Confirmation Of S. Srikanth's Pointing Coefficients For GBT Single Subreflector Optics.

Michael A. Goldman

November 28, 1999

Abstract

This note presents independent ray trace calculations to check the values of GBT pointing coefficients for GBT single subreflector optics given in a note of March 6, 1991 by S. Srikanth. These are pointing offsets caused by translations, rotations, or focal length change of the GBT optical elements (main reflector, subreflector, Gregorian focus feed horn, prime focus feed horn). The ray trace derived error coefficients agree in sign and magnitude with those of Srikanth to a few percent.

1 Introduction

Dated March 6, 1991 a short memorandum was filed by S. Srikanth: "Pointing Coefficients for Single Subreflector Optics." This memorandum, Green Bank archive document GBRN 0006995, presented the results of calculations of pointing offsets caused by perturbations in the optical elements forming the Green Bank Telescope. Included in the memorandum was a comparison with the results of pointing error coefficient calculations by R. Levy of Jet Propulsion Laboratories (dated January 23, 1990). The two sets of calculations agreed in some coefficients but differed by factors of two in others. In neither case were details of the calculations presented.

Recently, John Payne questioned whether those results had been independently validated. It was decided that an optical ray trace program should be run to check the coefficients presented in the above memorandum. This has been carried out using the BEAM 3 optical ray trace codes (Stellar Software, Berkeley, CA). The results are presented in Table 2. The geometric assumptions underlying the present calculations are given in the next section of this document. The setup of the ray tracing files is discussed in a subsequent section. The ray tracing files themselves and a copy of Srikanth's memorandum are appended.

2 The Design Telescope Optical Geometry

The starting point for our discussion is the geometry of the reference optical telescope. The design of the GBT optics is given in GBT Memo 155, "A Summary of the GBT Optics Design" by R. Norrod and S. Srikanth, March 1996. A detailed analysis of this design is given in GBT Memo 165, "GBT Coordinates And Coordinate Transforms" by M.A. Goldman, February 1997.

For the purposes of the present document, a summary of the relevant features of the reference optical telescope (which we will also refer to as the design telescope) are given below.

The primary reflector surface is an offset portion of a paraboloid of revolution of focal length $f_{p}=60$ meters. We call this paraboloid the "design paraboloid" or the "parent paraboloid." The plane parabola which generates this surface has curvature at its vertex point, R_{d}, which can be shown to be: $C\left(R_{d}\right)=1 /\left(2 \cdot f_{p}\right)=0.00833333 \mathrm{~m}^{-1}$. (This curvature is needed to set up the ray tracing files.)

The geometry of the reference optical telescope is described in relation to the telescope's main reflector reference frame coordinate system. This is a right hand Cartesian coordinate system whose origin is located at the vertex point of the parent paraboloid. We assume that it is rigidly embedded in the tipping structure of the telescope. We will call the coordinate axes $X_{r d}, Y_{r d}, Z_{r d}$. The $Z_{r d}$ axis points from the vertex to the focal point of the parent paraboloid. The plane of the $Y_{r d}$ and $Z_{r d}$ axes defines the plane of symmetry of the design telescope. The $Y_{r d}$ axis points towards the primary reflector which is located in the half-space $Y_{r d}>0$. The $X_{r d}$ axis is normal to the telescope's plane of symmetry, is parallel to the elevation axis of the telescope, and points towards the right side of the telescope (towards the man lift). The subscript " $r d$ " on the axis designates that the coordinates refer specifically to the main reflector coordinate system for the design telescope.

The secondary reflector is a surface patch on a prolate ellipsoid of revolution, the "design ellipsoid" or "parent ellipsoid." Let us call the focal points of this ellipsoid F_{0} and F_{1}. The design focal spacing is $\left|F_{0} F_{1}\right|=11$ meter $\equiv 2 \cdot f_{e}$. The design eccentricity is $e=0.528$. These values produce calculated values of the ellipsoid semi-axis lengths: $a=10.416667$ meter and $b=c=8.846296$ meter. The ellipsoid focus F_{0} is defined to coincide with the parent paraboloid focus, and is defined to be the prime focus of the design telescope. The major axis of the ellipsoid lies in the telescope plane of symmetry and is defined to make an angle $\beta=5.570^{\circ}$ with the parent paraboloid axis. The focal point F_{1} is defined to be the Gregorian focal point of the design telescope. (Figure 1 and Figure 2).

The subreflector surface patch is symmetric with respect to the design telescope's plane of symmetry. It has an approximate center point, I_{1}, which lies in the plane of symmetry. The point I_{1} together with the point F_{1} define an optical axis for the design telescope. The design telescope receiver room is located so that the phase center of each (non-offset) receiver room feed horn will be at the Gregorian focus point F_{1} and the horn's electromagnetic axis will lie along the line $F_{1} I_{1}$. The plane through F_{1} perpendicular to line $F_{1} I_{1}$ is the Gregorian focal plane of the design telescope. For the design telescope, an optical ray which starts at F_{1} towards I_{1} will reflect specularly through F_{0}, reflect specularly from the parent paraboloid and emerge parallel to the paraboloid axis.

Specifically, the location of the point I_{1} is defined by:

$$
\begin{equation*}
\angle F_{0} F_{1} I_{1}=\alpha=17.899^{\circ}, \tag{2.1}
\end{equation*}
$$

and it follows by simple trigonometry that:

$$
\begin{equation*}
\angle F_{0} I_{1} F_{1}=\gamma=36.127028^{\circ} \tag{2.2}
\end{equation*}
$$

and the ray $F_{0} I_{1}$ makes an angle with the $+Z_{r d}$ axis of

$$
\begin{align*}
& \alpha+\gamma-\beta=48.456028^{\circ} \tag{2.3}\\
& \left|F_{0} I_{1}\right|=r_{2}=5.7341748 \mathrm{~m} \tag{2.4}
\end{align*}
$$

To set up the ray trace files we will need to reference the parent ellipsoid to one of its mathematical vertices and compute the curvature of its generating ellipse at this vertex. We will reference the parent ellipsoid to the upper vertex point on its major axis, which we will call $V_{e l}$. It can be shown that the curvature at a vertex of the generating ellipse is $C\left(V_{e l}\right)= \pm\left(a / b^{2}\right)$. We also need to compute a "shape factor" for the ellipsoid, defined by:

$$
\begin{equation*}
\text { Ellipsoid shape factor }=1-e^{2} \quad(=0.721216 \text { for the parent ellipsoid }) \tag{2.5}
\end{equation*}
$$

In Table 1 we list the coordinates of the design telescope reference points, in the main reflector coordinate system.

Table 1. Design Telescope Reference Point Coordinates (Meters).

