LINE INTERFEROMETER PROGRAM

Mel Wright

and

Chuck Moore

Third Edition

May 1972

FOREWARD

Considerable effort has been made to make this document accurate. It is inevitable that mistakes will remain, therefore please advise the authors of any discrepancies.

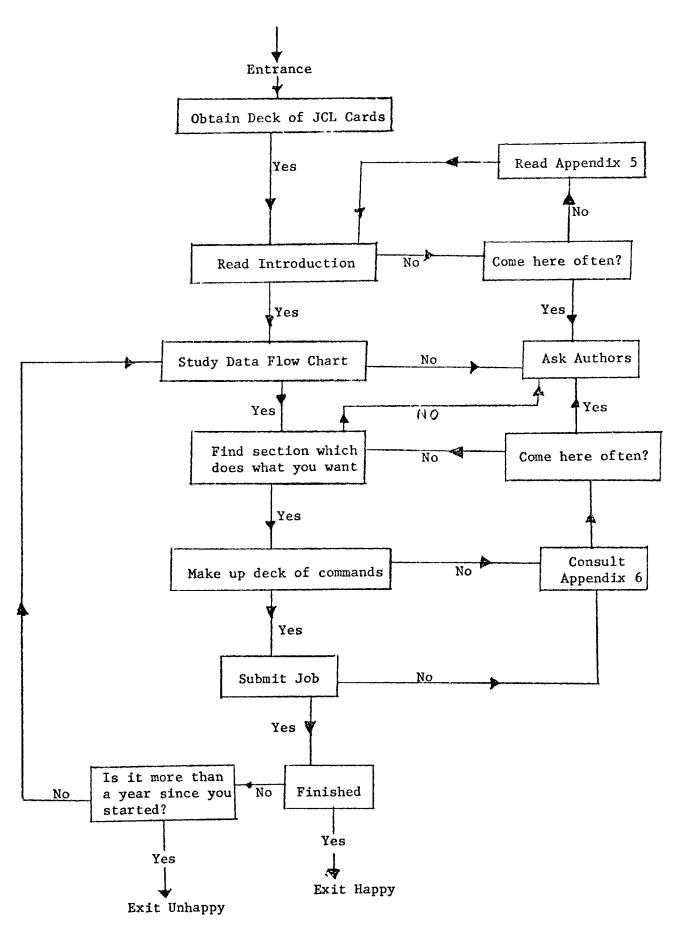
The Program is very flexible and its design has followed the requirements of the line interferometer so far. There are many hidden features (e.g., tracking planets) and additions are readily made, so if you have a need not met by the program, again, consult the authors.

Efforts will be made to keep the documentation up-to-date.

15 January 1972 MCHW CHM

PREFACE TO THIRD EDITION

A small number of additions and improvements have been made to the program and this edition updates and replaces the second edition. Three private disk packs are now in use and can be allocated to major users of the system. A small scratch data file "FREQS" is also available. Maps (HI or polarized S and X band) stored on disk through the program can be displayed on the printer, on the "ARDS" display or CalComp, or punched out on cards for input to other programs. Maps can also be "cleaned" and re-stored on disk.


> Mel Wright May 1972

CONTENTS

- 1. Introduction
- 2. Organization of Program
- 3. Loading a Telescope Tape
- 4. Data Display
- 5. Calibration
- 6. Editing
- 7. Tape Transfers
- 8. Mapping
- 9. Dual-Frequency Data

APPENDIX

- 1. Forth
- 2. H-Line Dictionary
- 3. Adding a Fortran Subroutine to Program
- 4. Record Formats
- 5. Disk Layout
- 6. Examples
- 7. Additional Programs
- 8. Job control Cards

USERS GUIDE

1. INTRODUCTION

a) Purpose and Compatability

The Line interferometer program is designed to reduce and display data from the NRAO line interferometer. Many of the reduction programs have been re-coded from the Dual-Frequency system with particular attention to simplifying the input. The 360 program described here is separate from the Dual Frequency system, but users of the latter will be familiar with many of the job steps. Compatability with Dual Frequency data format has been maintained so that either Line or Dual Frequency data may be reduced using this program. In particular this program provides an automatic way of inverting, mapping and displaying polarized data.

b) Language

The program is a collection of <u>Fortran</u> and <u>IBM - Assembler</u> subroutines called by a <u>Forth</u> program. Essentially the Forth program provides a flexible language for defining operations and the program is directed by punching <u>Verbs</u> and <u>Parameters</u> in free format input. The program is compiled in an overlay structure so that one standard deck together with the Forth directives suffices for all use of the system.

c) The aim of this documentation is to provide a description of the program and a users' guide allowing him to use and extend the present program with his own subroutines.

-1-

The following sections provide a description of the Program and examples of its use to reduce the data.

d) Data Flow

1. The data from the telescope is recorded on 7-track tape data records.

2. The 7-track telescope tapes may be transferred to an "Observer" or "Back-up" 9-track tape in the original data format by a separate program, which rejects and gives advice of wrong length records, etc. No reformatting is done by this program which only serves to store the data on 9-track tape and release the 7-track tape.

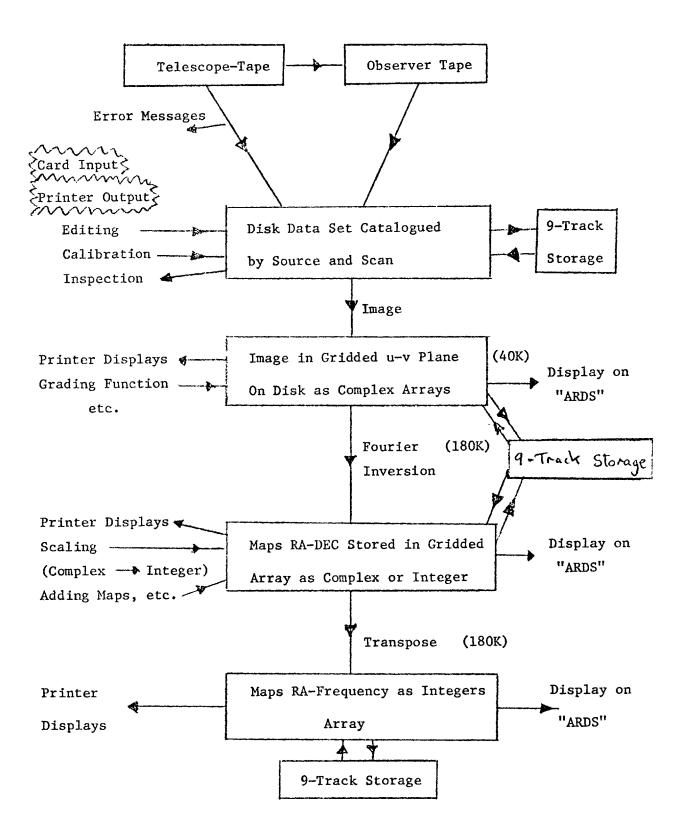
3. Either 7-track telescope tape or 9-track observer tape may be loaded onto disk and converted into a catalogued disk data set. The data is reformatted at this time into 512 word records with the line data scaled into 16 bit words by the "GAIN" settings. Error messages are generated at the time the data is reformatted.

