
The Green Bank Telescope
Laser Ranging System

ZY Software
Reference Manual

Ramon Creager

January 24, 1994

Contents

1 Introduction 2

2 Installing the ZY systems S
2.1 Requirements 3
2.2 Installation Steps 3

2.2.1 Boot Diskette 3
2.2.2 ZY Directory 6

2.3 Network Files 6
2.3.1 Laser Directory 7

S Operation 9
3.1 Booting the ZY 9
3.2 Connecting to ZY 9
3.3 Using Commands 10

3.3.1 Syntax 10
3.4 Initialising the ZY 11

3.4.1 CUBES.INI example 12
3.4.2 ZY001.INI example 13

3.5 Servo Operation 16
3.5.1 Preparing the Servo System for Operation 16
3.5.2 Finding Home Position 16
3.5.3 Using the Servos 17

3.6 Data Acquisition 17
3.6.1 Data Acquisition Sub-System 17
3.6.2 Direct Memory Access (DMA) 17
3.6.3 Using A/D commands 18
3.6.4 Data Acquisition Timings 19

3.7 Trouble-shooting 20
3.7.1 Communications Problems 20
3.7.2 Servo Problems 21
3.7.3 Data Acquisition Problems 21

4 List of Commands by Function 22
4.1 Instrument Control 22
4.2 Data Acquisition 22
4.3 Servo 22
4.4 Pointing 23
4.5 High level, or Cube Commands 24

CONTENTS 2

5 Detailed Description of Commands 25
ABA 25
ABP 25
ABV 26
ACP 26
AMP 27
AXS 27
AZO 28
AZM 28
BX 29
BY 30
BYE 30
BZ 31
CIL 31
CLC 32
CLE 33
COO 33
CTR 34
CWT 35
CX 36
CY 36
CYC 37
CZ 37
DAT 38
DSP 38
DST 39
ELO 39
ELV 40
ERL 41
FHM 41
FIL 42
FKD 42
FKI 43
FKP 43
FLT 44
FSI 44
GTI 45
nDX 45
IFF 46
INI 46
INITZY 47
INVC 48
LIMIT 48
MAG 48
MPC 49
NUM 49
ORD 50
PHI 51
QQQ 52
RAD 52
RDF 52

CONTENTS

RDS 53
RST 53
SCN 54
SEQ 54
SFQ 55
STI 56
STS 56
STT 57
STW 57
TRG 58
VER 59
VHM 59
WAI 60
WCNT 60
WTMO 61
WTOL 61
WMD 62
XOl 62
X02 63
X03 63
YOl 64
Y02 64
Y03 64

Chapter 1

Introduction

The Green Bank Telescope Laser Ranging System will be made up of approximately 20 laser ranging
instruments to be used for active surface and precision pointing. These instruments are identified as
ZY001—ZY020. Groups of ZYs will be under the control of computers identified as ZIYS for active
surface control, and ZIYP for precision pointing.

Under normal operation, the active surface, precision pointing, and monitor and control interface
to the Laser Ranging System will be through the ZIYs. The ZIYs will be responsible for coordinating
the operation of the ZYs to obtain 3-D coordinates of retroreflectors on the GBT.

This document is a draft of the software reference manual for the ZY instruments—and thus
primarily of interest to the ZIY software designer. It does, however, give others a basic understanding
of the ZY system operation, and therefore a fundamental understanding of potential capabilities of
the ZIYs.

It should be noted that the list of functions includes only the completed and tested functions. A
number of additional functions are under development—particularly in areas of tracking and time
synchronisation.

Comments and questions are solicited on both the content and format of this draft, so corrections
and enhancements can be made to the final document. Companion software reference documents on
the ZIYS and ZIYP systems will be released in the future. ZY hardware and calibration reference
manuals will also be released in the future.

Chapter 2

Installing the ZY systems

2.1 Requirements

To use the ZY systems, the following hardware and software is required:

• Hardware:

1. ISA bus computer with at least an Intel 286 microprocessor, with at least 640K of memory.

2. Intel 287 or better math co-processor.

3. At least 1 floppy disk (other storage media optional).

4. Any display adapter (the computer will not run without one).

5. Quatech DAQ-16 100 KHs A/D converter, at I/O address 240 Hex, IRQ disabled, DMA
channel 5. This board must be modified as per drawing D35420S002.

6. MICRO RC 5328 Motion Control Card, at I/O 100 Hex, IRQ disabled.

7. 3COM Etherlink II or Etherlink HI ethernet adapter, at I/O 330 Hex, IRQ 5.

8. A connection to a TCP/IP LAN.

• Software:

1. MS-DOS 5.0 or greater.

2. FTP Software PC/TCP for DOS version 2.1 or greater.

2.2 Installation Steps
The software installation of the ZY system consists of the following steps:

• Creating a boot diskette that contains the nescessary files.

