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SUMMARY 

Pointing errors will be a large or even dominant factor limiting the high-frequency 
performance of the GBT. The specified pointing error (about 1 arcsec rms) is so small 
and the GBT structure is so complex that there will likely be many significant causes 
of error. It is therefore important to make a mathematical model relating faults in the 
GBT structure (e.g., slightly tilted azimuth track) to the pointing data (astronomical 
measurements of calibrator positions, laser ranging measurements, etc.) that (1) is general 
enough to acconunodate all possible pointing errors, anticipated and unanticipated, (2) 
helps to isolate and measure the different faults contributing to the measured pointing 
errors, (3) minimizes the corrected pointing residuals, and (4) is not too complicated for 
programmers to implement and observers to understand. 

This memo outUnes a method for modeling' the GBT pointing. Rotation matrices 
and direction cosines are used to avoid the horrors of spherical trigonometry. Each small 
fault in the GBT is approximated by one or more infinitesimal rotations represented by 
an error matrix. Since these error matrices do not interact, their effects can be calculated 
independently and summed to give the total pointing error. All pointing errors are periodic 
functions of azimuth A and altitude a, so they can be written as two-dimensional Fourier 
series of trigonometric basis functions orthogonal, in the region —TT < A < TT, —TT < a < TT. 

Most of the basis functions are also orthogonal in the region of sky accessible to the GBT 
(—TT <A<7r, 0<a< 7r/2). Thus the series coefficients are usually independent of each 
other. The traditional sources of error each require only one pointing term, and new terms 
may be added to model more complex pointing errors without disturbing the old values. 
Each Fourier series term automatically miminizes the rms pointing residual averaged over 
the sky. The main recommendation of this memo is that the GBT pointing coefficients be 
drawn from the two-dimensional Fourier series coefficients whenever possible. 

As an example, this method was used to calculate the pointing errors resulting from 
irregularities in the height of the azimuth track. When applied to real pointing data from 
the 100 m telescope at Effelsberg, it revealed that track height variations with period TT in 
azimuth significantly deform the alidade structure and twist the elevation axle about the 
vertical. Adding two pointing coefficients to the original 100 m telescope pointing model 
corrected for this effect and reduced the azimuthal pointing variance by 27%. 



IDEAL ALT-AZ TELESCOPE GEOMETRY 

The geometry of an ideal altitude-over-azimuth telescope mount is needed for all of 
the subsequent error analysis. In the "horizon" system of coordinates (iCfc,yfc,^) centered 
on the observer, the reference plane is the horizon. The XH axis points to the south point 
on the horizon, the yh axis points to the east point on the horizon, and the ZH axis points 
to the "astronomical verticar' or zenith defined by a plumb fine. 
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The altitude (sometimes called the elevation) a of a source is the angle from the horizon 
to the source measured along the great circle passing through the zenith. The azimuth A 
is conventionally measured from north through east by radio astronomers, as shown in the 
figure above. The unit vector H of ditection cosines in the horizon system is therefore 

H = 
— cos a cos A 
+ cos a sin A 

4- sin a 
(i) 

The ideal altitude-over-azimuth telescope mount has a rotating structure resting on 
the horizon plane that turns clockwise by the angle A about the Zh  = zr axis when 
commanded to point at the source.  The unit vector R in the rotated frame is obtained 
from H by a matrix multiplication (see Appendix for details). The direction cosines of the 
vector R are: 

a;r\        / + cos(—A)    +sin(—A)    0 \   / Xh 
R= I Vr     =     -sin(-A)    +cos(-A)    0 )  [ yjk 

ZrJ        \ 0 0 1/   \zh 

+ cos A    — sin A    0 
-f sin A   + cos A   0 

0 0 1 

— cos a cos A 
+ cos a sin A 

-f sina 
(2) 
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The ideal tipping structure mounted on the rotating structure tips the telescope clock¬ 
wise by the angle (7r/2 — a) about the yr = yt axis to point at the source. 

The unit vector T in the tipping frame becomes 

xt \        / + cos(a — 7r/2)    0 — sin(a — n/2) 
T= I yt     =               0              1 0 

Zt I       \ -f sin(a — 7r/2)    0 + cos(a — 7r/2) 

+ sin a    0    + cos a 
0 1 0 

— cos a    0    -f- sin a 

and its direction cosines show that the zt axis points to the source, as desired. 