 The data is catalogued, and can be accessed by <u>Source</u> and by <u>Scan number</u>.

5. The data can be inspected, edited and calibrated on the disk.

 The data may be written out and reloaded from 9-track tape for storage at anytime.

7. Any continuum or averaged frequency channel(s) may be imaged into a gridded u-v plane which is also stored on disk.


8. The u-v planes may be Fourier inverted in-core in a 180K job "BIG".

9. A sequence of maps at an equal frequency intervals may be transposed into space-frequency maps.

-2-

10. Either RA-DEC or RA-frequency maps may be displayed as printed maps or on the ARDS display as profiles or contours.

11. Maps can be stored on 9-track tape.

a) Forth

This is the users interface with the program and provides a flexible free-format language for directing subroutine calls within the program.

Two types of words may be distinguised in the use of Forth.

1) Verbs cause some action - usually a subroutine call

2) Nouns set parameters to make choices and do not need repeating unless reset.

The user directs the program by typing a string of nouns to set parametric input followed by a verb to cause the action to take place. A fuller description of the Forth program is contained in Appendix 1 and a dictionary of Forth words is given in Appendix 2.

b) Interface

The Forth is interfaced to the subroutines

i) through a Fortran main routine "INTER" which makes calls to the subroutines.

ii) through a common area "USER" which contains all the parameters which are set by Forth Nouns to be used by the subroutines.

c) <u>Subroutines</u>

The subroutines are written in Fortran or Assembler and are compiled in a hierachical overlay structure. Additional subroutines may be easily added by the user and directions for doing this are contained in Appendix 3.

d) Data Flow

The data from the telescope consists of head records and data records which are recorded on 7 track tape, which is the starting point for this program. The 7 track tape is converted into a catalogued disk data set of constant length (512x16 bit integer) records and all disk access is handled by the routine "FREQS" through a common area "PRIME". FREQS is used to read and write records and index the data by scan # and by source name.

Display, calibration, and editing may all be performed from the disk data set without transfer to tape, but the data may be dumped or transferred to tape at anytime.

e) Mapping

A source may be arrayed into a gridded u-v plane inverted to obtain a map of the sky in any frequency channel (frequency channels can be combined). These maps are also stored on disk and a subroutine "ROWS" transfers the data through a common area "PLANE". In order to obtain a frequency spectra at a point in the sky, the required frequency channels must be separately inverted, stored and re-displayed as a spectra.

f) Disk Layout

The Forth Program, Index by Scan, Index by Source name, Data and Maps all reside on disk. The layout is shown in appendix 5. The user must himself allocate blocks 110 to 159 to hold the indices for given sources, before a tape can be loaded.

-6-

3. LOADING A TELESCOPE TAPE

The line data is contained in a do	uble precision word to avoid analogue				
gain setting for the correlator. This	is converted to single precision				
(16 bits) at the time the telescope is	loaded onto disk.				
The user must:					
i) Allocate disk space to ca	talogue the sources on disk				
\star (ii) Provide a digital gain se	tting to prevent overflow with)				
strong sources.					
TAPES LOAD loa	d in program for tape I/O				
ERASE-SOURCE					
160 DEFINE AVAIL ini	tialize source index				
0 DEFINE EVERYTHING					
110 GAINS 0202* INCLUDE 3C48					
111 GAINS 0202 INCLUDE 3C48-1	disk blocks 110 through 159 are used				
112 GAINS 0000 INCLUDE P0237-23	to hold source index				
etc.	assign blocks to hold index for				
159 GAINS 0000 INCLUDE M33 sources included					
FLUSH ter	minate index				
TELESCOPE-TAPE† rea	ids the sources above onto disk, re-				
for	mats data and monitors ADC and dis-				
con	tinuities in data				
+A JCL card is	required for the telescope tape.				

* "GAINS" are dummy numbers except for Data before March 1972 where the gains are used in reducing line data to 16 bits for baselines 1-2, 1-3, 1-4, 2-3 respectively 0 = x 1., 2 = x 0.1, 3 = 0.01 See also Section 7.

4. DATA DISPLAY

Data may be accessed by source and by scan number. Printed numbers or plots can be obtained for the different receivers or correlators.

LIST_SCANS
HEADER
BASELINES
LOOK
DELAYS
SPECTRAL_DENSITY
PROFS
DISPLAY
PROFILES
DUMP
MONITOR

A) Printed Output

DUMP 3024 A_SCAN FOR EVERYTHING CONTINUUM VECTOR LOOK channels (1 line per record)	FOR 3C48	lists scans in the index for 3C48 (1 line
DUMP 3024 A_SCANprints out every word of SCAN 3024 (6 lines)FOR EVERYTHING CONTINUUM VECTOR LOOKprints amplitude and phase of continuum channels (1 line per record)	LIST_SCANS	per scan)
CONTINUUM VECTOR LOOK channels (1 line per record)		prints out every word of SCAN 3024 (6 lines)
3000 3024 SCANS		

FOR NGC2403	
RX_SUMS VECTOR LOOK	prints added line channels for NGC2403 from
3000 3024 SCANS	scan 3000 to 3024 (1 line per record)
FOR EVERYTHING	
AVERAGE BROAD_BAND	prints the scan-average as real and imaginary
COMPLEX LOOK	for both continuum and rx-sums

3124 3135 SCANS

-9--

B) Plotted Output FOR EVERYTHING a printed plot of the continuum CONTINUUM AMPL(PHASE) channels amplitude (phase) MONITOR 3000 3123 SCANS C) Line-data AMPL (PHASE) select amplitude (or phase) to be plotted 0 30000 Scale The range given in "scale" is divided into 20 equal intervals printed as 0, blank, 1, blank, 2, ------9, blank. RX-AB SPECTRAL-DENSITY a matrix printout of 96 frequencies as above

D) Other displays driven by SCANS are

PROFS	a plot of scan averaged amplitude and phase (1/2 page per scan)
DISPLAY	a printed or plotted display of chosen frequencies

Examples are:

1)	RX-C RX-AB COM RX-CD	PLEX LOC	DK 1010	1050	SCANS	"complex" gives real and imaginary	
2)	CONTINUUM RX-SUMS BROAD-BAND	VECTOR COMPLEX	} LOOK	1100 A-S	CAN an	ector" gives amplitud d phase pairs "contin "line-sum" channels.	uum''
3)	RX-AB RX-CD	Profs	1030	1400	SCANS		
	PLOT } PRINT }	REAL IMAG AMPL PHASE COMPLEX VECTOR	נ }	CONTINUUM LINE-SUM RX-AB FRE(Q 10,	15, 16, 17, 20, A-	PLAY 1034 SCAN

If several types of display are required for the same scan range typing may be avoided by defining: ":GO 1010 1050 SCANS;". This defines "GO" as "1010 1050 SCANS" so that the above might become for example:

:GO 1010 1050 SCANS; RX-AB CONTINUUM VECTOR LOOK GO

FREQ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, PLOT DISPLAY GO RX-AB and VECTOR do not need re-defining as they have not been changed.