• Establishing a network account that the ZY system can use to retrieve the needed program
and initialisation files.

2.2.1 Boot Diskette

SYSTEM DISKETTE

Create a system diskette (example: format a: /s), with MS-DOS 5.0.

CHAPTER 2. INSTALLING THE ZY SYSTEMS 6

CONFIG.SYS

Create a CONFIG.SYS file as follows:

device-*:\pctcp\protMn. ay* /i:a:\pctcp
device-a:\pctcp\elnkii.dos
device-a: \pctcp\di»-pkt. gup
files-10
buffers-20

The lines in the CONFIG.SYS file have the following meaning:

device**:XpctcpXprotaan.ays /i:a:\pctcp
Loads the Microsoft protocol manager, the /i option tells it where it can find the PROTO-
COL.INI file.

device-a:\pctcp\elnkii.dos
Loads the 3COM Etherlink U driver (use elnkS.dos for the Etherlink HI).

device-a: \pctcp\di8^>kt. gup
Loads the NDIS to packet driver converter. This driver allows the PC/TCP generic kernel,
PC-210, to communicate with a specific NDIS device driver (in this case, elnkii.dos).

filea-10
Sets the maximum number of file handles. 10 should be more than sufficient for this application.

buffers-20
Sets the number of file buffers. Disk performance is improved by adding more buffers, but
each buffer occupies 512 bytes of memory. 20 buffers therefore equal 10 KBytes of memory, so
if memory is tight, this setting can be lowered to a minimum of 3, particularly since the disk
is not used during normal operations.

AUTOEXEC.BAT

Create an AUTOEXEC.BAT file as follows:

Qecho off
prompt pg
set TZ-EST5EDT
set zyid-1
set ZYAZ-266
set ZYEL-260
set PCTCP-a:\pctcp\pctcp.ini
path a:\;a:\pctcp
rea The following lines load the network kernel
netbind
ethdrv
rea rload ftp gets remote.exe from a network server
rload host-bunda user-laser passwd*<pas8word> hostdir-/laser/zyl
reaote-reaote.exe local-reaote.exe
reaote

The lines in the AUTOEXEC.BAT file have the following meanings:

CHAPTER 2. INSTALLING THE ZY SYSTEMS 7

Qecho off
Prevents the commands in the AUTOEXEC.BAT file from being echoed to the display (op¬
tional)

proapt pg
Sets the command prompt to 'A:*" (optional)

set TZ-EST5EDT
Sets the TZ environment variable. This variable is needed by the ZY program and the PC/TCP
clockset command to properly set the system clock.

set ZYID-1
Sets the ZYID environment variable. This variable is needed by the ZY program to know
which ZY it is. In this case, it is ZYl

set ZYAZ-256
Sets the ZYAZ environment variable. This variable is used by the ZY program to determine
the I/O address (decimal) of the asimuth axis of the 5328 motion controller board. Here it is
set to 256 decimal (100 Hex).

set ZYEL-260
Sets the ZYAZ environment variable. This variable is used by the ZY program to determine
the I/O address (decimal) of the elevation axis of the 5328 motion controller board. Here it is
set to 260 decimal (104 Hex).

set PCTCP-a:\pctcp\pctcp.ini
Sets the PCTCP environment variable. This variable is used by the PC/TCP kernel to find
it's initialisation file, PCTCP.INI.

path a:\;a:\pctcp
Sets the execution path.

netbind
Calls NETBIND.EXE. NETBIND.EXE binds the NDIS device driver to the PC/TCP conver¬
sion module. This must happen before the PC/TCP kernel is called.

ethdrv
Calls ETHDRV.EXE, the PC/TCP generic kernel.

rload host-bunda user-laser passwd-<password> hostdir-/laser/zyl reaote-reaote.exe local-reaote.exe

Calls RLOAD.EXE. RLOAD.EXE is a command line FTP client that does a binary get of
the ZY program file REMOTE.EXE from the host bunda, logging in as user laser. When
rload terminates, REMOTE.EXE should be on the disk, waiting to be run.

reaote
Calls the ZY program, REMOTE.EXE. See section 3.1 for more details. The ZY system should
be ready to go after this command.