(3) 



PROPAGATION OF SMALL POINTING ERRORS 

The pointing errors produced by simple azimuth and altitude offsets in an imperfect 
telescope mount can be calculated directly from the rotation matrices for an ideal mount. 
Suppose the true azimuth of the rotating structure is Ar when the indicated azimuth is 
A. Then the azimuth error be defined as AA = Ar — A. Likewise, if the true altitude of 
Ihe tipping structure is at when the indicated altitude is a, Aa = at — a. The imperfect 
telescope mount will rotate to 

/-fcosAr    — sinAr    0\   / —cosacosA\        / — cosacos(A — Ar) 
i2 + Ai2= I -t-sinAr    -|-cosAr    0 I  I -f cos a sin A I = ( -f-cosasin(A — Ar) 

\       0 0 1/   \      -|-sina     /        \ -J-sina 

and tip to 

/ + sin at    0    -f cos at \   / — cos a cos(A — Ar) \        /     — sin Aa 
T + AT= (       0 1 0       J I +cosasin(A-Ar) J = I -cosasinAA 

\ — cos a*    0    + sin a« /   \ -}- sin a /        \     +cos &a 

If the mount errors A A, Aa axe sufficiently sSmall, error terms of order (AA)2, (Aa)2 

and higher may be neglected. How small is sufficiently small? Small enough that the 
approximation will not introduce errors comparable with the hoped-for GBT pointing 
accuracy, about 1 arcsec. This first-order approximation leaves errors of order (AA)2, 
(Aa)2 rad, which should be < 1 arcsec w 5 x 10~6 rad so long as the mount errors axe 
smaller than \/5 x 10~6 rad « 8 arcmin. All of the GBT mount errors should be much 
smaller than this. To first order in e, sine w e and cosc « 1. Thus 

T + AT«     -AAcosa     =     0     +     -AAcosa      . (4) 

The components ATZ and ATy axe called the "vertical" and "horizontal" pointing errors, 
respectively. A "vertical" pointing correction — ATZ = +Aa and a "horizontal" pointing 
correction — ATy = -|-AAcosa must be applied to cancel these pointing errors. 

Most other mount errors, including deformations as well as rotations, can be described 
by introducing new reference frames that represent rotations about small angles. For 
example, suppose the rotating structure rests on an azimuth track that does not lie in the 
horizon plane, but whose normal is tilted by a small angle AJV to the north. 
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This small tilt is represented by the matrix for a clockwise rotation through the angle AJV 

about the yn axis: 

+ cos AN    0    + sin A^ 
0 1 0 

— sin AN    0   + cos AN 

Similarly, a small tilt Ajy to the west is equivalent to a counterclockwise rotation by Aw 
about the Xh axis: 

1 0 0        \        /I        0 0 
0    + cos Aw    -f sinAjy I w I 0        1        +Aw 
0    —sin Aw    + cos Aw J       \0    —Aw       1 

To first order in AJV and Aw, these small tilt matrices commute, so an arbitrary 
small tilt of the azimuth track supporting the rotating structure can be represented by the 
unique product matrix 

1 0        +AN\ 
0 1        -{-Aw J 
AJV    -Aw       1    / 

0 0        +AN 

0 0       +Aw 
-AN   -AW       0 

The unit vector H (Equation 1) pointing to the source in the horizon frame is transformed 
by the tilt matrix to the unit vector H + AH in the tilted frame: 

H + AH 
0 0 +AN\ 1 Xh 
0 0 +Aw Vh 



Apart from being tilted, the telescope mount is assumed to be perfect, so the vector H+AH 
is transformed by the ideal-telescope rotation matrices in Equations (2) and (3) to 

— cos a \       / + AN cos A sin a — Aw sin A sin a 
R + ARtt (       0       I + I  +AJV sin A sin a + Aw cos A sin a 

+ sin ay       \ 4-Aw cos A cos a — Aw sin A cos a 

and finally to 

T + AT + Ajv 
4-cos A 

-f sin A sin a 
0 

+ A 

so 

AT 
+AJV COS A — Aw sin A 

+AN sin A sin a + Aw cos A sin a 
0 

(5) 

Thus tilting the azimuth track by the small angles AJV to the north and Aw to the 
west causes a "horizontal" pointing error (A # sin A sin a + Aw cos A sin a) and a "vertical" 
pointing error (AN COS A — Aw sin A). 