E) Profiles down the page may be obtained for selected scans through SCAN-LIST 10, 100, 1000, 1001, 1002,

PRINT PLOT	}	REAL IMAG AMP PHASE COMPLEX VECTOR		PROFILES
---------------	---	---	--	----------

For any of the above the integrating period may be set by:

1 INT = a single record, default value unless re-set by user

AVERAGE is defined as : 120 INT = namely a scan-average.

F) Other displays are:

HEADER	1010	1050	SCANS	a print out of header information
BASELINES	1010	1050	SCANS	prints out baselines

DELAYS prints three amplitudes and phases versus delays in binary. A correlator list is also required thus:

	CONTINUUM			
	RX-SUMS	Ę	DELAYS 1015 1050 SCANS	
	RX-CD FREQ 10, 11, 12	,)		
DIDO	1010 1050 00000	. 1		

DUMP 1010 1050 SCANS the whole record is dumped in decimal

HEX-DUMP defined as:

:HEX-DUMP 20K = DUMP;

gives a hex instead of decimal dump.

5. CALIBRATION

Five calibrations are envisaged:

- i) interferometer baseline
- ii) observing-frequency dependent instrumental phase
- iii) instrumental phase
- iv) shape of the IF passband
- v) instrumental gain

i) Baseline Calibration

BASES	LOAD			load program	
5 VARI	ABLES				
CONTIN	IUUM			use continuum channels	
CAL	3C48	100	200	SCANS	
CAL	3C309.1	150	300	SCANS selects the sources to be used as baseline calibrations	
CAL	3C418	170	270	scans) single iteration	
CAL 3C418 170 270 SCANS / single iteratu SOLVE performs a/least squares :/ to th phase of the continuum data to im the 5 variables: phase center, Bx,					

Bz, K

ii) Combined Fit

A combined baseline and phase-frequency fit may be made by:

6 VARIABLES

RX_SUMS use added line channels

500 SCANS 1700 CAL 3C48 sources to be used as 750 SCANS CAL 3C209.1 550 calibrators SCANS 755 3C295 600 CAL SOLVE performs a least squares / to the phase of the continuum or line-sum channels to improve \$0, Bx, By, Bz, K, d\$/df.

These calibrating programs print out the best fitting parameters, their rms deviation, and a correlation matrix of the variables. Inspection of the data as a phase-time plot can be obtained before and after the data has been corrected. The corrections are stored and may be applied directly:

BASE_COR	500	1000	SCANS	applies the stored baseline
"n" BAND	WIDT	н		corrections to all bandwidths
BASE_COR	600	600 700	SCANS	corrects the data for bandwidth "n" 1≡10 MHz thru 9≡39 KHz
				n=0 is default value

An initial guess may, and should, be entered if there exists a lobe ambiguity in the baseline or phase-frequency parameters. Otherwise the least squares solution may find a false minimum. For this reason it is a good idea to observe a calibrator at a number of frequencies as a crosscheck.

0	0	0	0	0	0	в12
0	0	0	0	Q	1413	B13
0	0	0	0	0	-121	B23 {
0	0	0	0	0	0	B14
	BASE_COR			100	1000	SCANS

corrects all B/W's for initial values of all 6 variables, ϕo , **Δ**Bx, ΔBy , ΔBz , ΔK , $d\phi/df$.units : millilobes, $\lambda/1000$ and millilobes per MHz

iii) Instrumental Phase

A phase centre is calculated in the baseline fitting program, but the instrumental phase may be computed between jumps by:

1 VARIABLE CAL 3C295 100 300 SCANS determine instrumental phase from 300 SCANS CAL 3C48 100 these calibrators 3C309.1 100 300 SCANS CAL SOLVE correct all B/W's BASE COR 100 300 SCANS

iv) IF Passband

PASS-BAND 144 A-SCAN	generates the shape of the scan averaged spectrum for scan 144 and stores its complex reciprocal on disk.
RX-AB EDIT-BAND 145 147 SCANS	multiplies the given range of scans by the stored reciprocals. Appli- cation of the calibrator to itself yields a corrected pass-band of constant amplitude and constant phase. A range of (-4, 4) is allowed in amplitude and the digital precision is limited to one part in 2 ¹² . The average phase across the pass-band is preserved through this correction.

v) Gain Calibration

To inspect for system gain variations (actually system noise temperature variations if ALC is used):

1) Store the calibrator fluxes (in mfu)

e.g. for 3C48

15600 STORE-FLUX 1000 9000 SCANS

for 3C147

22500 STORE-FLUX 1000 9000 SCANS

2) The reciprocal gains i.e.,

1000/(count per mfu)

can be printed out using:

FOR EVERYTHING (AVERAGE) BROADBAND

RECIPROCAL-GAINS 1000 9000 SCANS

3) These are the numbers to be used in MULT-AMPL if you wish to correct for temporal gain variations.

6. EDITING

Editing is provided by two subroutines "Edit" and "Phase" each with several entry points. Edit provides for Editing directly. Phase corrects for baseline, position, clock, atmospheric and observing frequency changes.

A) Direct Editing

	FETCH
	STORE
	DELETE
	MULT_AMPL
	ADD_PHASE
	EDIT_BAND
L	

Exam	nles	
L'YOUN	pree	

EDITS LOAD	load program
4 FETCH 144 A_SCAN	print word 4 of every record in scan 144
DATA 144 A_SCAN	store the value 50 into word 4 of data records
RX_A DELETE 140 150 SCANS COR_1 DELETE 140 A_SCAN	flags line receiver bad flags continuum bad
RX_AB 500 MULT_AMPL	multiplies data by 500/1000
RX_AB 50 ADD_PHASE	add 50 degrees of phase to RX_AB

B) Phase Corrections

	CLOCK_COR
	POSITION_COR
	PHASE_COR
-	

<u>Examples</u>

FOR EVERYTHING

PHASE	COR	2	corrects for atmospheric phase effects
140	5260	scans)	
10 CL	DCK_COR	}	adds the given correction (ms) to the
5260	5400	scans)	clock

FOR	3C286	Adds corrections 130 x $1/100$ secs of time in RA, 40 x $1/10$ secs arc in DEC to position
130	40 POSITION_COR	of 3C286. Decimal points may be inserted without effect so the position changes may also be written 1.30 4.0.
500	5000 SCANS	
		Trailing zeros must be present.

7. TAPE TRANSFER

TAPES	LOAD		load program
TELESC	OPE-TAPE	*	transfers the data to a catalogued disk data set
500	2700	OBSERVER-TAPE*	transfers back-up tape of data to disk
500	2700	WRITE-NINE	writes a scan sequential 9 track tape from disk for scans 500 2700
500	2700	LOAD-NINE	loads the 9 track tape (written by above)
500	2700	1 BAND-WIDTH	as LOAD-NINE but loads only the 10 MHz Bandwidth data($2 \equiv 5$ MHz, , $9 \equiv 39$ kHz,)
500	2700	COPY-NINE	copies 9 track tapes
500	7000	TAPE-INDEX	list of scans on tape in given range

The whole disk-file may be dumped onto tape and re-loaded through two separate programs. "DUMP" and "LOAD" (See Appendix 7).