FTP PC/TCP

Create the subdirectory A:\PCTCP for the FTP PC/TCP files that will be required. Copy as a
minimum the following files from the PC/TCP distribution diskettes to this directory:

elnkii.dos (or elnkS.dos) — NDIS device driver
dis-pkt.gup — NOIS to packet driver converter

CHAPTER 2. INSTALLING THE ZY SYSTEMS 8

ethdrv.exe — the PC/TCP kernel
netbind.exe — Binds the kernel to the packet driver converter
protaan.sys — MS Protocol aanager
rload.exe — A saall FTP client, used to load ZY prograa
ping.exe — used to verify network connections
protocol.ini* — the protocol aanager's initialization file
pctcp.ini* — the kernel's initialization file

NOTE: Files marked with <*> may have to be created, and will certainly have to be modified
to accomodate differences between each ZY, such as network IP address, and possible differences
in hardware (Etherlink H vs Etherlink III, for instance). Please refer to the PC/TCP and 3COM
documentation to see how this is done. Sample PCTCP.INI and PROTOCOL.INI files also can be
found in the 'laser* account.

Once this disk has been created, a mirror of it should be kept in the 'laser' account (in the
subdirectory 'laser/remotes/syxxx' where xxx represents the ZY number in question. This will
make it easy to recover in the event of a floppy disk failure.

2.2.2 ZY Directory
After all of this is complete, the ZY directory should look like this.

CONFIG.STS
AUTOEXEC.BAT
CUBES.INI
ZY.INI
CUBES.BAK
ZY.BAK
REMOTE.LOG
REMOTE.EXE
\PCTCP

ELNKII.DOS
DIS_PKT.GUP
ETHDRV.EXE
NETBIND.EXE
PROTHAN.SYS
RLOAD.EXE
PING.EXE
PROTOCOL.INI
PCTCP.INI

2.3 Network Files

A user account named 'laser* is needed by the ZY systems to properly boot and initialise themselves.
See your Systems Administrator if this has not already been set up. The following subdirectories
must be present for the ZY system to boot and initialise:

/laser/zy<N>
Location of ZY executable REMOTE.EXE (where N stands for the number of the ZY system
in question. For ZY 1, that would be /laser/syl).

/laser/init
Location of the ZY initialisation files

CHAPTER 2. INSTALLING THE ZY SYSTEMS 9

/laser/remotes
Location of the ZY diskette mirror archives.

Note that these paths are relative to the 'laser' home directory. Currently, the account is estab¬
lished on host cestus, and the full path for /laser/init is /cestusl/laser/laser/init. Such
a path specification must not be used either in the REMOTE.EXE program or as a command line
to RLOAD.EXE, as the location of the 'laser* account cannot be guaranteed.

2.3.1 Laser Directory
For a three laser system, the network laser directory should look like this.

"/laser/zyi
remote.exe

~/laser/zy2
reaote.exe

"/laser/zyS
remote.exe

"/laser/init
cubes.ini
zy001.ini
zy002.ini
zy003.ini

"/laser/reaotes/zyOOl
CONFIG.SYS
AUTOEXEC.BAT
CUBES.INI
ZY.INI
CUBES.BAK
ZY.BAK
REM0TE.LOG
REMOTE.EXE

\PCTCP
ELNKII.DOS
DIS-PKT.GUP
ETHDRV.EXE
NETBIND.EXE
PROTMAN.SYS
RLOAD.EXE
PING.EXE
PROTOCOL.INI
PCTCP.INI

~/l*Ber/remote8/zy002
CONFIG.SYS
AUTOEXEC.BAT
CUBES.INI
ZY.INI
CUBES.BAK
ZY.BAK
REM0TE.LOG
REMOTE.EXE

\PCTCP

CHAPTER 2. INSTALLING THE ZY SYSTEMS 10

ELNKII.DOS
DIS-PKT.GUP
ETHDRV.EXE
NETBIND.EXE
PROTMAN.SYS
RLOAD.EXE
PING.EXE
PROTOCOL.INI
PCTCP.INI

~/laser/reaotes/zy003
CONFIG.SYS
AUTOEXEC.BAT
CUBES.INI
ZY.INI
CUBES.BAK
ZY.BAK
REMOTE.LOG
REMOTE.EXE

\PCTCP
ELNKII.DOS
DIS-PKT.GUP
ETHDRV.EXE
NETBIND.EXE
PROTMAN.SYS
RLOAD.EXE
PING.EXE
PROTOCOL.INI
PCTCP.INI

Chapter 3

Operation

3.1 Booting the ZY

As described in section 2.2.1, the ZY computers boot from a local 1.44 MByte floppy. DOS and the
network software reside on this floppy, as well as a simple FTP client program, RLOAD.EXE, whose
sole purpose is to retrieve the ZY executable. RLOAD.EXE is called from the AUTOEXEC.BAT
file after the network kernel ETHDRV.EXE has been called. RLOAD.EXE must be called with the
following parameters, all separated by a space:

ho8t"<hostnaae>
user~<usernane>
passwd"<password>
ho8tdir-<hostpath>
remote-<hostfilenane>
localB<localfilenaae>

where:

<ho8tnane> is the name of the host that is running the ftp server

<UBernane> is the name of the account, in this case 'laser'

<password> is the password to the 'laser' account

<hostpath> is the path to the 'remote.exe' file

<hostf ilenaae> is the name of the ZY executable on the UNIX host, in this case 'remote.exe', in
lowercase.