Note that the effects of multiple small mount faults propagate directly through the 
appropriate rotation matrices for an ideal mount because multiplying any two first-order 
error matrices yields only negligible second-order terms. Consequently the pointing errors 
resulting from sepaxate faults can be calculated independently and later added to yield 
the total pointing errors. Suppose, for example, that in addition to the small track tilts 
described above, the tipping axis is tilted by a small angle Ax, counterclockwise about the 
xr axis. 

ir Cfce^V^ 

The tilt matrix describing such a mount collimation error is 

1 0 0       \       /I    0    0\       /0 
0    +COSAL    +sinAL  J « I 0    1    0 ) + j 0 
0     -sinAi,     +cosAL)        \0    0    1/        \0 



The unit vector H (Equation 1) in the horizon frame is transformed to R in the ideal 
rotating frame by Equation (2). Then the mount collimation error matrix gives 

/0       0 0    \   /-cosa\        /        0 
ARK I 0       0       +AL 11       0       J = I -i-ALsina 

\0    -AL       0    /   \ + sina/        \        0 

and the ideal tipping matrix (Equation 3) yields the pointing error 

/ + sina    0    -|-cosa\   /        0        \        /        0 
AT« [       0 1 0       J  j +ALsina J = j -|-ALsina )   . (6) 

\-cosa    0    +sina/   \        0        /        \        0 

The total pointing error for a telescope with both azimuth track tilt and mount collimation 
errors is just the stun of the errors given individually by Equations (5) and (6). 

Additional pointing errors can result from faults in the telescope itself. For example, 
horizontal and vertical telescope collimation errors directly cause horizontal and vertical 
pointing errors of the same size. Bending of the feed-support arm by the component of 
gravity perpendicular to the arm produces a vertical pointing error proportional to cos a. 

Traditional pointing analyses (e.g., Schraml, J. 1969, in "NRAO Miscellaneous Inter¬ 
nal Reports 1966-1974" for the 36-foot telescope; PauHny-Toth & Altenhoff 1972, Technis- 
cher Bericht Nr. 12, MPIfR, Bonn for the Effelsberg 100 m telescope; Ulich, B. L. 1976, 
NRAO Engineering Division Internal Report No. 105 for the 36-foot telescope; Ulich, B. 
L. 1981, Int. J. Infrared & Millimeter Waves, 2, 293) axe based on a spherical trigonomet¬ 
ric derivation (Stumpff, P. 1972, Kleinheubacher Berichte, 15, 431) of the terms derived 
above. The resulting horizontal and vertical pointing corrections have the form: 

A A cos a & Ci + C2 cos a + C3 sin a + C4 cos A sin a + C5 sin A sin a , 

where Ci is adjusted to correct for a horizontal telescope collimation error, C2 for a constant 
azimuth offset (Equation 4), C3 for the tipping-mount collimation error (Equation 6), C4 
and C5 correct for azimuth track tilt (Equation 5), and 

Aa & Ce + C7 cos a + C4 sin A + C5 cos A 

where Ce corrects for the vertical telescope collimation error and C7 for gravitational bend¬ 
ing. The coefficients Cn are found simultaneously by a least-squares fit to the measured 
pointing residuals, so changes in one affect the others. Depending on the range of altitude 
and azimuth covered by the data and on the pointing terms included, the solutions may be 
numerically unstable and wildly differing values of the pointing constants obtained from 
only slightly differing data sets (Condon, J. 1986, NRAO Electronics Division Technical 
Note No. 137). Also, the real cause^pointing errors are more complicated — the azimuth 
track may be irregular as well as tilted, for example. It will probably be necessary to 
correct for these complications to achieve 1 arcsec pointing accuracy. A method for doing 
this is outlined in the next section and applied in the last section of the memo. 



A TWO-DIMENSIONAL FOURIER-SERIES REPRESENTATION 

The horizontal and vertical components of the pointing error axe each periodic func¬ 
tions of A and a, with period 2n in both coordinates. Any such periodic function /(A, a) 
can be represented exactly by the two-dimensional Fourier series 

oo    oo 

/(A,a) = V^2_] {aPyqsinpAsmqa + bpiqcospAsinqa 
S=o,=o (7) 

-f Cpiq sinpA cos qa + dpiq cos pA cos ga) . 

The series coefficients are 

(/, sin pA sin qa) (/, cos pA sin qa) 
ap'q =   ||sinpAsin9a||2 '     ''* =   ||cospAsinga||2 ' 

(/,sinpAcosga) (/, cos pA cos qa) 
Cp'9 =   || sin pA cos ga||2 '     p'9 ==   || cospAcosgall2 ' (8) 

where 

(f,9) = J J f(A,a)g(A,a)dAda 

is the inner product of the functions / and g over the rectangular region R bounded by 
—TT < A < TT, —TT < a < TT and ||/|| = (/, f)1/2 is the norm of /. 