* Data taken before March 1972

It is necessary to remember which baselines are attached to which correlator inputs and prefix these commands by "# NU = ". Cases allowed for at present are:

2 receiver mode

4 NU = channels 1-192 BL12, channels 193-384 BL23 5 NU = channels 1-192 BL13, channels 193-384 BL23

3/4 receiver mode

6 NU = channels 1-96 BL12, channels 97-192 BL13, channels 193-288 BL23, channels 289-384 autocorrelator

The Gains to be applied to the line data must also be inserted. See Section 3.

8. MAPPING

The mapping process has two stages:

Imaging the data for the desired source, correlators and base-1) lines into a gridded u-v plane.

2) Fourier inverting the u-v plane to obtain a map of the brightness distribution in the x-y plane.

The Fourier inversion may be performed in the usual 90K job using disk storage but is better performed in a separate 180K job which also provides for storing the maps as integers.

90K Mapping A)

 DIMENSION
RESOLUTION
LINE_FREQ
IMAGE
MAP
READMAP
TRANSFORM

Examples

l

MAPS LOAD

	127	DIMENSION	128 x 128 array 3" arc per cell	(This is	The	default
)	3 0	RESOLUTION	3" arc per cell	in sky		value

load program

3000 ARRAY =

RX-SUMS ONE-FREQ 9

30

starting address for map on disk (128 blocks per map) u-v plane to be made from $\frac{1}{9} \sum_{i=1}^{9} freque i$. Produces real map (imaginary part zero). Amplitude and phase in u-v plane are meaningful.

Ð

RX-SUMS	frequencies 1 thru 9 added together
1 q LINE_FREQ	and end up in Real map, 10 thru 18
	in Imaginary." Amplitude" and "phase" in U-V plane are not valid.
500 27000 IMAGE NGC2403	image the given scan range into a
JUU 27000 IMAGE NGC2405	gridded u-v plane
0 100 SCALE	a printed plot of "1" thru "9" ranging over the previous set scale a 2 digit display of Left Haif plane
AMPL MAP {	ranging over the previous set scale
REAL PLANE	a 2 digit difplay of left Hail plane
TRANSFORM	inverts the data and puts it back
	into block 3000
0 10000 SCALE	re-set scale
44 76 45 77 OUTER_AREA	
50 70 60 70 INNER_AREA	set area displayed below
REAL READ_MAP	freqs, 1-9
IMAG READ_MAP	freq 5 . 10-19

Readmap is a 4 digit printout and also gives the sums and averages over the inner and outer areas specified.

B) Map Operations

BEAM
MOVE_MAP
MULT_MAP
ADD_MAP
DIVIDE_MAP

-20-

Examples

3000	INTO	3128	MOVE_MAP	enables one to preserve the u-v plane
3000	INTO	3128	ADD_MAP	adds 1st map into 2nd
3000	INTO	1328	MULT_MAP	multiplies 1st map into 2nd
3000	INTO	1328	DIVIDE_MAP	divides 1st map into 2nd
				creates a u-v plane which when trans-
10 LC 3000)W = INTO	3128	BEAM	formed gives the beam offset 10 cells
				in RA from the map center

C) 180 Mapping

Uses the large partition to invert already stored u-v planes.

UV	
GET	:
SQUEEZE	
TRANSFORM	
MAP	
SECOND MAP	
PUT	
TRANSPOSE	

Examples

UV 3000 GET	move u-v plane into core
TRANSFORM	invert
1000 1000 SQUEEZE	condense to integer maps $(\div 1000)$
MAP	l digit printout of real map
4000 PUT	store integer map
SECOND MAP	imaginary map printout
4032 PUT	store integer map (32 blocks per map)

BEAM, in 180K mapping pgm, adds 1000 into imaginary part before "TRANSFORM". can be used for a real map to give the beam shape in the imaginary (or second) map.

The integer maps stored by the 180K program take 32 blocks each (for a 128 x 128 map). These maps can be used as input for an iterative souce subtraction program "CLEANF" which stores the cleaned maps back onto disk in a new location. (For details ask for separate memo.)

9. DUAL FREQUENCY DATA

The program has been designed to handle dual frequency data. Either 7 track telescope tapes or 9 track calibrated or uncalibrated tapes may be loaded onto disk and all the baseline fitting and display programs are available by specifying the appropriate correlators.

A) Loading Tapes

or

TAPES LOAD

	-include sources, etc
loads 7 track	3 NU = TELESCOPE-TAPE
loads 9 track	500 28000 DUAL-FREQ

S-BAND RR

VECTOR LOOK 500 28000 SCANS

-displays S-band RR data, etc.

B) Mapping

	M	APS LOAD								
	127	DIMENSIO	N							
10	10	RESOLUTI	ON	1	lx1	arc	cell	size	in sky	ÿ
0	100	SCALE								
	3000	ARRAY =								
X-BA	ND RR									
RR OI	c LL or	RL								
500 2	28000 I	MAGE 3C20)							
utomatical	ly give	s RL and	LR* in	u-v	plane	for	pola	rized	data.	

"RL" automatically gives RL and LR* in u-v plane for polarized data. AMPL MAP give intensity of polarization PHASE MAP and 2x for polarized map

The polarized maps may be transformed and operated on as for line data. Note that the amplitude and phase of a polarized map are the intensity and twice the position angle of the polarization.

LOW-RR	
LOW-LL	are defined to give maps from the 2-3 baseline only.
LOW-RL	,

Dual frequency maps may be inverted and cleaned through the 180K program as for 21 cm maps.

APPENDIX 1

THE H-LINE FORTH LANGUAGE

The Forth language is a dictionary search for character sequences or "words" broken by spaces. Certain character sequences define basic machine operations and the Language is built up by defining other character sequences in terms of already defined words. The language is self-compiling and definitions may be mixed together with executable words.

The Forth used in this program is a particular application of the language to the IBM 360/50. In this application the Forth is interfaced with Fortran and is able to set parameters in the Fortran common area "/USER/" and to make subroutine calls from the Fortran main program. The parameters in common may all be directly set (for example: "45 THETA =") but are mostly combined into more mnemonic definitions. (For example, "RR" sets up the number and a list of the correlator positions for the RR data.) The subroutine calls are made by other words; the verbs of the language which cause actions to take place.

The program is run off-line by submitting a card deck of directives which starts:

E LOAD

H-LINE LOAD

- Displays - MAPS LOAD ----- mapping -- TAPES LOAD ----- tape 1/0 EDITS LOAD — editing BASES LOAD — baseline fitting OPTIONAL LOAD — extras

MAPS, TAPES, EDITS, BASES overlay each other

The current definitions may be inspected at anytime by:

E LOAD

CARDS LOAD

20 40 SHOW

Definitions may be added or changed (caution) by the user

": WORD OTHER WORDS;"

defines "WORD" AS "OTHER WORDS."

