Ta: P. Vanden Bout
J. Condan
L. D'Addario
D. Emerson
R. Fisher
D. Heeschen
D. Hagg
R. Brown
L. King
P. Napier
R. Norrad
J. Payne
G. Seielstad
A. Thampsan

Following are view-graphs that will be discussed by R. Narrad in GBT Specification Warking Group Meeting of 7/13/89.
R. Norrod

July 13, 1989

- amplitude and phase control of the aperture illumination by subreflector shaping
- spillover past the subreflector is directed toward a cold sky
- low spillover past the paraboloid toward the ground for high elevation angles
- large depth of focus and field of view.

Some disadvantages are also apparent:

- greater blockage, particularly in small antennas (less than 100 wavelength apertures)
- higher sidelobes near the main beam
- not readily adaptable to use of poorly directional, frequency independent feeds feeds

Given $\quad D=$
FID $=$
Freq $=$
(1) Hyperboloid Diameter

For Minimum Blockage
$d=\sqrt{k \lambda F} \approx$

* $k=$
use d $=$
(2) Hyperboloid Focal Length
$f=\frac{d}{2}\left(\operatorname{ctn} a+\operatorname{ctn} \phi_{0}\right)$
$\phi_{0}=2 \tan ^{-1} \frac{D}{4 F}=$
$a={ }^{0}$ (From Feed Design)
$\mathrm{f}=$
(3) Cassegrain Magnification
$\mathrm{AL}=\frac{\mathrm{D}}{4 \mathrm{~F}} \operatorname{ctn}-\frac{a}{2}=$
(4) Hyperboloid Eccentricity

$$
e=\frac{M+1}{M-1}=
$$

(5) Hyperboloid Location

$$
j=\frac{1}{2}\left(\frac{e-1}{e}\right)=
$$

$D=$ Paraboloid Diameter
$F=$ Paraboloid Focal Length
$\phi_{0}=$ Paraboloid Half Angle
d $=$ Hyperboloid Diameter
$f=$ Hyperbalord Focal Length
$a=$ Hyperboloid Half Angle
$M=$ Hypertbolord Magnification
e = Hyperboloid Eccentricity
$\rho=$ Hyperboloid Location
$\lambda=$ Free space wavelength
k - Feed beamwid! constant

Fig. 3.33 Determmation of Cussegran geometry

FIGURE 1

Figures taken from Thomas, AP -26, p. 367f.

$$
k \equiv \frac{2 \pi}{\lambda}
$$

Fig. 2. Normalized radiation patterns for narrow-band corrugate horns where 0 is radiation angle relative to axial direction.

"Narrowband"

1) Select $\Delta \leq 0.4$
2) Select K_{E} from Fig. 2 for desired edge taper.egg., $K_{E}=4$ for -13 dB . Calculate:

$$
a / \lambda=\frac{K_{E}}{2 \pi \sin \theta^{*}}
$$

3) From geometry,

$$
\theta_{\mathrm{f}}=2 \tan ^{-1}\left|\frac{\Delta \lambda}{\mathrm{a}}\right|
$$

and

$$
\frac{R}{\lambda}=\frac{a}{\lambda \sin \theta_{\mathrm{L}}}
$$

$\theta *=$ Subtended half angle of reflector. Narrowband ($\Delta \leqq 0.4$)
Wideband $\quad(\Delta \geqq 0.75)$

(a)

Fig. 4. Beam efficiencies for (a) narrow-band and (b) wide-band lions. Dashed line in both cases indicates horn parameters and bear efficiencies at $-10-413$ level of radiation patterns.

!: <. 6. Normalized radiation patterns for wide-band corrugated horns with $0_{0}<70^{\circ}$.

"Wideband"

1) Select $\Delta \geq 0.75$
2) Select $\theta * / \theta_{\text {f }}$ from Fig. 6 for desired edge taper. From this calculate θ_{f}.
3) Then

$$
a / \lambda=\frac{\Delta}{\tan \left(\frac{\theta_{\mathrm{f}}}{2}\right)}
$$

and

$$
R / \lambda=\frac{\mathrm{a}}{\lambda \sin \theta_{\mathrm{f}}}
$$

Chronology of Proposed Designs
 July 12, 1989

Design 1: Technical Study Group Report (NLSRT \#S1) 4/18/89
$F / D=0.35$
$d=7 \mathrm{~m}$
$h=3.8 \mathrm{~m}\left(12.6^{\prime}\right)$

Theta * $=6.66$
Wide-Band Feed : Dia/Lambda = 21; \quad Length/Lambda $=71$
Narrow-Band Feed: \quad Dia/Lambda $=11 ; \quad$ Length/Lambda $=64$
Implications: Prime focus may be difficult; Fairly large feeds.