<localf ilenaBe> is the name of the ZY executable on the local MS-DOS ZY host, in this case
'REMOTE.EXE', case is not important here.

After RLOAD.EXE successfully terminates, REMOTE.EXE is executed.

3.2 Connecting to ZY
Once the ZY is booted up and running, it sets up a listening TCP socket. To connect to this listening
socket, the client program must make a TCP connection to host sy<n> (where n is the ZY number)
at port 5240. When the connection is made, the client program may wish to verify the connection
by sending a status request command (STS or STW). If all is well, the ZY will send back a status

11

CHAPTERS. OPERATION 12

string (STS) or a status word (STW). While the ZY and the client program are connected, the ZY
will send a newline character to the client every 60 seconds to make sure that the client has not been
disconnected. If it has, the ZY will close the connection and resume listening. The client program
should therefore interpret a single newline character as a "null* command and do nothing.

Note that it is possible to connect to the ZY with a standard telnet program, as in the following
example for syl and the Sun OS telnet:

telnet zyl 5240

This is useful for trouble-shooting purposes or to familiarise oneself with the command syntax
of the ZY. Set the telnet program to local echo and send on end of line. Some telnet programs will
correctly set themselves to this basic setup because the ZY program is not really a telnet server and
therefore the telnet negotiation will fail

3.3 Using Commands
There are two broad classes of commands in the ZY command set: low level and high level (or cube
based). Low level commands allow the client program to directly control the various sub-systems
or system parameters of the ZY such as the servo systems, the A/D system, system status, etc.
High level commands use one or more sub-systems to perform the tasks that the ZY was designed
to accomplish.

3.3.1 Syntax

Commands are issued in a 7-bit ASCII stream, and consists of the command itself followed by 0 or
more parameters, separated by a comma (,) and terminated by a newline character. The ZY is case
insensitive. In the following discussion, items in angle brackets (< >) are mandatory, and items in
square ([]) brackets are optional.

The general command syntax is:

COMMAND [par an, par am...] newline

When the ZY has processed the command, it replies as follows:

COMMAND <i>, [param, param...] newline

if the command succeeded, or

COMMAND <0>, [error message string] newline

if the command failed. In case of success, the parameter list that the ZY sends back is the same
that was sent to it.

The ZY buffers the commands sent to it, so that the client program need not wait for a reply
before sending the next command. At this point, an example may prove helpful; the following com¬
mand sets the absolute acceleration of the elevation axis to 10 000:

ABA 1, 10000

Note that a space is required between the command and the first parameter. The ZY will eventually
reply with:

CHAPTERS. OPERATION 13

ABA 1. 1, 10000

if the operation succeeded, or

ABA 0, 1, error loading acceleration

if the operation failed.
Most commands that set new values can be used without the value parameter to request the

currently set value. In the event that our example command succeeded, then sending

ABA 1

will request from the ZY the currently set acceleration value for axis 1 (the elevation axis) and
the ZY will reply with:

ABA 1. 1, 10000

As mentioned above, there are two types of commands in the ZY command set: Low level com¬
mands, used to directly manipulate a subsystem, and higher level commands (called 'cube based
commands' because they take a cube name or number as a parameter), which use the subsystems
at their disposal in the course of performing their function. For instance, to move the laser beam to
cube ZGll, one could do the following with low level servo commands:

ABP 0, 29000
ABP 1. 65700
STT 0
STT 1
WAI 0
VAI 1

give azimuth a destination of 29000
give elevation a destination of 65700
start the azimuth moving
start the elevation moving
wait for azimuth to complete move
wait for elevation to complete move

where 29000 and 65700 are arbitrary encoder coordinates that woud aim the laser at the desired
cube. Using a cube based command to do the same thing would look like this:

CIL ZGll ; aim laser at cube ZGll
CVT ZGll ; wait for operation to complete

This is much more sophisticated since the ZY can calculate the needed azimuth and elevation
encoder coordinates from the actual three dimensional coordinate of the cube's location. Cube
based commands cannot be used if cube objects have not been created. They will fail if the cube
parameter passed to them is incorrect (cube does not exist, for instance). The ones that use the
servo sub-system will fail if the servos have not been homed.

3.4 Initializing the ZY
After the client program has verified the connection, it is ready to make measurements. At this
point, though not absolutely nescessary, the client program should initialise the ZY program, by
sending the INITZY command. When the ZY receives this command, it will retrieve (via binary ftp)
two initialisation files from the 'laser' account: CUBES.INI and ZYxxx.INI (where xxx is the ZY
number, a 3 digit number whith leading zeroes if nescessary; for example: ZY001.INI for ZYl).