APPENDIX 2

H-LINE FORTH DICTIONARY

a)

Common "/USER/"	USE
THETA	rotation of array
F1	starting frequency
NF	number of frequencies
DF	interval between frequencies
RES (4)	$\Delta_x, \Delta_y, \Delta_u, \Delta_v$
NS	count of items in List
LIST (38)	Lists of scans and frequencies
LOW	Lower Limit
HIGH	Upper Limit
INT	number of records integrated
С	correlator posiiton
SCAN	scan #
RECORD	record #
NU	frequency
P	polarization
SOURCE	used in disk index
ARRAY	<pre>starting block # for map</pre>
K	used for real imag, etc.
ARG (3)	multiply used for parameter passing
Y-DIM	used in retangular FT
K 1	entry point in "INTER"
NR	<pre># of repitions of "SCANS" loop</pre>
ENTRY	entry point in subroutines

b) Words used to set parameters

INCLUDE	create a source index on disk
GAINS	set scaling factor for data transfer
DEFINE	a define file statement
AVAIL	a define file statement
INNER-AREA	inner area for readmap
OUTER-AREA	outer area for readmap
A-RECORD	sets record number
DATA	data records chosen by SCANS
HEAD	head record only chosen by SCANS
EVERY	every record chosen by SCANS
REAL	real part of data
IMAG	imaginary part of data
AMPL	amplitude of data
PHASE	phase of data
COMPLEX	real and imaginary of data
VECTOR	amplitude and phase of data
RX-A	frequency channels 1-48
RX-B	frequency channels 49-96
RX-C	frequency channels 97-144
RX-D	frequency channels 145-192
RX-AB	frequency channels 1-96
RX-CD	frequency channels 97-192
RX-ABCD	frequency channels 1-192
RESOLUTION	sets Δ_x , Δ_y , Δ_u , Δ_v for mapping
BASELINES	printout baselines

LOOK	printout given frequency list
HEADER	printout header
FREQ	list frequencies
SCAN-LIST	list scans
DUMP	prints whole record
PASS-BAND	store spectral pass-band or disk
WATER	printout water vapour rxs
DISPLAY	display frequency list
SPECTRA	averaged amplitude and phase
SPECTRAL-DENSITY	a matrix plot out
MULTIPLY	multiply and add phase to data
MULT-AMP	multiply data
ADD-PHASE	modify phase of data
PHASE-COR	apply atmospheric phase corrections
BASE-COR	apply baseline ocrrections
POSITION-COR	apply ΔRA , ΔDEC corrections
GRADING-FUNCTION	specify half widths of
PRIMARY BEAM	specify half widths of
INTO	dummie word
VARIABLES	no. of variables in baseline calibration
BANDWIDTH	no. of variables in baseline cultibration bandwidth of data to be used in above

c) <u>Words used to cause actions</u>

FLUSH	moves included sources to disk
MAP	a printed contour map
READ-MAP	a numerical printout of map
ERASE-SOURCE	erase disk source indices
ERASE-ARRAY	zero array on disk
SCANS	a loop through scan #s
A-SCAN	a single scan
TRANSFORM	an FFT routine using disk access
TELESCOPE-TAPE	load 7 track tape onto disk
OBSERVER-TAPE	load 9 track observer tape
DUAL-FREQ	load dual frequency data onto disk
LOAD-NINE	load 9 track tape onto disk
WRITE-NINE	write a 9 track tape
COPY-NINE	copy a 9 track tape
TAPE-INDEX	index a 9 track tape
BEAM	make BEAM of array
ADD-MAP	add arrays together
IMAGE	make a gridded u-v plane
GENERATE	make a specified map
CAL	use source as calibrator

APPENDIX 3

To Add A Fortran Subroutine To H-Line

- Code the subroutine accepting all input through common /USER/. Compile it as a member of "MOORE • MODS".
- 2) Recompile subroutine "INTER" with a call to your subroutine.
- Add your subroutine to an overlay statement with similar subroutines in the "LINK-EDIT" deck.
- 4) Add a Fortran definition of your subroutine to the "FORTH" deck, and/or a suitably memonic definition in the "FORTH" definitions.

H-LINE RECORD FORMAT

Content (units) Word Unused fields 1 integer 1 (identifies header) 2 scan no. (0 - 32767)3 360: no. of data records 4 Greenwich sidereal days since 2424832 5-6 LST 116: BCD (.1⁵) 360: integer (.1^S) source name (8 ANSI letters, even parity) 7-10 11-12 RA (rev) 116: 30-place fraction 360: REAL*4 11 13 - 14Dec (rev) 15 return code: 0 1 2 3 4 5 6 16 start LST (10^s) etart 1.02 (stop LST (10^S) 17 18 mode 19 system 20 observer (2 ANSI letters) tt 21 operator 22 23 no. of phase corrections applied 24 ** 11 25 clock ... 11 26 position 27 85-1 Dec (1/4 rev, 15-place 28 HA fraction) - 11 29-30 85-2 11 31-32 85-3 33-34 line-of-sight standard-of-rest velocity (c) 116: 30-place fraction 360: REAL*4 35-36 synthesizer frequency (Hz, integer) Z₁₂ baseline (1/1024 cycle) 116: integer 37-38 360: REAL*4 Z₁₃ Z₂₃ Z₁₄ 11 39-40 41-42 43-44 45-46 x x12 x13 x23 x23 x14 47-48 49-50 51-52 53-54 Y ...12 55-56 ¥13 57-58 23 ¥14 59-60 **61-62** ^k12 ^k13 63-64 ^k23 65-66 ^k14 67-68

69 source scaling divisor 70-100 101-512

```
Content (units)
Word
                                                   Unused fields
1
          integer 2 identifies data
2
          scan no. (must match header)
3
4
                                                   sidereal day
          LST 116: BCD (.1<sup>s</sup>)
5-6
               360: integer (.1<sup>s</sup>)
7
          mode: 1 S-band
                  2 X-band
                  4 mixed
8
          receiver baselines (see word format)
9
          no. of distinct baselines
10
          correlator gains (see word formats)
                                    11
11
          if selection
                                    11
12
           computer control
                                    u
13
          lock
                                    11
14
          range
                                    11
15
          faults
          85-1 delay (us, 10-place fraction)
16
                  11
17
           85-2
                  11
           85-3
18
19-20
           local oscillator (Hz, integer)
           integration time (3.2 us, integer)
21-22
23-24
           signal power, channels 1-48
                11
25-26
                                  49-92
                11
                                   93-144
27-28
                11
29-30
                                 145-192
                                    11
31-38
          signal + noise power
32-134
           correlator words 1572-1587
39-42
                bandwidth code, channels 1-48, etc.
43
                mode
44
                noise tube state
45
                gain modulator code
46
                switches \varkappa
47
                switching rate code
48
                clipper test
49
                digital test
50
51-54
                local oscillator, channels 1-48, BCD (10 Hz)
```