Point	$X_{r d}$	$Y_{r d}$	$Z_{r d}$
R_{d}	0	0	0
F_{0}	0	0	$f_{p}=60$
F_{1}	0	$-2 f_{e} \cdot \sin \beta=-1.0676797$	$f_{p}-2 f_{e} \cdot \cos \beta=63.802874$
I_{1}	0	$-r_{2} \cdot \sin (\alpha+\gamma-\beta)=-4.2917258$	$f_{p}+r_{2} \cdot \cos (\alpha+\gamma-\beta)=63.802874$
$V_{e l}$	0	$\left(a-f_{e}\right) \cdot \sin \beta=0.4772204$	$f_{p}+\left(a-f_{e}\right) \cdot \cos \beta=64.893452$

3 Ray Trace Computations Of Error Pointing Coefficients

The Beam 3 ray trace codes are set up to compute an optical system in the following way. An optics (.OPT) file is generated which lists sequentially the properties of the optical surfaces and optical indexes to be traversed sequentially. A ray (.RAY) file is also generated, which lists an initial point and direction for each ray which is to traverse the optical system. Rays are characterized by X, Y, Z Cartesian coordinates and direction cosines U, V, W to the respective X, Y, Z coordinate axes. The optical code files are configured so that code X, Y, Z axes correspond to telescope $X_{r d}, Y_{r d}, Z_{r d}$ axes respectively. Aspheric surfaces of revolution generated by rotation of a plane conic curve, are described by: a vertex point location, the curvature of the generating conic at its vertex, a shape factor if the surface is ellipsoidal, and local tilt and pitch of the surface's axis of symmetry to the coordinate axes. The ray trace calculation generates a vertex list (.VXL file) giving the coordinates of the intersection point of each ray with the optical surfaces, sequentially, and the direction cosines of the ray on exit from the surface.

Ray trace computations of the design telescope were carried out initially to confirm the setup of the optics and ray files. A ray from the Gregorian focus point F_{1} to the parent ellipsoid subreflector's reference point I_{1} should pass through the prime focus point F_{0} of the parent paraboloid and, after reflection from the paraboloid, be directed parallel to the paraboloid's axis. This was confirmed for the

files GBT.OPT and GBT.RAY which were configured to model the design telescope.

Optics files are generated to study the behavior of a reference ray from the design telescope Gregorian focus towards the design subreflector reference point when the telescope is perturbed from its design configuration by motions of single optical elements. The deviation of the exit ray direction, after reflection from the perturbed telescope's paraboloid, is examined when the subreflector is translated (by changing a coordinate of the ellipsoid vertex) or rotated (by changing the tilt or pitch of the ellipsoid). It is examined when the paraboloid is tilted or pitched or translated, by similar means. For these perturbations the original file GBT.RAY is used together with a separate optics file GBT_n.OPT which configures the perturbed optical telescope. To study the effect of feed horn translation (or feed room translation when the active feed horn is fixed relative to the receiver room) the original GBT.OPT optics file is used, together with a separate ray file GBT02.RAY which translates the origin of the reference ray but preserves its initial direction. The exit ray direction angle shift is computed per unit optical element shift in coordinate or orientation.

A right hand sign convention is used for rays rotating about the positive coordinate axes. A positive rotation of an exit ray about the $+X_{r d}$ axis corresponds to the ray leaving with an increased elevation.

The perturbations of the telescope configuration are small, and the small angle approximation: $\sin ($ angle $)=$ angle, $\cos ($ angle $)=1$ holds for deviations of the exit reference ray angle to the $+Z_{r d}$ axis. If either the U or the V direction cosine of the exit ray vanishes, and the other of these two cosines is small, one may read the output file directly to find the ray deviation angle. For such cases the rotation, in radians, of the exit ray about the $+X_{r d}$ axis is equal to $-V_{\text {final }}$ when $U_{\text {final }}$ vanishes; the rotation of the exit ray to the $+Y_{r d}$ axis is equal to $+U_{\text {final }}$ when $V_{f i n a l}$ vanishes. Here $U_{\text {final }}, V_{\text {final }}, W_{\text {final }}$ are the direction cosines of the ray after leaving the final optical surface.

In our study of perturbed telescope configurations we have restricted perturbations of optical component orientation to the following cases. When the paraboloid surface alone is perturbed, by a change in orientation, we leave the paraboloid vertex fixed at the point R_{d}. That is, the perturbed telescope's paraboloid vertex point remains unmoved with respect to the subreflector and Gregorian feed, although the paraboloid becomes tilted about the $X_{r d}$ or the $Y_{r d}$ axis. When the subreflector surface alone is perturbed, by a change of tilt or pitch, we leave the subreflector reference point I_{1} fixed with respect to the paraboloid and feed. The Srikanth and Levy results did not explicitly cite the invariant point of these perturbations. It is not clear, for example, whether the ellipsoid reference point or the ellipsoid vertex was held fixed in perturbing the telescope configuration in those results.

As an example of how the optics file is reconfigured for a perturbed telescope, let us give the example of the configuration where the subreflector is tilted by a small angle, θ radians, about the $+X_{r d}$ axis, while leaving the subreflector reference point I_{1} fixed. The ellipsoid vertex point transforms from point $V_{e l}$ to a new point, $V_{e l}^{\prime}$. Under this perturbation of the telescope configuration: $R_{d} \rightarrow R_{d}, F_{0} \rightarrow F_{0}, F_{1} \rightarrow F_{1}, I_{1} \rightarrow I_{1}$. Coordinates of the latter points remain fixed. The coordinates of the ellipsoid vertex of the perturbed telescope are given by:

$$
\left[\begin{array}{c}
X_{r d}\left(V_{e l}^{\prime}\right) \tag{3.1}\\
Y_{r d}\left(V_{e l}^{\prime}\right)-Y_{r d}\left(I_{1}\right) \\
Z_{r d}\left(V_{e l}^{\prime}\right)-Z_{r d}\left(I_{1}\right)
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \cdot\left[\begin{array}{c}
X_{r d}\left(V_{e l}\right) \\
Y_{r d}\left(V_{e l}\right)-Y_{r d}\left(I_{1}\right) \\
Z_{r d}\left(V_{e l}\right)-Z_{r d}\left(I_{1}\right)
\end{array}\right] .
$$

The small angle approximation is valid and (3.1) simplifies to:

$$
\left[\begin{array}{c}
X_{r d}\left(V_{e l}^{\prime}\right) \tag{3.1}\\
Y_{r d}\left(V_{e l}^{\prime}\right) \\
Z_{r d}\left(V_{e l}^{\prime}\right)
\end{array}\right]=\left[\begin{array}{c}
X_{r d}\left(V_{e l}\right) \\
Y_{r d}\left(V_{e l}\right)-\theta \cdot\left(Z_{r d}\left(V_{e l}\right)-Z_{r d}\left(I_{1}\right)\right) \\
Z_{r d}\left(V_{e l}\right)+\theta \cdot\left(Y_{r d}\left(V_{e l}\right)-Y_{r d}\left(I_{1}\right)\right)
\end{array}\right]
$$

The optics file parameter TILT is modified from β degrees to $\beta+\theta \cdot(180 / \pi)$ degrees. The optics
file data entries are modified to indicate the new ellipsoid vertex coordinates and ellipsoid tilt.

The optics files GBT_n.OPT each describe the changes made to the design telescope GBT.OPT file to reconfigure the file to generate the individual perturbations of the telescope configuration. The final direction cosine entries for each ray in the GBT_n.VXL ray trace output files provide the exit ray deviation angles when evaluated as described above.

4 Results

The ray trace results are summarized and listed in Table 2, together with a comparison of Levy's 1990 JPL results and Srikanth's 1991 results. The coefficients have also been converted to units of arcseconds per millimeter, using the conversion 1 radian $/$ meter $=206.265 \mathrm{arcsec} / \mathrm{mm}$.

