convert from Modcomp double to IEEE.

 u8 = struct.unpack('>Q', struct.pack('>d',modcomp_value))[0]
 sign = 0x8000000000000000 & u8
 if sign != 0:
 sign = 1
 u8 = ~(u8 - 1);
 exponent = ((u8 & 0x7fc0000000000000) >> 54)
 mantissa = u8 & 0x003fffffffffffff
 IEEE_value = (-1)**sign * mantissa/(2.0**54) * 2.0**(exponent-256)
 return IEEE_value