CUBES.INI contain commands that are used by every ZY, and ZYxxx.INI contains commands
that are specific to a particular ZY, so that there will be one ZYxxx.INI for each ZY in the sys¬
tem. These files are located in the directory /laser/init. The ZY program saves these localy to
A:CUBES.INI and AJZY.INI, renaming any previous copies to A:CUBES.BAK and A.ZY.BAK.

CHAPTERS. OPERATION 14

The ZY then executes the commands in CUBES.INI and then ZY.INI, sending it's responses to
these commands back to the client program, as if the client program had sent these commands itself.
This will allow the client program to initialise any of it's data structures as nescessary.

Finally, when all the commands contained in the two initialisation files have all been executed,
the ZY will acknowledge the INITZY command by sending the string 'INITZY 1' back to the client,
if the ftp get was successful, or 'INITZY 0, <error msg>' if the ftp failed. In the case where the
ftp get failed, the ZY program will have restored CUBES.INI and ZY.INI from the backup files
CUBES.BAK and ZY.BAK, and executed the commands from these older initialisation files.

It is the client program's responsibility to decide how to proceed in the event of an INITZY
failure. Note that if this is the first time that the ZY was initialised, there may be no old copies of
CUBES.INI and ZY.INI, and that even if old copies exist, the information contained within them
may be out of date, so it is highly recommended that the client program terminate in the event of
an INITZY failure and that the cause of the problem be determined.

3.4.1 CUBES.INI example
A typical CUBES.INI file would look like this.

CUBES.INI
Device independent cube information:
- Total number of cubes
- Name and 3 dimensional coordinates of each cube
- Number and order of cube scan

allocate enough memory for 17 cubes
INI 17

initialize each cube:
coo <index>> <name>l X, Y, Z, AZ, EL

coo 0, ZRG, 0, 0, 0, 0, 0
coo 1, ZBG, -88148.4340, -203303.0630, -
coo 2. ZGll, -78876.7230, -208044.3490.
coo 3, ZG12, -80502.6480, -206734.4100,
coo 4, ZG13, -82135.3700, -205420.8440,
coo 5, ZG21, -77408.1360, -206207.9290,
coo 6, ZG22, -79034.8530, -204903.7200,
coo 7, ZG23. -80669.2520, -203592.1960,
coo 8, ZG31. -75921.3520. -204369.4060,
coo 9, ZG32, -77559.1640, -203064.7090,
coo 10. ZG33, -79199.6280, -201752.1490,
coo 11. ZBG1, -122982.8380. -258786.3250.
coo 12. ZBG2. -88148.4340, -203303.0630.
coo 13, ZBG3, -75755.7240, -213554.4010.
coo 14, ZBG4. -40683.7900, -157995.2440.
coo 15. ZBG5. -51539.7600. -119544.2970,
coo 16, ZBG6, -2510.0280, -158643.0360,

number of retros to scan:

328.2700, 0, 0
1786.1280. 0, 0
1786.1280, 0, 0
1792.2240, 0, 0
822.9600, 0, 0
822.9600, 0, 0
826.0080, 0, 0
-143.2560, 0, 0
-137.1600. 0, 0
-143.2560. 0. 0
-300.7640, 0, 0

-328.2700, 0, 0
-328.2700, 0, 0
-309.9820, 0, 0
-309.9820, 0, 0

-331.2260, 0, 0

CHAPTERS. OPERATION 15

NUN 11

Scan order: The first number is the scan list starting position,
the rest are the retro number list.

ord 0, 0. 1. 2, 3. 4, 5, 6, 7, 8, 9, 10

Explanation

INI 17
Sets up 17 cube objects in the ZY computer's memory

COO 0. ZRG. 0. 0. 0. 0. 0

COO 16. ZBG6. -2510.0280, -158643.0360, -331.2260. 0. 0
These commands initialise each cube with their index number, name, XYZ coordinate, and
their AZ EL coordinate. The AZ and EL coordinates where once nescessary to tell the servo
system where to point, but are now obsolete. They are kept for backwards compatibility, and
may be set to 0.

NUN 11
Sets the sise of the scan list. The ZY uses a scan list to determine which cubes to measure if
the SCN command is given.

ORD 0, 0. 1. 2. 3. 4. 5. 6. 7. 8. 9, 10
Fills the scan list with the cube index numbers of the cubes to scan.

3.4.2 ZY001.INI example
A typical ZY001.INI file would look like the following.

ZY001.INI

last changed: 08/24/93 R Creager

Reference Retro Azimuth * Elevation

AZN ZRG. -23538
ELV ZRG. -29002

Laser position constants: These are used to calculate the
laser system's position and orientation in 3 dimentional
space.