Table 2. Differential Error Pointing Coefficients

5 Pointing Error Coefficients From Exit Ray Deviations

The ray trace program results provide exit ray deviation angles per unit displacement or rotation of an optical element of a conceptual telescope, the design telescope. We assume that these results will be used to provide error estimates of pointing errors of the as-built GBT telescope, given the errors of placement of the real optical elements. These error estimates would be used to provide a-priori correction terms in the telescope pointing series. To do this, calculated rotations of the reference exit ray from the $+Z_{r d}$ axis must be converted to error correction terms of the form $\Delta E L_{\text {corr }}$ and $(\cos E L) \cdot \Delta A Z_{\text {corr }}$. Exit ray rotations are sufficiently small, for realistic optical element perturbations, that error terms generated by individual optical element perturbations are separately additive. We next derive pointing error and correction terms generated by small exit ray rotations about the $+X_{r d}$ and $+Y_{r d}$ axes.

We start with the reference exit ray from the design telescope. This ray starts at the design Gregorian focus F_{1} and initially travels to the parent ellipsoid reference point I_{1}. After reflections from the parent ellipsoid and parent paraboloid it exits the telescope parallel to the $+Z_{r d}$ axis. We denote a unit vector in the direction of this design telescope exit ray by \widehat{r}_{d}.

When the reference telescope is oriented at azimuth angle $A Z$ and elevation angle $E L$, the main reflector frame unit basis vectors can be represented with respect to the ground coordinate frame of the GBT by unit vectors:

$$
\begin{align*}
& \widehat{X}_{r d}=(\cos A Z) \cdot \widehat{E}+(-\sin A Z) \cdot \widehat{N} \\
& \widehat{Y}_{r d}=(\sin E L \cdot \sin A Z) \cdot \widehat{E}+(\sin E L \cdot \cos A Z) \cdot \widehat{N}+(-\cos E L) \cdot \widehat{Z} e n \tag{4.1}\\
& \widehat{Z}_{r d}=(\cos E L \cdot \sin A Z) \cdot \widehat{E}+(\cos E L \cdot \cos A Z) \cdot \widehat{N}+(\sin E L) \cdot \widehat{Z} e n=\widehat{r}_{d} .
\end{align*}
$$

We use the notation \widehat{N} (North), \widehat{E} (East), $\widehat{Z} e n$ (Zenith), for the ground frame base vectors because we have previously assigned X, Y, Z as base vectors for the ray trace codes.

Let us assume that the telescope configuration is perturbed by a single optical element shift or rotation, desribed by a telescope design parameter p so that the exit ray is rotated by a small angle $\theta(p)$ about the $+X_{r d}$ axis. The exit ray then rotates to the direction of the vector

$$
\begin{align*}
& \vec{r}=\widehat{r}_{d}+\Delta \vec{r}(p)=\widehat{r}_{d}+\theta(p) \cdot\left[\widehat{X}_{r d} \times \widehat{Z}_{r d}\right] \quad \text { which gives } \tag{4.2}\\
& \Delta \vec{r}=-\theta(p) \cdot \widehat{Y}_{r d} . \tag{4.3}
\end{align*}
$$

The rotated ray remains in the median plane of the design telescope; it has only rotated in elevation. The $+X_{r d}$ axis is the elevation axis of the design telescope; the perturbation rotates the exit ray by an angle $(\triangle E L(p))_{\text {exit_ray }}=+\theta(p)$ in elevation. This may be considered to be an error $E L_{\text {err }}(p)$ in the pointing elevation angle, which requires a pointing correction $E L_{\text {corr }}(p)=-E L_{e r r}(p)$. That is,

$$
\begin{equation*}
E L_{c o r r}(p)=-E L_{e r r}(p)=-(\Delta E L(p))_{e x i t _r a y}=-\theta(p) \tag{4.4}
\end{equation*}
$$

If θ is a smooth function of p (when other telescope parameters are held fixed), then for small changes in p we have
$(\Delta E L)_{\text {exit_ray }}=\left(\frac{d \theta}{d p}\right) \cdot \Delta p$.
The value of $\left(\frac{d \theta}{d p}\right)$ found by the ray tracing then can be considered as a differential elevation pointing error rate coefficient when a small change in parameter p produces a small exit ray rotation about the $+X_{r d}$ axis.

Let us now consider the case that a small change in a general telescope parameter q rotates the exit ray by a small angle $\phi(q)$ about the $+Y_{r d}$ axis, where ϕ is a smooth function of q. In this case the perturbation rotates the exit ray from the direction of \widehat{r}_{d} to the direction of the vector

$$
\begin{equation*}
\vec{\rho}=\widehat{r}_{d}+\Delta \vec{\rho}=\widehat{r}_{d}+\left(\phi \cdot \widehat{Y}_{r d}\right) \times \widehat{Z}_{r d}=\widehat{Z}_{r d}+\left(\phi \cdot \widehat{X}_{r d}\right) \tag{4.6}
\end{equation*}
$$

The vector increment $\Delta \vec{\rho}$ is always horizontal since $\widehat{X}_{r d}$ has no component in zenith; the exit beam is thus rotated in azimuth, but not in elevation. The exit beam's azimuth shift, $(\Delta A Z(q))_{\text {exit_ray }}=\triangle A Z$ is found as follows. When \widehat{r}_{d} is rotated in azimuth from $A Z$ to $A Z+\Delta A Z$ its increment, $\Delta \vec{\rho}$, can be calculated using the last equation of (4.1). We have,

$$
\begin{equation*}
\phi \cdot \widehat{X}_{r d}=(\cos E L \cdot \cos A Z \cdot \Delta A Z) \cdot \widehat{E}+(-\cos E L \cdot \sin A Z \cdot \Delta A Z) \cdot \widehat{N}=(\cos E L) \cdot(\Delta A Z) \cdot \widehat{X}_{r d} \tag{4.7}
\end{equation*}
$$

This gives, by arguments similar to those presented above,

$$
\begin{align*}
& (\cos E L) \cdot A Z_{\text {corr }}(q)=-(\cos E L) \cdot A Z_{\text {err }}(q)=-(\cos E L) \cdot(\triangle A Z(q))_{e x i t_{-} a y}=-\phi(q) \tag{4.8}\\
& (\triangle A Z)_{\text {exit_ray }}=\left(\frac{d \phi}{d q}\right) \cdot \Delta q . \tag{4.5}
\end{align*}
$$

We see that the exit ray deviation angle rate $\left(\frac{d \phi}{d q}\right)$ provides a differential azimuth pointing error rate for the case of exit ray rotations about the $+Y_{r d}$ axis.

6 Summary

The ray trace computations carried out using the BEAM 3 codes agree well with the 1991 results of Srikanth. Agreement is typically within 3%, at worst 8%. The differences may depend on the precise values of telescope parameters used in the 1991 and 1999 computations, and the precise location of the axis about which the subreflector rotates. In all cases, the signs of the coefficients were in agreement. The results confirm those of Srikanth, rather than those of Levy, where they disagree.