The price for modeling arbitrary pointing errors would seem to be an infinite number 
of pointing coefficients, but this need not be the case for two reasons: (1) Each of the 
traditional pointing terms described in the preceding section corresponds to a single low- 
order term in the expansion 

/(A, a) = cfo.o + ciyo sin A -J- dij cos A + 60,1 sina + c?o,i cos a 

+ ai,! sin A sin a -f 61,1 cos A sin a -f ci^ sin A cos a + di^ cos A cos a 

+ C2,o sin 2 A + cfe.o cos 2 A + 60,2 sin 2a + c?o,2 cos 2a (9) 

+ 02,1 sin 2A sin a + 62,1 cos 2A sin a + C2,i sin 2A cos a + c?2,i cos 2A cos a 

+ ... 

[Ci = do,o? C2 = do,i> C3 = 60,1, C4 = 61,1, C5 = ai,! (horizontal error) and C4 = 
ci,o, C5 = ^i,o» C« = c7o,o> C7 = do}i (vertical error)]. This Fourier series is therefore 
very efficient at representing the principal pointing terms, and each term of the series 
can be traced back to a particular fault in the telescope or its mount. (2) The basis 
functions axe orthogonal over the region —7r<A<7r,—7r<a<7r, so the coefficients 
are independent. They may determined one at a time rather than simultaneously, and the 
error in determining one coefficient does not affect the values of other coefficients. Pointing 



coefficients determined from independent data sets should agree within the measurement 
errors, so that calibration data sets may be combined to reduce the errors or compared to 
check for changes in the pointing. Significant terms can be added and insignificant ones 
deleted at will. Most of the series terms will be insignificant and their coefficients can be 
set to zero. The coefficient (Equation 8) of each term minimizes the norm of the pointing 
residuals remaining after the partial series has been subtracted. 

Unfortunately, the GBT cannot observe pointing calibrators over the full altitude 
range —TT < a < TT. The actual region ifc covered by the GBT is approximately TT < A < TT, 

0 < a < 7r/2. The basis functions above axe not all orthogonal in this restricted region, 
so the measured values of some series coefficients will be correlated. If measurements are 
made uniformly over the region covered by the GBT, the coefficients for any pair of basis 
functions / and g will have a correlation coefficient (projection coefficient) 

x(/,ff) = ir4Ar=x(</,/) (10) 
il/IIIMI 

Table 1 lists a number of these correlation coefficients, showing which must be determined 
simultaneously and which may be found independently. Careful selection of pointing terms 
made with the help of Table 1 can minimize the number of correlations. For example, the 
coefficient C2,i (needed for horizontal pointing errors caused by height irregularities in the 
azimuth ring — see the next section) is correlated with 02,0 and 02,1. But C2,o and 02,1 axe 
probably not needed and can be set to zero, so C2,i may be determined independently. 

A PARTICULAR EXAMPLE: POINTING ERRORS CAUSED BY 
AN IRREGULAR AZIMUTH TRACK 

In the horizon plane the azimuth track is a circle of radius p whose height 77 may vary 
irregularly with track azimuth f as shown below. 

(»0rHO 
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If 

The only restrictions on rj(^) are that it be periodic over —TT < £ < TT and that Tj/p ^ 1. 
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The GBT rotating structure (alidade) is supported by four wheel trucks at ring azimuths 

fi = A-f 7r/4, $2 = A+37r/4, $3 = A-f 57r/4, and £4 = A-|-77r/4 when the alidade is rotated 
to azimuth A. This structure sags under the weight of the telescope, so all four wheels 
always rest on the track, even though the track is slightly irregular. The wheel heights 
above the horizon plane axe thus 7/1 = rj(A + 7r/4), 772 = rj(A + 37r/4), 773 = 77(A + 57r/4), 
and 7/4 = 77 (A + 77r/4). A small height difference between opposing wheels 1 and 3 will tilt 

l;he alidade about the Xh and yh axes by angles 

Ax (m     ?yi^cos(7r/4)   and  Ay (*__!») cos(7r/4)) 
2p    ) ""v"' "/ V    2/9 

respectively. Similarly, the height difference between wheels 2 and 4 yields small tilts 

Ax w (Ty2~7?4>) cos(7r/4)  and  Ay * (^"^ cos(7r/4) . 