BX -21945.6
BY -134696.363
BZ 31592.52

CHAPTERS. OPERATION 16

AZO 0
ELO 20735
XOl -11727.8
X02 -0.98705
X03 0.022797
YOl -25110.2
Y02 0.003107
Y03 0.99838
INVC

A/D info:

IFF 1000
CYC 128
SFQ 64

1000 kHz reference frequency
128 cycles per measurement
64 samples per cycle

Servo (LM628) info, azimuth:

ABV 0, 15000000
ABA 0, 10000
FKP 0. 200
FKI 0, 300
FKD 0, 3500
FIL 0, 20
FSI 0. 1
ERL 0. 5000

•
; Servo (LM628)

ABV 1. 15000000
ABA 1. 20000
FKP 1. 50
FKI 1. 50
FKD 1. 600
FIL 1, 100
FSI 1, 2

LN628 velocity value
LN628 acceleration value
LN628 proportional (gain) value
LN628 integration term
LM628 differetiation term
LN628 integration limit
LN628 differential sampling rate
LN628 position error limit

info, elevation:

Servo Vait parameters, azimuth

WMD 0, 0
VCNT 0. 5
VTOL 0. 2
WTMO 0. 18

Servo Vait parameters, elevation

CHAPTERS. OPERATION 17

VMD 1. 0
VCNT 1, 5
VTOL 1. 2
VTMO 1, 18

Explanation

AZM ZRG, -23538

ELV ZRG, -29002
Sets the asimuth and elevation encoder coordinates for the reference cube (ZRG). The reference
cube is the only cube that must have AZ and EL values set. The reference cube is used to
compensate for electronic drift in the ZY instrument and is mounted directly on the instrument.
Since it moves and tilts with the instrument, it can always be found with encoder coordinates
and therefore no coordinate transformation is required, or indeed possible.

BX -21945.6

BY -134696.363

BZ 31592.52

AZO 0

ELO 20735

XOl -11727.8

X02 -0.98705

X03 0.022797

YOl -25110.2

Y02 0.003107

Y03 0.99838

INVC
These commands tell the laser where it is located in 3 dimensional space, and how it is oriented.
The INVC command also tells each cube that the laser's orientation and location may have
changed, and that new encoder coordinates must be calculated.

IFF 1000
1000 KHs reference frequency

CYC 128
128 cycles per measurement

SFQ 64
64 samples per cycle. These commands initialise the A/D sub-system.

ABV 0, 15000000
LM628 velocity value

ABA 0. 10000
LM628 acceleration value

CHAPTERS. OPERATION 18

FKP 0. 200
LM628 proportional (gain) value

FKI 0, 300
LM628 integration term

FKD 0, 3500
LM628 differetiation term

FIL 0, 20
LM628 integration limit

FSI 0. 1
LM628 differential sampling rate

ERL 0, 5000
LM628 position error limit These commands load the servo controller's trajectory values and
PID (proportional, integral, derivative) filter. This sequence initialises the asimuth (0) axis,
and should be repeated for the elevation (1) axis as well

NOTE: It is essential that the velocity value be loaded first. The National Semiconductor
LM628 motion controller used in the ZY requires that the acceleration value must not exceed
the velocity value, or a command error will result. If the acceleration value is loaded first, and
the velocity value is still 0 (power up default), then the operation will result in a command
error, meaning that the acceleration value will not have been loaded. This will result in a servo
system that refuses to move.

VMD 0, 0

VCNT 0, 5

VTOL 0, 2

VTMO 0, 18
These commands determine how the servo system will wait until a move is complete. These
commands are for axis 0. They must also be sent for axis 1.

3.5 Servo Operation

3.5.1 Preparing the Servo System for Operation
Before the servo system can move the servo motors, the servo controller's PID (Proportional, Inte¬
gral, and Derivative) filter values and trajectory (acceleration and maximum velocity) values must
be loaded, as explained in section 3.4. To date, the values used have been determined by trial and
error, and because each mechanism is different in some way (different friction etc.) these values are
different from one ZY to the next.

3.5.2 Finding Home Position
The encoders used to control the servo motors on the ZY system are incremental encoders. When
the system is first powered on, the position they happen to be in becomes the home position (encoder
coordinate 0). This is a purely arbitrary position.

Before the encoders can be used to point the laser at any absolute coordinate, the servo systems
must first undergo a procedure that locks in their true home positions. This is accomplished with
the 'FHM' command for each axis. FHM will rotate the specified axis until a special index pulse is

CHAPTERS. OPERATION 19

noted. The servo controller's position register is then altered so that it reads 0 at the location of
that index pulse.