The coefficients also directly give error pointing coefficent rates. Some care should be taken in interpretation of the coefficients'signs to be used in applying the results. Here, the viewpoint taken is that when an optical component is moved from its design telescope configuration, the exit ray (which can also be considered as the reverse of incoming sky ray) is shifted to a wrong position on the sky. The shift rates in elevation angle, and azimuth angle multiplied by cosine of elevation angle have the same signs as the respective coefficients computed by Srikanth. If one wishes correct the as-built telescope in pointing by making use of statically measured optical component shifts from their design values, or measured under dynamical observing conditions, one should examine precisely how the available information on component shifts is to be used. The physical significance of the ray shifts should be examined, before entering calculated component error pointing correction terms into the telescope pointing equations.

Surface 1 is the Gregorian focal plane through the Gregorian focal point. The listed vertex point is at the design location of the Gregorian focus point.

Surface 2 is the parent ellipsoid secondary mirror. Its shape parameter is (1 - e*e) where e is its eccentricity ($=0.528$). Its vertex curvature is $-a /(b * b)$. Its vertex point for the calculation is the upper vertex on the major axis.

Surface 3 is the parent paraboloid primary mirror. Its vertex point curvature is $1 /(2 * f)$, where $f=60$ meter.

The file will be used in the following manner. In an associated ray file: GBT.RAY, a single ray will be traced from the Gregorian focal point, at an angle 12.329 degrees to the paraboloid axis and in the median plane, towards the ellipsoidal secondary reference point II. For the unperturbed telescope geometry, it should emerge parallel to the paraboloid axis.

In subsequent optics files: GBT_n.OPT the coordinates and orientations of the mirrors will be shifted, one at a time, and the direction of the exit ray will be computed. In this manner the partial derivatives of the pointing angles on the sky with telescope length and angle parameters will be obtained.

In those. OPT files for which the secondary mirror is tilted and/or pitched in orientation, the mirror vertex point location will te recomputed to leave the mirror reference point II at a fixed locatioui $[\operatorname{Zrd}(I 1)=63.802874, \operatorname{Yrd}(I 1)=-4.2917258, \operatorname{Xrd}(I 1)=0.0$ meter]. The subscript rd indicates that coordinates are in the main reflector coordinate system and are derived values from the telescope design configuration. The BEAM 3 ray trace program X, Y, Z coordinates are the same as the corresponding main reflector system coordinates.

This file describes an exit ray leaving the Gregorian focus point of the GBT, leaving perpendicular to the gregorian focus plane, and heading initially towards the ellipsoidal subreflector's design reference point II. It leaves at an angle 12.3290 degrees to the Zrd-axis, and lies in the (Yrd, Zrd)-plane. Un, Vn, Wn are the direction cosines of the ray with respect to the $\mathrm{Xrd}, \mathrm{Yrd}, \mathrm{Zrd}$ axes (the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes respectively for the ray tracing code).

This ray file is used with the BEAM 3 optics files GBT.OPT and GBT_n.OPT to examine GBT pointing when the optical geometry of the telescope is perturbed.

Output ray trace file : GBT.VXL Page 1 of 1.

Input Files: GBT.OPT , GBT.RAY November 28, 1999

Ray 1

	X	Y	Z
S0	0.000000	-1.067679	49.051938
S1	0.000000	-1.067679	49.051938
S2	0.000000	-4.291724	63.802875
S3	0.000000	54.000637	12.150287
S4	0.000000	54.000638	70.000000
	optical	path $=$	151.06131029

U	V	W
0.000000	-0.213525	0.976938
0.000000	-0.213525	0.976938
0.000000	0.748447	-0.663195
0.000000	0.000000	1.000000
0.000000	0.000000	1.000000

Comment:
This ray trace confirms that the ray traced for the design geometry starts at the Gregorian focus F0, passes through the subreflector reference point II, then passes through the prime focus F0, and after reflection by the design parent paraboloid leaves parallel to the paraboloid axis.

File: GBT. OPT
Uiew in <Yrd,Zrd)-plane.

File: GBT.OPT
Uiew in (Krd,Zrd)-plane

This ray file is a model of the GBT optics. Distances are in meters . This file models the unperturbed GBT optical telescope geometry. Refractive indexes default to 1.000. The ray tracing is done using the BEAM 3 ray tracing program (Stellar Software, Berkeley, CA).

Surface 1 is the parent ellipsoid secondary mirror. Its shape parameter is (1 - e*e) where e is its eccentricity (= 0.528). Its vertex curvature is $-a /(b * b)$. Its vertex point for the calculation is the upper vertex on the major axis.

Surface 2 is the parent paraboloid primary mirror. Its vertex point curvature is $1 /(2 * f)$, where $f=60$ meter.

Surface 3 is a phantom, entered to continue the ray trace output to include the exit rays emerging from surface 2.

The file will be used in the following manner. In an associated ray file: GBT02.RAY, a ray will be traced from the Gregorian focal point, at an angle 12.329 degrees to the paraboloid axis and in the median plane, towards the ellipsoidal secondary reference point II. For the unperturbed telescope geometry, it should emerge parallel to the paraboloid axis.

Six additional rays parallel to the first ray are also traced. These rays start parallel to the first ray and are displaced by 10 mm distance in the directions of the plus and minus main reflector frame axes. The final exit rays emerge along the respective directions that an axial ray from the feed horn would take, had the receiver room been displaced by 10 mm along the respective (+/-) directions of the main reflector coordinate axes.

Additional files GBT_n.OPT and GBT_n.RAY will be subsequently generated, to examine rā pointing when the telescope optical elements are perturbed in various ways.

In some later . OPT files for which the secondary mirror is tilted and/or pitched in orientation, the mirror vertex point location will be recomputed to leave the mirror reference point Il at a fixed location $[\operatorname{Zrd}(I 1)=63.802874, \operatorname{Yrd}(I 1)=-4.2917258, \operatorname{Xrd}(I 1)=0.0$ meter].

[^0]

This file describes exit rays starting at and near the Gregorian focus point of the GBT. The rays all are directed perpendicular to the Gregorian focus plane. Ray 1 leaves the Gregorian focal point and travels towards the ellipsoidal subreflector's design reference point I1. It leaves at an angle 12.3290 degrees to the Zrd-axis, and lies in the (Yrd, Zrd)-plane. Un,Vn,Wn are the direction cosines of the ray leaving the n'th optical surface. These are the direction cosines to the Xrd, Yrd, Zrd axes respectively (and X,Y,Z axes respectively for the ray tracing code) which are the main reflector frame coordinates for the design GBT telescope.

The other rays are initially parallel to the ray leaving from the Gregorian focal point $F 1$, but pass through points whose Xrd, Yrd or Zrd coordinates are displaced by $(+/-) 10 \mathrm{~mm}$. These simulate rays which would leave a receiver room roof feed horn at Gregorian focus if the feed room were displaced by $(+/-) 10 \mathrm{~mm}$ in the Xrd, Yrd or Zrd directions respectively.

The direction of the exit ray (specified by Ufinal,Vfinal,Wfinal) leaving the final optical surface is opposite to that of a ray from the sky arriving at the telescope and which would travel to the center of feed horn center, and arrive along the horn axis, when the receiver room was mounted on the telescope displaced by ($+/-$) 10 mm in the Xrd, Yrd, or Zrd direction respectively.

This ray file is used with the BEAM 3 optics file GBT.OPT, to examine GBT pointing when the optical geometry of the telescope is perturbed.