Design 2: Draft GBT Proposal (ca 5/15/89, unpublished)
$F / D=0.30$
$d=10 \mathrm{~m}$
$h=5 \mathrm{~m}(16.4$)

Theta * $=11.73$
Wide-Band Feed : Dia/Lambda =12; Length/Lambda = 23
Narrow-Band Feed:
Dia/Lambda = 6;
Length/Lambda $=$ 21
Implications: Prime focus difficult; Fairly small feeds.

Design 3: GBT Proposal 6/15/89
$F / D=0.42$
$d=8 \mathrm{~m}$
$h=0 \mathrm{~m}$

Theta * $=5.74$
Wide-Band Feed : Dia/Lambda = 24; Length/Lambda $=96$
Narrow-Band Feed: Dia/Lambda $=13 ; \quad$ Length/Lambda $=86$
Implications: Cassegrain pushed to $3-5 \mathrm{GHz}$. Feeds large.

Design 4: Fisher-Napier-Thompson Small Sub-reflector
$F / D=0.42 \quad d=4 \mathrm{~m} \quad h=5 \mathrm{~m}$
Theta * $=3.19$
Wide-Band Feed : Dia/Lambda $=43 ; \quad$ Length $/$ Lambda $=310$
Narrow-Band Feed: Dia/Lambda $=$ 23; \quad Length/Lambda $=278$
Implications: Cassegrair difficult. Many feeds required.

Other examples in R. Norrod report of $7 / 12 / 89$ to be released as NLSRT memo.

See NLSRT Memos \#59 (Fisher)
and $\# 62$ (Thompson) for
discussion

(a) AXISYMMETRIC CASSEGRAIN

Conventional axially symmetrical antennas of Cassegrainian and Gregorian type.
Figure 4-1

(a) offset cassegran

(b) BISECTED GREGORIAN

(c) Bisected cassegran
(a) Casserrainian conffuration without hlockase. (b) Gregorian conflguration without blockage. (c) Bisected Cassegrainian confguration with some biockage.

Figure 4-2

Reflection coefficients for cases of Figs. 1 and 2 (c), assuming an illumination taper of 13 dB at edge of subrellector.

Figure 4-3

(n)
$9.55^{\circ}-$ BEAMANGLE
SIZES FOR 3,6,
$9,13, \& 20 \mathrm{~cm}$.
WAVELENGTHS

NARROW

MEMBERS

Optics Engineering Group
M. Blister

C. Brockway

J. Cope
L. D'Addario
R. Fisher
L. King
J. Lamb
P. Napier
J. Payne
S. Srikanth
A. Thompson
R. Norad (chair)

GET OPTICS DESIGN
 July 12, 1989

Working Assumptions:

1) Attempt to maximize sensitivity over entire frequency range of antenna.
2) Design for nearly continuous frequency coverage from about 100 MHz to at least 45 GHz .
3) Must have capability to have multiple receivers online and "rapid" (automated if possible) switchover. Must include a "high use" weather independent frequency.
4) Must support VLBA observing to extent possible.

DRAFT AGENDA

Optics Engineering Group
 Meeting 7/14/89

1) Goals

- Short-term : Generate report with recommended optics configuration (s) for symmetrical antemm. Finish by Aug 10.
- Long-term : ??

2) Fundamental Questions

- F/D ?
- Subreflector Diameter?
- Location of secondary focus relative to vertex?
- Receiver locations? How do we switch between receivers?
- How do we cancel atmosphere?

3) Design Questions

- How cars we set physical limits on some of these parameters?
- Strut blockage vs. F/D
- Efficiency vs. F/D
- Nutation of subreflector
- Hiding or removal of subreflector
- Feed diameter \& length
- Size of vertex cabin
- Can we arrange optics to allow simultaneous observations at multiple frequencies?

4) Select a few cases to examine in detail
$-F / D=0.3, d>8 \mathrm{~m}$
$-F / D=0.42$ d $>8 \mathrm{~m}$
$-F / D=0.42, d \leqslant 5 \mathrm{~m}$

- Design similar to 12 meter antenna optics?
- Beam waveguides?
- Other exotic cases?

5) Miscellaneous

- NRAD analysis software
- Outside expertise
- Communications within group