55 56 57 58 59-62 63-66 67-70	<pre>1-2 continuum, real</pre>	116: offset ignore data
<u>360</u> forma	<u>t</u>	116 format
71-74	first receiver, real imaginary baseline RMS	71-72 first, real 73-74 imaginary 75-76 (2 ⁻⁷ * RMS) ² 77-82 second "
75-78	second "	83-88 third "
79-82	third "	89-94 fourth "
83-86	fourth	95-134 A/D channels 24-63
87		135-150 correlator.wordsel
88		1588-1603
0 0	A/D channels 24-63	150-256 257-258 channel 1, real
89	85-1 R if monitor	259–260 imaginary
90 91-92	85-2 "	261-264 channel 2 "
91-92 93-94	85-2 85-3 "	265-1024 channels 3-192
95-94 95-96	42' "	
97-104	" sync detector	
105	microwave I phase	
106	"Q"	
107		
108	temperature (^O C)	
109	dew point (°C)	
110	barometric pressure (mm)	
111	cable pressure (?)	
112	85-1 water vapor (?/K)	
113	85-2	
114	85-3 "	
115	" boy tomporature (?)	
116-118 119-125	" box temperature (?)	
119-125	42' water vapor (?/K)	
127-128	The matter super (spar)	
129-130	channel 1, real	
	imaginary	
131-132	channel 2 "	
133-512	channels 3-192	

Word formats

Word	Use	<u>Bit</u>	Use
8	receiver baselines	1-4 5-8 9-12 13-16	RX-A B C D
10	correlator gains	1-2 3-4 5-8 9-12 13-16	
11	if selected	1-3 4-6 7-9 10	85-1 001 XR-SL 2 010 XR-XL 3 100 SR-SL water vapor cal on
12	computer control	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	<pre>85-1 2 3 85-1 receiver 2 " 3 85-1 delay 2 " 3 1-2 correlator gain 1-3 " polarization and focus motors 1-4 correlator gain 2-3 " 2-4 3-4</pre>
13	lock	10 11 12 13 14 15 16	42' out of lock master lo " 85-1 lo " 2 " 3 42' lo "

85-1 lo phase unlocked 2 " 3 " 42' " 14 range master lo out of range if level " 9 85-1 R if level " 10 L "

 11-12
 2

 13-14
 3

 15-16
 42

 85-1 box temperature out of range faults 5 85-1 SR receiver fault 6 SL " SL "XR " XL 9-12 85-2 " 13-16 3 "

Disk Layout	
Block	Content
0	Empty
1	Empty
2	
99	Forth program
100	Name index
101	Calibrations
102	
109	<pre>Scan index</pre>
110	
159	Source index
160	
	Scans
1	
4095	<pre>> Maps</pre>

COMPLETE EXAMPLES

INCLUDE

CAS-A

i)	<u>Loadi</u>	Loading Program			E LOAD		
				H-	LINE	LOA	D
				ТА	PES	LOA	D
ii)	Creat	ing the d	isk index of	sou	rces		
		ERASE-SO	URCE				
	160	DEFINE	AVAIL				
	0	DEFINE	EVERYTHING				
	110	GAINS	0202	I	NCLUDE		3C48
	110	GAINS	0202	I	NCLUDE		3C48-1
	111	GAINS	0000	I	NCLUDE		3C13
	112	GAINS	0000	I	NCLUDE		NGC_2403

FLUSH

113 GAINS

iii) Loading a telescope tape

TELESCOPE-TAPE (+ JCL card)

0203

iv) Inspecting the data on disk for a range of scans

: GO 2500	3000	SCANS;	Output
FOR EVERYTHIN	NG		For all sources
DISK-INDEX	GO		2 lines per sc an
BASELINES	GO		5 lines per scan
DELAYS	GO		l line per record
WATER	GO		l line per record
SYSTEM	GO		1 line permrecord

0 30000 SCALE

AMPLRX-CDSPECTRAL-DENSITYGO1 line per recordRX-ABFREQ20, 21, 22, 23, 24, 30, 31, 32, 33, 34,PRINTVECTOR DISPLAYGO1 line per recordFOR 3C48for 3C48 onlyAMPLMONITORGO1 line per record

Write data to a nine track tape

2500 3000 WRITE-NINE (+JCL Card)

v) Editing Data

EDITS LOAD FOR 3C48 ("EDITS" overlays "TAPES") DELETE RX-AB 13 A-RECORD 200 A-SCAN FOR EVERYTHING DELETE COR-1 300 3100 SCANS

vi) Correcting for Atmospheric phase, clock corrections, Error in position of 3C48.

PHASE-COR	2500	3000	SCANS
10 CLOCK-COR	2500	2700	SCANS
5 CLOCK-COR	2701	2800	SCANS
-5 CLOCK-COR	2801	3000	SCANS
FOR 3C48	0	100	POSITION-COR
	100	2000	SCANS

vii) Initial correction to baseline

BASES	LOAI)				
0	0	0	0	0	10	B12
0	0	0	0	0	-100	B13
0	0	0	0	0	0	B13
0	0	0	0	0	0	B1 4
BASE-	COR	10	000		2000	SCANS

viii) Finding a least squares solution

:60	1000	2000	SCAN	ز ^{ss}		
CONTINUUM						
4 VARIABLE	S					
CAL 3C48	60					
CAL 3C309.	1 60					
CAL 3C286	GO					
CAL P0237-	-23 GO					
CAL P10554	-01 GO					
SOLVE						
BASE_C	or c	50				
Inspect amplitude of continuum						
CONTINUUM AMPL MONITOR 2500 3000 SCANS						
Correction for system gain change						
EDITS LOAD FOR EVERYTHING						

RL-AB	1.20	MULT-AMPL	2500	2700	SCANS
COR-1	1.20	MULT-AMPL	2500	2700	SCANS

xi) Inspect phase of continuum

ix)

x)

CONTINUUM PHASE MONITOR 2500 3000 SCANS

xii) <u>Detailed phase fitting</u> - suppose that this is just a phase jump occured in scan 2700 and that we are in mode 6.

COR-1	15	ADD-PHASE	2500	2700	SCANS
RX-AB	15	ADD-PHASE	2500	2700	SCANS
COR-2	-60	ADD-PHASE	2500	2700	SCANS
RXCD	-60	ADD-PHASE	2500	2700	SCANS
COR-2	-20	ADD-PHASE	2700	3000	SCANS
RX-AB	-20	ADD-PHASE	2700	3000	SCANS
COR-2	+40	ADD-PHASE	2700	3000	SCANS
RX-CD	+40	ADD-PHASE	2700	3000	SCANS

xiii) Passband Correction

Using scan 2500 as the reference up to scan 2900 and scan 2900 thereafter

FOR EVERYTHING

PASS-BAI	ND	2500	A-SCAN		
RX-AB	EDI	T-BAND	2500	2899	SCANS
RX-CD	EDI	T-BAND	2500	2899	SCANS
PASS-BAI	ND	2900	A-SCAN		
RX-AB	EDI	T-BAND	2900	3000	SCANS

xiv) Look at some corrected visibility spectra

FOR EVERYTHING

RX-AB	PROFS	2700	2750	SCANS
RX-CD	PROFS	2700	27 50	SCANS

Write corrected data to a nine track tape

TAPES LOAD

- 2500 3000 WRITE-NINE (+JCL Card)
- xv) Image a source into the (u,v) plane
 - a) for the continuum