Rayl simulates ray path with receiver room in design position.
Ray2 simulates ray path with receiver room displaced by dxr=+10mm.
Ray3 simulates ray path with receiver room displaced by dXr=-10mm.
Ray 4 simulates ray path with receiver room displaced by dYr=+10mm.
Ray5 simulates ray path with receiver room displaced by dYr=-10mm.
Ray6 simulates ray path with receiver room displaced by dZr=+10mm.
Ray7 simulates ray path with receiver room displaced by dZr=-10mm.
Displacement of the receiver room by $d X r=+1 \mathrm{~mm}$ moves the receiver room away from the telescope median plane, towards the man lift.

Displacement of the receiver room by dYr=+1mm moves the receiver room in the median plane, away from the main reflector surface.

Displacement of the receiver room by $d Z r=+1 \mathrm{~mm}$ moves the room along the design paraboloid axis, away from the main reflector surface.

Output ray trace file: GBT02.VXL Page 1 of 2 .

Ray1

	X	Y	Z
S0	0.000000	-1.067679	49.051938
S1	0.000000	-4.291724	63.802875
S2	0.000000	54.000637	12.150287
S3	0.000000	54.000638	70.000000
	optical	path $=$	151.06131029

Ray2

	X	Y	Z
S0	0.010000	-1.067679	49.051938
S1	0.010000	-4.291723	63.802869
S2	-0.177407	54.000629	12.150414
S3	-0.174362	54.000630	70.000000
	optical	path $=$	151.06130570

Ray3

	X	Y	Z
S0	-0.010000	-1.067679	49.051938
S1	-0.010000	-4.291723	63.802869
S2	0.177407	54.000629	12.150414
S3	0.174362	54.000630	70.000000
	optical	path $=$	151.06130570

U
0.000000
0.002406
-0.000053
-0.000053

V
-0.213525
0.748445

W
0.976938
-0.663192
0.000000

1. 000000
0.000000
2. 000000

Ray 4

	X	Y	Z
S0	0.000000	-1.057679	49.051938
S1	0.000000	-4.282859	63.808068
S2	0.000000	53.827402	12.072455
S3	0.000000	53.830383	70.000000
	optical	path $=$	151.06130591

U

$$
\begin{aligned}
& 0.000000 \\
& 0.000000 \\
& 0.000000 \\
& 0.000000
\end{aligned}
$$

W

$$
-0.213525
$$

0.746885
0.976938
0.000051
-0.664953
1.000000
1.000000

Ray5

U
0.000000
0.000000
0.000000
0.000000

V
-0.213525
0.750003
-0.000051
-0.000051
W
0.976938
-0.661434
1.000000
1.000000

Output ray trace file: GBT02.VXL Page 2 of 2 .

Ray6

	X	Y	Z
S0	0.000000	-1.067679	49.061938
S1	0.000000	-4.289787	63.804011
S2	0.000000	53.962760	12.133248
S3	0.000000	53.963411	70.000000
	optical	path $=$	151.05154070

Input Files: GBT02.OPT, GBT02.RAY November 28, 1999

Ray7

	X	Y	Z	U	V	W
S0	0.000000	-1.067679	49.041938	0.000000	-0.213525	0.976938
S1	0.000000	-4.293661	63.801739	0.000000	0.748787	-0.662810
S2	0.000000	54.038522	12.167341	0.000000	-0.000011	1.000000
S3	0.000000	54.037873	70.000000	0.000000	-0.000011	1.000000

Comment:
These exit ray rays correspond to the following tilt rates about the + Yrd and + Xrd axes respectively:

```
d(Tilt_Yrd)/d(X_feed) = + 0.0053 milliradians / millimeter
    d(Tilt_Xrd)/d(Y_feed) = - 0.0051 milliradians / millimeter
    d(Tilt_Xrd)/d(Z_feed) = - 0.0011 milliradians / millimeter .
```


This ray file is a model of the GBT optics. Distances are in meters. This file models a perturbed GBT optical telescope geometry. The paraboloid has been rotated about the +Xrd axis by 1 milliradian $=0.0572957$ degrees. The paraboloid vertex, prime focus, Gregorian focus, and subreflector reference point lie at their design configuration coordinates.

Surface 1 models the parent ellipsoid secondary mirror. Its shape parameter is ($1-e^{*} e$), where e is its eccentricity $(=0.528)$. Its vertex curvature is $-a /(b * b)$. Its vertex point for the calculation is the upper vertex on the major axis.

Surface 2 models the paraboloid primary mirror. Its vertex lies at the design position relative to the feed room and subreflector but it is tilted towards the feed room and subreflector.

Surface 3 is a phantom, entered to continue the ray trace output to include the exit rays emerging from surface 2.

The file will be used in the following manner. In an associated ray file: GBT.RAY, a ray will be traced from the Gregorian focal point, at an angle 12.329 degrees to the design paraboloid's axis (+Xrd) and in the telescope median plane, towards the ellipsoidal secondary reference point II. The axis of the paraboloid for this ray trace (which is no longer the design parent paraboloid) is tilted by one milliradian about the +Xrd axis (The main reflector is tilted towards the feed room and subreflector). Its focal length has been held to the design value of 60 meters.

The pointing of the emergent ray from the telescope is indicated by the direction cosines Uf, Vf, Wf.

This file describes an exit ray leaving the Gregorian focus point of the GBT, leaving perpendicular to the gregorian focus plane, and heading initially towards the ellipsoidal subreflector's design reference point II. It leaves at an angle 12.3290 degrees to the Zrd-axis, and lies in the (Yrd, Zrd)-plane. Un, Vn, Wn are the direction cosines of the ray with respect to the Xrd,Yrd,Zrd axes (the X,Y,Z axes respectively for the ray tracing code).

This ray file is used with the BEAM 3 optics files GBT.OPT and GBT_n.OPT to examine GBT pointing when the optical geometry of the telescope is perturbed.

Output ray trace file: GBT03.VXL Page 1 of 1 .

Input Files: GBT03.OPT, GBT.RAY November 28, 1999.

Ray1

| | X | Y | Z | U | V | V |
| ---: | ---: | :---: | :---: | ---: | ---: | ---: | ---: |
| SO | 0.000000 | -1.067679 | 49.051938 | 0.000000 | -0.213525 | 0.976938 |
| S1 | 0.000000 | -4.291724 | 63.802875 | 0.000000 | 0.748447 | -0.663195 |
| S2 | 0.000000 | 53.956149 | 12.189707 | 0.000000 | -0.001552 | 0.999999 |
| S3 | 0.000000 | 53.866433 | 70.000000 | 0.000000 | -0.001552 | 0.999999 |
| | optical | path $=$ | 150.96251993 | | | |

Comment:
The exit ray direction cosines indicate that a +1 milliradian tilt of the paraboloid about the +Xrd axis gives a rotation of the exit ray by 1.552 milliradian in the same sense.

Surface 1 models the parent ellipsoid secondary mirror. Its shape parameter is (1 - e*e), where e is its eccentricity ($=0.528$). Its vertex curvature is $-a /(b * b)$. Its vertex point for the calculation is the upper vertex on the major axis.

Surface 2 models the paraboloid primary mirror. Its vertex lies at the design position relative to the feed room and subreflector but it is pitched by 1 milliradian relative to the median plane of the telescope.