Summing the effects of both wheel pairs yields 

»72 + 773 — f]\ — TJ4 Ax 2V2p 
and  Ay m + *72 — 773 - 774 

2V^/9 
(11) 

The figure below shows how stresses deform the alidade to rotate the elevation-axle 
about the z-axis as well. 

TL- CHMVV^ & 
A 

-** 

If the axle is at a height £ above the track, the end supported by wheels 1 and 2 will be 
at x coordinate #12 and the other end at £34 given by 

xu tt -<; 772 —rfi 

2p cos(7r/4) 
and  £34 tt — £ ^3 —774 

2/9 cos(7r/4) 

This internal twisting of the alidade rotates the axle about the vertical by 

Az w (V ) K7?2 + f*)" (vi + 7/3)] • 
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(12) 



Since small error matrices commute, all three error components can be compressed 
into a single error matrix. As in the derivation of Equation (5), 

0       +Az    +Ax\   /-cosa\       / -fAxsina 
ARtt |  -Az       0        -|-Ay J  j       0       J = I +Ay sin a + Azcosa 

—Ax    —Ay        0    /   \-fsina/        \ -f-Axcosa 

Transforming with the ideal tipping matrix (Equation 3) gives the pointing error 

/ +Ax \ 
AT tt I -f-Ay sin a + Az cos a J   . (13) 

\        o        / 
The angles Ax, Ay, and Az can be derived by inserting the Fourier series describing 

the track height 
oo 

7/(0 = &o + ^(an sinnf + bn cosnf) 
n=l 

into Equations (11) and (12). The results axe 

p Ax tt — ai sin A — &i cos A + as sin 3 A + &3 cos 3 A 

+ as sin5A + 65 cos 5A — aj sin7A — 67 cos 7A + ... 

pAy tt + ai cos A — 61 sin A + as cos 3 A — 63 sin 3 A 

— as cos 5A + 65 sin5A — a? cos 7A + 67 sin7A + ... 

tt — a2 cos 2A + 62 sm 2A 

+ ae cos 6A — be sin 6A + ••• , 

where the sign patterns repeat every two lines. Entering these results into Equation (13) 
gives the pointing errors for the irregular azimuth track AT tt 

1   / —ai sin A — bi cos A + 03 sin 3A + 63 cos 3A + ... 
— I 4-ai cos A sin a — 61 sin A sin a — (2a2 C/p) cos 2 A cos a + (262 C/p) sin 2A cos a + ... 
>> \ 0 

(14) 
The terms containing the angle A in Equation (14) measure the tilt of the track, just 
as Equation (5) does. The ternis containing the angle 2A give pointing errors caused 
by twisting the elevation axle and axe not included in the traditional pointing equations. 
However, their coefficients axe twice those of the tilting terms for £ ~ />, so they may well 
be important. Thus at least 02,1 « +2&2C/P2 and c?2,i ~ —2a>2(,lP2 should be added to the 
pointing equations. 

To see how large these terms might be in a real telescope, I used the Effelsberg 100 m 
telescope horizontal pointing residuals after the traditional pointing corrections had been 
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made (Table 2), as reported by Pauliny-Toth & Altenhoff (1972, Technischer Bericht Nr. 
12, MPHR, Bonn). Table 1 shows that the Fourier coefficients €2,1 and cfo,! are independent 
of each other and of all others used in the 100 m telescope pointing corrections, so they 
can be calculated directly from the measured pointing residuals /(A, a) listed in Table 2. 
The expressions 

(/, sin 2 A cos a) (/, cos 2 A cos a) 
02,1 =  || sin 2A cos a||2   '     2'1 =  || cos2Acosa||2 

were approximated by sums over the N = 180 data points /n(A, a): 

Sn=l /» S^n 2A COS a                          Sn=l fn cos 2A COS tt 
c2,l ^  N '.  >    **2,1 ^  N  ' 

53n_1(sin2Acosa)2 '        £)n_1(cos2Acosa)2 

The data in Table 2 yield C2,i tt —3.2 arcsec and c?2,i ^ —2.0 arcsec. This is equivalent to 
a horizontal pointing error tt 3.8 cos[2(A —120°)] cos a arcsec. Its ampUtude is comparable 
with the initial horizontal pointing residual (3.66 arcsec rms), and subtracting it reduces 
the rms residual to 3.11 arcsec. Thus the twisting term is quite significant in the 100 m 
telescope, and removing it reduces the horizontal pointing variance by 27%. It is likely to 
be important for the GBT, whose pointing accuracy should be much better. 