MAPS LOAD

CONTINUUM 40

3000 ARRAY =

127 DIMENSION

20 20 RESOLUTION

2500 3000 IMAGE NGC2403

0 100 SCALE

AMPL MAP

PHASE MAP

b) For a single frequency channel (#13 also get 14 as bonus)

13 1 LINE-FREQ

3128 ARRAY =

2500 3000 IMAGE NGC2403

xvi) Make a beam from continuum

3000 into 3256 BEAM

xvii) Transform all this

3000 ARRAY=

TRANSFORM

REAL MAP

3128 ARRAY=

TRANSFORM

REAL MAP

IMAG MAP

3256 ARRAY =

TRANSFORM

REAL MAP

xviiii) correct for shape of primary beam

3384 ARRAY=

13 13 PRIMARY BEAM GENERATE

3384	INTO	3000	MULTIPLY-MAP
3384	INTO	3126	MULTIPLY-MAP

3384 INTO 3256 MULTIPLY-MAP

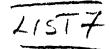
xx) Display corrected data

3000 ARRAY= REAL MAP 3128 ARRAY= REAL MAP 3256 ARRAY = REAL MAP DUMP is a program to copy a FORTH disk data-set onto tape. Blocks are read from disk, blocked 10 to a record, and written sequentially onto tape. DUMP verifies completion of each data card by listing it <u>after</u> processing it.

You must modify 3 cards in the sample deck below: FT01F001 DD card for <u>disk</u> FT02F001 DD card for <u>tape</u> (but don't change the DCB parameters) one card for each set of blocks to be dumped - first and last block (inclusive) in 216 format.

This deck will dump blocks 1-99 and 4000-4096: //GO.FT01F001 DD DSNAME=MOORE.DISK,DISP=SHR //GO.FT02F001 DD UNIT=2400,DCB=(RECFM=FB,LRECL=1024,BLKSIZE=10240), // DISP=(NEW,KEEP),DSNAME=X,VOLUME=SER=1379,LABEL=2 //SYSIN DD * 9-TRACK 1 99 4000 4096

You may dump onto a 7-track tape for processing at Tucson. The first input card specifies the longer 7-track records (which are no longer blocked). Fere is the deck above:


//GO.FT01F001 DD DSNAME=MOORE.DISK,DISP=SHR //GO.FT02F001 DD UNIT=TAPE7,DCB=(RECFM=F,BLKSIZE=1536,DEN=2), // DISP=(NEW,KEEP),LABEL=(,BLP),VOLUME=SER=FOR-2 //SYSIN DD * 7-TRACK 1 99 4000 4096 Load is a program to copy a dump tape back onto a FORTH disk data-set. You may change the block addresses on disk, but you must account for all the blocks read (sequentially) from tape. FT01F001 and FT02F001 have the same meanings (disk and tape, respectively) though the content of FT02F002 is different.

This deck will re-load the tape dumped above into blocks 1-50 and 5000-5049, ignoring original blocks 51-99 and 4050-4096. //GO.FT01F001 DD DSNAME=MOORE.DISK,DISP=SHR //GO.FT02F002 DD UNIT=2400,DSNAME=X,VOLUME=SER=1379,LABEL=2,DISP=OLD //SYSIN DD * 1 50 5000 5049

STORE7 program to store 7-track take //HLINE6 JUB (173.C.6.7.14), wRITE, MSGLEVEL=1.CLASS=B //STURE7 EXEC PGN=STORE7 //STEPLIB UD DSN=MCORF.JOBS.DISP=SHP //FT04F001 UD DSN=BACK-UP,DISP=MOD.UNIT=TAPE. // VOL=(,RETAIN, SEP=2491), // DLB=(RECFM=VSP,LRECL=2052,BLKSIZE=4108) //FT06F001 DD SYSPUT=4 //DDP116 UD UNIT=TAPE7, DSN=INTERF. CDP116, CCB=(, DEN=1), DISP=OLD, // LABEL=(2,BLP),VCL=SER=0500 //INDEX EXEC PGM=TAPEINDX //SYSPKINT DD SYSCUT=A //TAPE UD UNIT=TAPE, DISP=(ULD, KEEP), LABEL=(, BLP), // VUL=SER=2471 Sample output of store 7. HASP-II JUB STATISTICS -- 13 CARDS READ -- 78 LINES PRINTE NU. HURS= 134) - D 1031 records total NU. DATA= 897 } D 1031 records total EDF = 516 blocks NU. A/D= 0 NU. MSG= 0 NO. POINTING= 0 NU. 100 WORD CATA RECORDS= 0 NU. 1J24 WUKD CATA RECORDS= 897 Sample Output of Take Indere pgm. NRAO VOL 12491 0 FDR2V041080205230HLINE6 /STURE7 R 2975 BLOCKS 2491 00010001 72013 00000002875 EDF1BACK-UP EDF2V041030205230HLINE6 /STORE7 R Tapi inder is used as a check on Store7 516 blocks should have been added to Tape 2491

9 LIST

```
// EXEC PGM=LIST9
//STEPLIB DD DSN=MCOPE.JOBS.DISP=SHR
//FTC3F001 DD DSN=BACK-UP.DISP=OLD.UNIT=TAPE.
// VUL=SEP=2482
//FT06FJC1 DD SYSCUT=A
//* READS SCAN RANGE (15,1X,15)
//FT05FJ01 DD *
2735 2825
```



```
//LIST/0 JOB (173.0.6.7.14).WRITE,MSCHEVEL=).CLASS=8
// EXEC PGM=LIST7
//STEPL18 DD DSN=MCCPE.J08S.DISP=SER
//FTJ6EC01 DD SYSCUT=A
//DDP116 DD UNIT=TAPE7.DSN=INTERF.CCP116.CCB=(.CEN=1).DISP=0LD,
// LABEL=(2.8LP).VCL=SEP=05.00
```

```
Lists Errors on a 7-track
```

télescope tape - Odd length records etc

JOB CONTROL CARDS

```
//HLINE JOB (234, P.6, 4, 3), NINETR, MSGLEVEL=1, CLASS=C
// EXEC PGM=HLINE.COND=FVEN.ACCT=G
//STEPLIB DU OSNAMF=MOCPE.JOBS.DISP=OLD
   FT03F001 DD DSN=BACK-UP,DISP=CLD,UNIT=TAPE,
11
// VOL=SER=2491.CCB=BUENG=1
//FT04F001 UD DSN=CAS-A.DISP=(MOD, PASS), UNIT=TAPE,
// Vul=SER=1675.00P=(RECFM=VSB,LRECL=1028,BLKSIZE=2060)
//FTU6HUU1 DD SYSDUT=A
//UISK UD USNAME=MOORE.FREQS,DISP=ULD
//READER DD *
7C CYL
E LUAD H-LINE LOAD
TAPES LUAD
ERASE-SOURCE 160 DEFINE AVAIL O DEFINE EVERYTHING
110 GAINS 2223 INCLUDE CASA-A
111 GAINS 2223 INCLUDE CASA-B
112 GAINS 2223 INCLUDE CASA-C
113 GAINS 2223 INCLUCE CASA-D
114 GAINS 2223 INCLUDE CASA-E
FLUSH
5 NU =
7830 8311 UBSERVER-TAPE
FIND AVAIL
EDITS LUAD
SYSTEM BRUAD-BAND 5 NS= VECTOR LOOK:
: GO 7830 8311 SCANS ;
FOR EVERYTHING
CUR-1 -PHASE SO
COR-3 -PHASE GO
XX-AU -PHASE GO
SYSIEM GO
TAPES LUAD
7830 8311 WRITE-NINE
DISCARD
GUUDRY
```