Surface 3 is a phantom, entered to continue the ray trace output to include the exit rays emerging from surface 2.

The file will be used in the following manner. In an associated ray file: GBT.RAY, a ray will be traced from the Gregorian focal point, at an angle 12.329 degrees to the design paraboloid's axis (+ Xrd) and in the telescope median plane, towards the ellipsoidal secondary reference point II. The axis of the paraboloid for this ray trace (which is no longer the design parent paraboloid) is pitched by one milliradian about the +Yrd axis (The main reflector right half is lowered in elevation and the left half is raised by the pitching rotation). The main reflector paraboloid's focal length is held to the design value of 60 meters.

The pointing of the emergent ray from the telescope is indicated by the direction cosines Uf, Vf, Wf.

This file describes an exit ray leaving the Gregorian focus point of the GBT, leaving perpendicular to the gregorian focus plane, and heading initially towards the ellipsoidal subreflector's design reference point I1. It leaves at an angle 12.3290 degrees to the Zrd-axis, and lies in the (Yrd, Zrd)-plane. Un, Vn, Wn are the direction cosines of the ray with respect to the Xrd,Yrd, Zrd axes (the X,Y,Z axes respectively for the ray tracing code).

Output ray trace file: GBT04.VXL Page 1 of 1 .

Input Files: GBT04.OPT, GBT.RAY November 28, 1999

Ray 1

	X	Y	Z	U	V	W
S0	0.000000	-1.067679	49.051938	0.000000	-0.213525	0.976938
S1	0.000000	-4.291724	63.802875	0.000000	0.748447	-0.663195
S2	-0.000000	54.000632	12.150291	0.001832	0.000000	0.999998
S3	0.105957	54.000654	70.000000	0.001832	0.000000	0.999998

Comment:
The exit ray direction cosines indicate that a +1 milliradian pitch of the paraboloid about the +Yrd axis gives a rotation of the exit ray about that axis by 1.832 milliradian in the same sense.

3 surfaces	GBT05.OPT		M. A.	Goldman	November 28, Mir/Lens	, 1999	Pitch
Zvertex	Yvertex	Xvertex	Shape	Curvature		Tilt	
64.893452 :	0.47722	$0: 0.00000=$	0.7212	16:-0.133108	52 : mirror :	:-5.57	: 0.0
0.0000000:	0.00000	$0: 0.00000=$	0.0000	00:0.0083319	447: mirror :	0.0	: 0.0
70.0	0.0	:0.0 :		:	: iris	:	:

This ray file is a model of the GBT optics. Distances are in meters . This file models a perturbed GBT optical telescope geometry. The paraboloid focal length has been increased by +10 millimeters. The paraboloid vertex, prime focus, Gregorian focus, and subreflector reference point lie at their design configuration coordinates.

Surface 1 models the parent ellipsoid secondary mirror. Its shape parameter is (1 - $e^{*} e$), where e is its eccentricity ($=0.528$). Its vertex curvature is $-a /(b * b)$. Its vertex point for the calculation is the upper vertex on the major axis.

Surface 2 models the paraboloid primary mirror. Its vertex lies at the design and orientation position relative to the feed room and subreflector. Its focal length has been increased from 60 meter to 60.01 meter. The vertex curvature, (1/2*f), changes to 0.0083319447 reciprocal meter.

Surface 3 is a phantom, entered to continue the ray trace output to include the exit rays emerging from surface 2 .

The file will be used in the following manner. In an associated ray file: GBT.RAY, a ray will be traced from the Gregorian focal point, at an angle 12.329 degrees to the design paraboloid's axis (+Xrd) and in the telescope median plane, towards the ellipsoidal secondary reference point II. The main reflector paraboloid's focal length is increased from the design value of 60 meters to 60.01 meters.

The pointing of the emergent ray from the telescope is indicated by the direction cosines Uf, Vf, Wf.

This file describes an exit ray leaving the Gregorian focus point of the GBT, leaving perpendicular to the gregorian focus plane, and heading initially towards the ellipsoidal subreflector's design reference point I1. It leaves at an angle 12.3290 degrees to the Zrd-axis, and Iies in the (Yrd, Zrd)-plane. Un, Vn, Wn are the direction cosines of the ray with respect to the Xrd,Yrd, Zrd axes (the X,Y,Z axes respectively for the ray tracing code).

Output ray trace file: GBT05.VXL Input Files: GBT05.OPT, GBT.RAY Page 1 Of 1.

Ray 1

	X	Y	Z	U	V	V
S0	0.000000	-1.067679	49.051938	0.000000	-0.213525	0.976938
S1	0.000000	-4.291724	63.802875	0.000000	0.748447	-0.663195
S2	0.000000	54.002152	12.148944	0.000000	0.000104	1.000000
S3	0.000000	54.008153	70.000000	0.000000	0.000104	1.000000

Comment:
An increase of paraboloid focal length from 60 meter to 60.010 meter produces a tilt of the exit ray of -0.104 milliradian about the +Xrd axis. (A unit vector in the (Y,Z)-plane which is nearly along the Z axis and has a positive projection ($V>0$) on the $+Y$ axis will appear to be rotated by an angle $-V$ radians about the X axis, in the small angle approximation.

The tilt rate of the exit ray per unit increase of paraboloid focal length is then -0.104 milliradian / 10 millimeter, or d(Tilt_Xrd)/df = -0.0104 milliradian / millimeter.

This ray file is a model of the GBT optics. Distances are in meters. This file models a perturbed GBT optical telescope geometry. Refractive indexes default to 1.000. The ray tracing is done using the BEAM 3 ray tracing program (Stellar Software, Berkeley, CA).

Surface 1 is the parent ellipsoid secondary mirror. Its shape parameter is (1 - e*e) where e is its eccentricity $(=0.528)$. Its vertex curvature is $-a /(b * b)$. Its vertex point for the calculation is the upper vertex on the major axis.

Surface 2 is the parent paraboloid primary mirror. Its vertex point curvature is $1 /(2 * f)$, where $f=60$ meter.

Surface 3 is a phantom, entered to continue the ray trace output to include the exit rays emerging from surface 2.

The file will be used in the following manner. In an associated ray file: GBT.RAY, a ray will be traced from the design Gregorian focal point, at an angle 12.329 degrees to the paraboloid axis and in the median plane, towards the ellipsoidal secondary reference point II. (For the unperturbed telescope geometry, it emerges parallel to the parent paraboloid axis (+Zrd axis)).

In this file for the secondary mirror is tilted by +1 milliradians about a line through the subreflector reference point and parallel to the +Xrd axis (This axis is parallel to the elevation axis and passes through the design ellipsoid reference point and points to the right side of the paraboloid). The ellipsoid secondary mirror's upper vertex point location (on the ellipsoid major axis) has been recomputed so as to leave the mirror reference point II at a fixed location. $[\operatorname{Zrd}(I 1)=63.802874, \operatorname{Yrd}(I 1)=-4.2917258, \operatorname{Xrd}(I 1)=0.0$ meter].

The BEAM 3 parameter TILT becomes, for the additionally tilted ellipsoidal secondary surface: TILT $=-5.570$ degrees $+1 *(0.0572957)$ degrees $=-5.5127043$ degrees.