Since the location of the index pulse is physically fixed, the encoder's coordinates can now be
considered absolute. This procedure needs to be performed only once after a system startup. As long
as the ZY program is running, the servo controllers will remember their respective home position.
The "homed" condition of the servo system can be determined by reading the system status word,
so that a client program need not perform this procedure unnescessarily (see STS, STW).

NOTE: Some commands will fail if this procedure was not performed or if it failed.

3.5.3 Using the Servos
With the PID and trajectory values loaded, the servo motors can be moved to any point in their
range with the low level servo commands. Moving an axis involves first loading the destination, then
issuing a start command. For example

ABP 0, 3000
STT 0
VAI 0

moves axis 0 to encoder coordinate 3 000. WAI blocks until the move completes. The use of
WAI is optional It should be used if synchronisation with the move is nescessary.

3.6 Data Acquisition

3.6.1 Data Acquisition Sub-System

The ZY laser ranging system uses a 780 nanometer (nm) wavelength laser modulated at 1500 MHs
to determine the exact distance to a retro-reflector in the field. The reflected signal is received by
a PIN silicon photodiode, mixed, digitised by the 16 bit 100 KHs A/D system, and processed to
extract the phase.

Ideally, the phase of the received 1500 MHs signal would then be compared against a 1500 MHs
reference signal to determine the phase difference, and thus the exact location of the retro-reflector.
However, The A/D sub-system is incapable of sampling a signal of this frequency. To get around
this problem, the returning 1500 MHs signal is first mixed with a (1500 MHs + IF reference) signal
to produce an IF signal of much lower frequency, which can then be easily sampled. The phase of
the IF signal is then compared to the IF reference.

To make a measurement, the system samples a number of IF cycles at a predetermined sampling
rate. The total number of samples taken is then the product of the number of cycles integrated and
the sampling rate, expressed in samples per cycle. The number of cycles to measure, the sampling
rate, and the frequency of the IF reference are all programmable.

3.6.2 Direct Memory Access (DMA)
In order to minimise the workload of the computer's CPU, the A/D system is configured to use
DMA services to store the acquired data. An AT class computer, such as the computer used in the
ZY system, has 2 DMA controllers, one providing 8 bit DMA services on DMA channels 0-3, and
the other providing 16 bit services on channels 5-7. Both will allow a maximum of 65 536 words.
The ZY's A/D hardware is configured to use 16 bit DMA channel 5, and the software sets aside a
128 KByte DMA buffer to store the samples.

To perform a measurement, the appropriate DMA controller is preloaded with the total number
of samples desired, and is then given a software trigger. The A/D system then synchronises with the
IF reference, and takes samples until the DMA terminal count is reached. As an example, consider

CHAPTERS. OPERATION 20

a measurement made with the ZY's default cycle and samples-per-cycle values. The measurement
will integrate over 128 cycles, with 64 samples per cycle, and the number of 16 bit words in the
DMA buffer will total 8192. The DMA buffer can now be thought of either as an array of 8192
individual 16 bit samples, or as an array of 128 structures, each structure representing a complete
set of 64 samples of an IF cycle. The phase calculation algorithm treats the buffer as the latter.

3.6.3 Using A/D commands
The commands CYC (number of cycles sampled), IFF (IF reference), and SFQ (samples per cycle)
are used to configure the A/D system to make measurements. When using the A/D commands
CYC, IFF, and SFQ, it is important to note that the hardware imposes some limits. The DMA
restriction of 65 536 samples has been noted above. The product of the CYC and SEQ values should
not exceed this limit.

The other important limitation is imposed by the A/D's maximum sampling frequency of 100
KHs. In this case, the product of the SEQ and IFF values should not exceed this maximum sampling
frequency. In either case, the ZY will not allow an illegal condition: the offending command will
return with an error.

Once the A/D system has been properly configured, the client program can use either low level
commands or high level commands to make a measurement. The following examples show how to
use the low level commands to perform measurements:

To integrate a number of cycles and calculate a phase and amplitude:

TRG
MFC
RAO
NAG

trigger the measurement
calculate phase and magnitude from data in DMA buffer
return phase, in radians
return magnitude, in volts

The ZY responds with:

TRG 1
MFC 1
RAD 1, 3.6657776
MAG 1, 2.67

To calculate a sequence of phases and amplitudes, each one corresponding to a cycle structure
in the DMA buffer:

TRG ; trigger the measurement
SEQ ; calculate and return the sequence data

The ZY responds with:

TRG 1
SEQ 1, 0, 3.534. 4.23489882. 0. 0
SEQ 1. 1, 3.499, 4.23398948. 0. 0

SEQ 1. n. 3.529. 4.23459893, 0. 0

where n is (number-of-cycles - 1). The 2 zeroes at the end of each line are place holders for an
undocumented experimental feature and may be safely ignored.