This job reads Observer Tape 2491 Transfers Data for included sources to disk Edits and prints out data for inspection Transfers. Edited data to Tape 1675

```
//HLINE JUB (234, P, 6, 4, 3), CASCAL, MSGLEVEL=1, CLASS=C
// EXEC PGM=HLINF,COND=FVEN,ACCT=G
//STEPLIB DU DSNAME=MOCRE.JOBS.DISP=SHR
//FT03FG01 DD DSN=CAS-A,DISP=(DLU,KEEP),UNIT=TAPE,
// VUL=SEk=1675.DCP=(RECFM=VSB.LRECL=1028.BLKSIZE=2060)
//FT06F001 UD SYSOUT=4
//DISK DD DSNAME=MOCRE.FREQS,DISP=SHR
//READER DD *
76 CYL
E LOAD
H-LINE LUAD
TAPES LUAD
ERASE-SOURCE 160 DEFINE AVAIL O DEFINE EVERYTHING
110 GAINS 2223 INCLUCE CASA-A
FLUSH 7830 8311 LOAD_NINE
SYSTEM BROAD-PAND 5 NS= VECTOR LOUK:
: GU 7830 8311 SCANS :
FOR CASA-A SYSTEM GC
RX-AD PROFS GO
RX-CD PROFS GD
DISCARD GOODBY
```

//FREQ JUB (203.0.1.1.1).WRIGHT.MSGLEVEL=1.CLASS=0 // EXEC PGM=HLINE,COND=FVEN,ACCT=G //STEPLIB OU OSNAME=MOCRE.JUBS.DISP=SER //DISK DD USNAME=MCORE.DISK,DISP=SHR,VOL=PRIVATE //FTU6FOD1 UD SYSCUT=4 //READER DU * E LOAD H-LINE LUAD MAPS LUAD 127 127 DIMENSION 3 3 RESULUTION 40 SU 40 SO INNER-AREA 45 75 45 75 NUTER-AREA 0 100 SCALE : LUW-RR 1 P= 0 F1= FREQ 61, ; : LOW-RL 3 P= 0 F1= FREQ 85, ; 5-E AND RR 15000 ARRAY =1000 30000 IMAGE 3020 AMPL REAU-MAP RL 15123 ARRAY = 1000 30000 IMAGE 3020 This job is using PHASE REAU-MAP X-BAND the private disk pack LOW-KR 15250 ARRAY = 1000 30000 IMAGE 3020 onto which data from the AMPL READ-MAP LOw-RL Dual Frequency system has 15384 ARRAY = 1000 30000 IMAGE 3020 already been loaded. PHASE READ-MAP 1 1 RESOLUTION u-v planes for s and X R. 15512 ARRAY =1000 30000 IMAGE 3020 Band are being made for AMPL READ-MAP RL both RR and polarized (RL) 1564) ARRAY = 1000 30000 IMAGE 3020 data. PHASE READ-MAP 5-BAND The definition of LOW-RR and LOW-RL is allowing the selection of the 2-3 RR 15758 AKRAY = 1000 30000 IMAGE 3C20 AMPL READ-MAP PHASE READ-MAP FLUSH GUUDBY baseline only for a X-BAND low resolution map.

```
//BIG JJB (199.0.7.5.14).MOORE.CLASS=0.MSGLEVEL=(1.1)
//LINK EXEC PGM=IEWL, PARM='LET, MAP, LIST', ACCT=L
//SYSLIB DU OSNAME=SYS1.FURTLIB,DISP=SFR
// DD USNAME=SYS1.GPSLMOD.DISP=SHR
//SYSUT1 0D UNIT=2214.SPACE=(CYL,(2,2))
//SYSPRINT_UD_SYSDUT=A,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=3509)
//MODS DD USNAME=MOORE.MOUS.DISP=SHR
//JOBS OD DSNAME=MCCRE.JOBS.DISP=SHR
//SYSLNUD DU DSNAME=ERTEMP(MAIN),DISP=(NEW,PASS),
// UNIT=DISK, SPACE=(CYL, (3, 2, 1))
//SYSLIN UD *
 INCLUDE JUBS(FORTHE)
 ENTRY BEGIN
 INCLUDE MODS(INTER, CAIO)
 INCLUDE MOUS(EXPI, MOVE)
 INCLUDE MUDS(MAPS)
// EXEC PGM=*.LINK.SYSLMUD,COND=EVEN,ACCT=G
//FT06FU01 DD SYSCUT=A
//DISK UU DSNAMF=MCORE.DISK.DISP=SHR
//READER UD *
E LOAD H-LINE LOAD
12 FURTRAN CALL : CALL ENTRY= CALL;
: SIZE DUP DIM= Y+DIM= :
: GET AKRAY = 1 CALL: : PUT ARRAY = 2 CALL;
: MAP 11 CALL':
: TRANSPOSE 3 CALL:
9 FORTRAN QUAD-SWAP
: QUAD-SWAP QUAR-SWAP 5 CALL;
: TRANSFORM 4 CALL QUAD-SWAP: : SQUFEZE 6 CALL:
: SECUND 7 CALL: : BEAM 8 CALL;
: ZERU 9 CALL: : GAUSSIAN FREQ , , , , , 10 CALL:
: NGRMALIZE 12 CALL:
ARG 11 CONSTANT BYTES
0 LUW= 1000 H-IGH=
: MAP NÜRMALIZE MAP:
: SQUEEZE LOW= FIGH= 6 CALL ;
: PICK NF= CIMA 2/ 2+ + ARG= 13 CALL:
3 BYTES= 127 SIZE
: UV 8 BYTES = 127 SIZE ;
UV.
15000 GET
BEAM
TRANSFURM
                               This is the 180 K
1000 1000 SQUEEZE
MAP
16000 PUT
                               version for doing a 128 x128
SECOND MAP
16032 PUT
                               Fourier transform in core.
UV.
15128 GET
TRANSFURM
                                  arrays being transformed
                               the
1000 1000 SQUEEZE
MAP
                                  those of 3020 data
                               an
16064 PUT
SECOND MAP
                               previously made. A beam
may be made at the same time
16096 PUT
                               as an RR on RL inversion
```

THE END

THE END