The vertex of the additionally tilted subreflector surface is calculated to move to V'el where: $\operatorname{Xrd}\left(V^{\prime} e l\right)=0, \operatorname{Yrd}\left(V^{\prime} e l\right)=-0.4761294 \mathrm{~m}$, $\operatorname{Zrd}\left(V^{\prime} \mathrm{el}\right)=64.898221 \mathrm{~m}$.

This file describes an exit ray leaving the Gregorian focus point of the GBT, leaving perpendicular to the gregorian focus plane, and heading initially towards the ellipsoidal subreflector's design reference point II. It leaves at an angle 12.3290 degrees to the Zrd-axis, and lies in the (Yrd, Zrd)-plane. Un, Vn, Wn are the direction cosines of the ray with respect to the Xrd,Yrd, Zrd axes (the X, Y, Z axes respectively for the ray tracing code).

Output ray trace file: GBT06.VXL
Page 1 of 1 .

Input Files: GBT06.OPT , GBT.RAY November 28, 1999

Ray1

	X	Y	Z	U	V	W
S0	0.000000	-1.067679	49.051938	0.000000	-0.213525	0.976938
S1	0.000000	-4.291724	63.802875	0.000000	0.749772	-0.661696
S2	0.000000	54.156508	12.220531	0.000000	-0.000159	1.000000
S3	0.000000	54.147332	70.000000	0.000000	-0.000159	1.000000

Comment:
The rate of tilt of the exit ray about the +Xrd axis per unit of subreflector tilt about the axis X ' parallel to the +Xrd axis and passing through the fixed subreflector reference point II is:
d(Tilt_Xrd)/d(Tilt_X') = 0.159 milliradians / milliradian

3 surfaces	GBT07. OPT		M. A.	Goldman November 28, 1999			
Zvertex	Yvertex	Xvertex	Shape	Curvature	Mir/Lens	Tilt	Pitch
64.893452:	0.47722	: 0.00000 :	0.7212	16:-0.1331085	52 : mirror	: - 5.57	: 0.0
0.0100000:	0.00000	: 0.00000:	0.0000	$0: 0.0083333$	333 : mirror	0.0	:0.0
70.0	0.0	: 0.0		:	: iris	0.0	: 0.0

This file models the GBT optics with the main reflector surface paraboloid moved +10 mm along the direction of the paraboloid axis (+Zrd axis) towards the receiver room and subreflector.

This file describes an exit ray leaving the Gregorian focus point of the GBT, leaving perpendicular to the gregorian focus plane, and heading initially towards the ellipsoidal subreflector's design reference point I1. It leaves at an angle 12.3290 degrees to the Zrd-axis, and lies in the (Yrd, Zrd)-plane. Un, Vn, Wn are the direction cosines of the ray with respect to the Xrd,Yrd, Zrd axes (the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes respectively for the ray tracing code).

Output ray trace file: GBT07.vxL Page 1 of 1 .

Input riles: GBT07.OPT , GBT.RAY
November 28, 1999

Ray1

	X	Y	Z	U	V	W
S0	0.000000	-1.067679	49.051938	0.000000	-0.213525	0.976938
S1	0.000000	-4.291724	63.802875	0.000000	0.748447	-0.663195
S2	0.000000	53.993152	12.156919	0.000000	0.000104	1.000000
S3	0.000000	53.999154	70.000000	0.000000	0.000104	1.000000

Comment: The tilt rate for the exit ray about the +Xrd axis per unit translation of the main reflector paraboloid in the + Zrd direction is:
$d\left(T i l t _X r d\right) / d z=-0.0104$ milliradian $/$ millimeter.

This file models the GBT optics with the main reflector surface paraboloid translated +10 mm away from the upper feed arm (that is, moved in the direction of the +Yrd axis).

This file describes an exit ray leaving the Gregorian focus point of the GBT, leaving perpendicular to the gregorian focus plane, and heading initially towards the ellipsoidal subreflector's design reference point II. It leaves at an angle 12.3290 degrees to the Zrd-axis, and lies in the (Yrd, Zrd)-plane. Un, Vn, Wn are the direction cosines of the ray with respect to the Xrd,Yrd, Zrd axes (the X, Y, Z axes respectively for the ray tracing code).

Output ray trace file: GBT08.VXL Page 1 of 1 .

Input Files: GBT08.OPT, GBT.RAY November 28. 1999

Ray1

	X	Y	Z	U	V	W
S0	0.000000	-1.067679	49.051938	0.000000	-0.213525	0.976938
S1	0.000000	-4.291724	63.802875	0.000000	0.748447	-0.663195
S2	0.000000	54.004005	12.147302	0.000000	0.000092	1.000000
S3	0.000000	54.009324	70.000000	0.000000	0.000092	1.000000

optical path $=151.06879470$
Comment: The tilt rate for the exit ray about the +Xrd axis per unit translation of the main reflector paraboloid in the +Yrd direction is:
d(Tilt_Xrd)/dY $=-0.0092$ milliradian / millimeter.

This file models the GBT optics with the main reflector surface paraboloid translated +10 mm to the right of the design telescope median plane (that is, translated towards the man lift, along the direction of the +Xrd axis).

This file describes an exit ray leaving the Gregorian focus point of the GBT, leaving perpendicular to the gregorian focus plane, and heading initially towards the ellipsoidal subreflector's design reference point II. It leaves at an angle 12.3290 degrees to the Zrd-axis, and lies in the (Yrd, Zrd)-plane. Un, Vn, Wn are the direction cosines of the ray with respect to the Xrd,Yrd, Zrd axes (the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes respectively for the ray tracing code).

Output ray trace file: GBT09.VXL
Page 1 of 1 .

Input Files: GBT09.OPT, GBT.RAY November 28, 1999

Ray1

Comment: The tilt rate for the exit ray about the +Yrd axis per unit translation of the main reflector paraboloid in the + Xrd direction is:
$d\left(T i l t _Y r d\right) / d X=+0.0139$ milliradian / millimeter.

This file models the GBT optics with the subreflector surface translated +10 mm along the direction of the paraboloid axis (+Zrd axis), away from the receiver room and main reflector surface.

This file describes an exit ray leaving the Gregorian focus point of the GBT, leaving perpendicular to the gregorian focus plane, and heading initially towards the ellipsoidal subreflector's design reference point II. It leaves at an angle 12.3290 degrees to the Zrd-axis, and lies in the (Yrd, Zrd)-plane. Un, Vn, Wn are the direction cosines of the ray with respect to the Xrd,Yrd, Zrd axes (the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes respectively for the ray tracing code).

Output ray trace file: GBT10.VXL Page 1 of 1 .

Input Files: GBTIC. UPT , GBT.RAY November 28, 1999

Ray1

	X	Y	Z	U	V	W
S0	0.000000	-1.067679	49.051938	0.000000	-0.213525	0.976938
S1	0.000000	-4.293661	63.811739	0.000000	0.748787	-0.662810
S2	0.000000	54.046009	12.170713	0.000000	-0.000115	1.000000
S3	0.000000	54.039360	70.000000	0.000000	-0.000115	1.000000

Comment: The tilt rate for the exit ray about the +Xrd axis per unit translation of the subreflector ellipsoid in the +Zrd direction is:
$d($ Tilt_Xrd) $/ d Z=+0.0115$ milliradian / millimeter.