12 



APPENDIX: ROTATION MATRICES 

If the two-dimensional cartesian coordinate system (xi, t/i) is rotated counterclockwise 
by an angle a to yield the new system (x2,y2)j 

*Xi 

the coordinates of any point P are related by 

so 

In matrix notation, 

X2 =1/2 tan a + Xi/ cos a 

yi =Xi tan a + 2/2/ cos a 

£2 =yi sin a + #1 cos a 

2/2 =J/i cos a — xi sina . 

(£2^ _ / + cosa    -fsina^ /^lA 
7/2,/      \-sina    +cosaJ \yi J 

For three-dimensional right-handed cartesian coordinate systems, the rotation matri¬ 
ces i2x(a), .Ry(a), and ilz(a) describing counterclockwise rotations about the z, y, and 2 
axes, respectively, are: 

10 0 
Rx(a) = [ 0    +cosa    -fsina 

0    — sin a    + cos a 

+ cos a    0    — sin a 
JZ, (a) = (       0 1 0 

+ sin a    0    -f cos a 

+ cos a    + sin a    0 
i2z(a) = (  —sina    +cosa    0 

0 0 1 
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TABLE 1. Correlation coefficients x(fi9) ^OT ^e region —7r<i4<7r, 0<a< 7r/2. 

c?o,o    01,0 ^1,0 Vi do,i ai,i Ki CM ^1,1 C2,0 ^2,0 &0,2 do,2 02,1 &2,1 c2,l ^2,1 

do,o 1       0 0 2y/2 
n 

2y/2 
TT 

0 0 0 0 0 0 2^/2 
TT 

0 0 0 0 0 

Cl,0 1 0 0 0 2V2 
TT 

0 2V2 
TT 

0 0 0 0 0 0 0 0 0 

^1,0 1 0 0 0 2Y^ 
TT 

0 2V2 
TT 

0 0 0 0 0 0 0 0 

^0,1 1 2 
If 

0 0 0 0 0 0 8 
3ir 

-4 
3* 0 0 0 0 

do,i 1 0 0 0 0 0 0 8 
3ir 

4 
37r 0 0 0 0 

ai,i 1 0 2. 0 0 0 0 0 0 0 0 0 

Ki 1 0 2 
TT 

0 0 0 0 0 0 0 0 

ci,i 1 0 0 0 0 0 0 0 0 0 

rfi,i 1 0 0 0 0 0 0 0 0 

C2,0 1 0 0 0 2y/2 
Tt 0 2y/2 0 

C?2,0 1 0 0 0 2y/2 0 2y/2 
ir 

bo,2 1 0 0 0 0 0 

do,2 1 0 0 0 0 

^2,1 1 0 2 
ir 0 

^2,1 1 0 2 
IT 

C2,l 1 0 



TABLE 2. Effelsberg 100-m telescope horizontal pointing residuals (arcsec). 

A= 10°   30 50     70 90   110   130   150   170   190   210 230   250   270   290   310   330   350 

a = 5° 

10 -9                            -11 

15 -4 -6 +3                     -9    -7 +1    +1    -1    +9    +9             -1 

20 -1    -6 -5 +1    +4 +11    +8    -2    -1    -2 -5             +3    +5    +5       0    +2 

25 0-5 0            +3       0+6       0    -1    -2 +6 +9               0    -3 

30 -2    -5 +7    -5 +2    -1    +3             -2       0    -2 -1    +1    +7    +5       0    +1 

35 -3    -5 -4    +2 +5    +1             +6    +3       0-2-1       0 +5    +8    -2    -2 

40 -5    -5 -6    -2 +2    +2            +2       0             -2 -1    +2       0    +6    +2    -3 

45 -5 -6 +1       0    -1    -1             +1    -1 -1             -3            +2    -3 

50 -1    -4 -7    +4 +2       0             -2-1-10 0+700    +2 

55 -4 -3    -6            +5    -1               0-2      0 -10+6      0 

60 -3    -4 -4    -6 +1+1-2               0 0               0-4      0 

65 -2 -1    -1 +2               0 +1    -2             +3             -2 

70 +1       0 -3    -4            +4      0    -2            +3    -1 -3 +1                     +3 

75 -2 -2 +1            -1            +2    +1 0            +6            +1 

80 +1      0 -2                     +3    +1       0    +1    -1 +5    +3 

85 