This file models the GBT optics with the subreflector surface translated +10 mm along the direction of the +Yrd axis (way from the vertical feed arm and towards the main reflector and elevation axle).

This file describes an exit ray leaving the Gregorian focus point of the GBT, leaving perpendicular to the gregorian focus plane, and heading initially towards the ellipsoidal subreflector's design reference point I1. It leaves at an angle 12.3290 degrees to the Zrd-axis, and lies in the (Yrd, Zrd)-plane. Un, Vn, Wn are the direction cosines of the ray with respect to the Xrd,Yrd, Zrd axes (the X, Y, Z axes respectively for the ray tracing code).

Output ray trace file: GBT11.VXL Page 1 of 1 .

Input Files: GBT11.OPT, GBT.RAY November 28, 1999

Ray1

	X	Y	Z	U	V	W
S0	0.000000	-1.067679	49.051938	0.000000	-0.213525	0.976938
S1	0.000000	-4.290587	63.797670	0.000000	0.750003	-0.661434
S2	0.000000	54.180648	12.231427	0.000000	-0.000143	1.000000
S3	0.000000	54.172389	70.000000	0.000000	-0.000143	1.000000

Comment: The tilt rate for the exit ray about the +Xrd axis per unit translation of the subreflector ellipsoid in the +Yrd direction is:
$d\left(T i l t _X r d\right) / d Y=+0.0143$ milliradian $/$ millimeter.

3 surfaces	GBT12.OPT		M.A.	Goldman November 28, 1999			
Zvertex	Yvertex	Xvertex	Shape	Curvature	Mir/Lens	Tilt	Pitch
64.893452:	0.47722	: 0.01000	0.7212	$16:-0.133108$	52 : mirror	: -5.57	: 0.0
0.0000000:	0.00000	$: 0.00000:$	0.0000	$0: 0.0083333$	333: mirror	0.0	: 0.0
70.0	0.0	: 0.0		:	: iris	:	:

This file models the GBT optics with the subreflector surface translated +10 mm from the telescope median plane to the right (translation parallel to the +Xrd axis, in the direction towards the man lift).

This file describes an exit ray leaving the Gregorian focus point of the GBT, leaving perpendicular to the gregorian focus plane, and heading initially towards the ellipsoidal subreflector's design reference point I1. It leaves at an angle 12.3290 degrees to the Zrd-axis, and lies in the (Yrd,Zrd)-plane. Un, Vn, Wn are the direction cosines of the ray with respect to the Xrd,Yrd, Zrd axes (the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes respectively for the ray tracing code).

Output ray trace file: GBT12.VXL page 1 of 1 .

Ray				U	V	W
	X	Y ${ }^{\text {Y }}$	$\begin{gathered} \mathrm{Z} \\ 49.051938 \end{gathered}$	0.000000	-0.213525	0.97693
S0	0.000000	-1.067679		0.002406	0.748445	-0.663192
S1	0.000000	-4.291723	63.802869 12.150424	-0.000191	0.000000	1.000000
S2	0.187407	54.000617	70.000000	-0.000191	0.000000	1.00000

Comment: The tilt rate for the exit ray about the +Yrd axis per unit translation of the subreflector ellipsoid in the +Xrd direction is:

```
d(Tilt_Yrd)/dX = -0.0191 milliradian / millimeter.
```

3 surfaces GBT13.OPT M.A. Goldman November 28, 1999
Zvertex Yvertex Xvertex Shape Curvature Mir/Lens Tilt Pitch

$64.893452: 0.477220: 0.0010905: 0.721216:-0.13310852$	$:$ mirror	$:-5.57$	$: 0.0572957$			
$0.0000000: 0.000000: 0.0000000: 0.000000: 0.0083333333:$	mirror	$: 0.0$	$: 0.0$			
70.0	$: 0.0$	$: 0.0$	$: 0.0$	$: 0.0$	$:$	iris
	$:$	$:$	$:$	$: 0.0$	$: 0.0$	

This file models a perturbed GBT optical telescope geometry where the subreflector is pitched about an axis which passes through the subreflector reference point and is directed parallel to the Yrd axis.

Surface 1 is the parent ellipsoid secondary mirror. Its shape parameter is (1 - e*e) where e is its eccentricity (= 0.528). Its vertex curvature is $-a /(b * b)$. Its vertex point for the calculation is the upper vertex on the major axis.

Surface 2 is the parent paraboloid primary mirror. Its vertex point curvature is $1 /(2 * f)$, where $f=60$ meter.

Surface 3 is a phantom, entered to continue the ray trace output to include the exit rays emerging from surface 2.

This file is used in the following manner. In an associated ray file: GBT.RAY, a ray will be traced from the design Gregorian focal point, at an angle 12.329 degrees to the paraboloid axis and in the median plane, towards the ellipsoidal secondary reference point II.

The secondary mirror is pitched by +1 milliradian about a line through the subreflector reference point and parallel to the +Yrd axis. The ellipsoid secondary mirror's vertex point location has been recomputed so as to leave the mirror reference point II at a fixed location.
$[\operatorname{Zrd}(I 1)=63.802874, \operatorname{Yrd}(I 1)=-4.2917258, \operatorname{Xrd}(I 1)=0.0$ meter].
For the subreflector mirror, the BEAM 3 parameter PITCH is: PITCH $=0.0572957$ degrees ($<=>1$ milliradian).

The vertex of the pitched subreflector surface is calculated to move to V"el where: $\mathrm{Xrd}(\mathrm{V}$ "el) $=0.0010905 \mathrm{~m}$, Yrd(V"el) $=0.447220 \mathrm{~m}$, Zrd(V"el) $=64.893452 \mathrm{~m}$.

This file describes an exit ray leaving the Gregorian focus point of the GBT, leaving perpendicular to the gregorian focus plane, and heading initially towards the ellipsoidal subreflector's design reference point II. It leaves at an angle 12.3290 degrees to the Zrd-axis, and lies in the (Yrd, Zrd)-plane. Un, Vn, Wn are the direction cosines of the ray with respect to the Xrd,Yrd, Zrd axes (the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes respectively for the ray tracing code).

Output ray trace file: GBT13.VXL Page 1 of 1 .

Input Files: GBT13.OPT , GBT.RAY November 28, 1999

Ray 1

	X	Y	Z	U	V	W
S0	0.000000	-1.067679	49.051938	0.000000	-0.213525	0.976938
S1	0.000000	-4.291724	63.802876	-0.001649	0.748446	-0.663193
S2	-0.128443	54.000664	12.150368	0.000131	0.000000	1.000000
S3	-0.120861	54.000667	70.000000	0.000131	0.000000	1.000000

Comment:
The rate of tilt of the exit ray about the + Yrd axis per unit of subreflector tilt about an axis parallel to the +Yrd axis and passing through the fixed subreflector reference point II is:

$$
\mathrm{d}(\text { Tilt_Yrd)/d(Tilt_Y) }=+0.131 \text { milliradians / milliradian }
$$

[^0]: The subscript r indicates that coordinates are in the main reflector frame coordinate system and are derived values from the telescope design configuration. The BEAM 3 ray trace program $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ coordinates correspond respectively to the Xrd,Yrd, Zrd main reflector system coordinates.