To retrieve a range of individual samples from the DMA buffer:

TRG; ; trigger the measurement
DAT 0, 9 ; request samples 0 through 9

CHAPTERS. OPERATION 21

The ZY responds with:

TRG 1
DAT 1. 0, -22094
DAT 1. 1. -20138

DAT 1. 9. 30982

High level commands are very similar to their low level counterparts, except that the data in
the DMA buffer is associated with a cube, and the results of the phase and amplitude are stored
in that cube's data structure, and can be used to return actual distance measurements (with low
level commands, the results are not stored anywhere outside the phase system's structures, and are
overwritten by the next calculation). The following example shows how to use high level commands
to make a distance measurement:

CIL ZGll
CVT ZGll
CTR ZGll
CLC ZGll
AMP ZGll
PHI ZGll
DST ZGll

move laser to cube ZGll
wait for laser to get there...
trigger measurement. DMA data belongs to ZGll
calculate phase and amplitude for ZGll
get calculated amplitude for ZGll (in volts)
get calculated phase for ZGll (in radians)
get actual distance to ZGll (in mm)

The ZY responds with:

CIL 1,4 ; in this case, 4 is the index number of ZGll
CWT 1, 4
CTR 1. 4
CLC 1. 4
AMP 1. 4, 3.45
PHI 1. 4. 3.14159265
DST 1. 4, 100454.345

There are no high level equivalents to the SEQ and DAT commands. There is, however, another
high level data acquisition command that merits mention: SCN. SCN causes the ZY to measure in
turn each cube listed in the scan list. The NUM and ORD commands are used to maintain this list
(see NUM, ORD, SCN). If a large number need to be measured, SCN is preferable to repeating the
example above for each cube, for the following reasons:

1. It is optimised for speed (see following section).

2. It requires a single command from the client. This is particularly important in a multiple ZY
system, as each can scan the list of cubes concurrently, without the need of multiple commands
from the client program, which necessarily would have to send them in sequence to each ZY.

3.6.4 Data Acquisition Timings
Several factors will dictate how long a measurement will take to perform. For a simple measurement,
where the laser is already pointed at a cube, the measurement consists of two parts: data acquisition
and data processing. The SCN scan command is more complex. In this case, the servo translation
times must also be taken in account.

CHAPTERS. OPERATION 22

Simple Measurement Times

The time taken by the data acquisition portion is the product of the number of cycles integrated
and the period of each cycle. For example, using the system defaults of 128 cycles and 1 ms (1 kHs
IF) respectively, this would work out to an integration time of 128 ms, or l/8th of a second.

The data processing time is influenced by two factors: The number of samples processed, and
the CPU and FPU speed. The more samples there are, the longer the phase calculation will require.

The number of samples affect the calculation in another way: there are two distinct phase
calculation routines, one written in Intel 286/287 assembly language, and one written in a high
level language (C++). Due to the segmented architecture of the Intel 286, the assembly language
phase routine (as it is now written) can be used with a maximum of 32768 samples. Because the
system is capable of acquiring up to 65 536 samples, the system will automatically switch to the
high level language routine when the number of samples exceeds 32768, and the calculations will
take approximately 5 times longer to complete.

Again using the system defaults as an example, a 286/287 AT running at 16 MHs can reduce
8192 samples to phase and amplitude values in 33 ms.

SCN Timings

The SCN routine takes advantage of the fact that the National LM628 servo controller and the
Intel 8237 DMA controller both operate independently of the main CPU to reduce the measurement
overhead. It exploits the independence of the LM628 by commanding the servo controllers to move
the laser to the next cube in the list while the CPU is calculating the phase and amplitude of
the current cube on the list. It then communicates these results to the client program during
data acquisition for the next cube. If the servos are optimally tuned, this technique removes from
consideration the time it takes to translate the servos from one cube to the next, and the time
needed to communicate the results of the previous measurement to the client program.

3.7 Trouble-shooting

When troubleshooting the ZY, it may be extremely useful to make a TELNET connection to the ZY
to try to duplicate the condition by entering commands manualy (see section 3.2). This provides
immediate feedback and also separates the client program from the ZY (the bug may after all be in
the client program).

The ZY implements a watchdog timer. This timer will reset the system if processing comes to a
halt for any reason. The watch dog timer keeps a log file in the root directory called REMOTE.LOG.
This file logs the time and date of the reset, an index to the command that was executing during
reset, and an optional source code line number. The best way to quickly view REMOTE.LOG is to
use the command "RDF REMOTE.LOG" in a TELNET session (see RDF). The file will scroll by
the telnet screen. If this file is long, it may be difficult to view the top. The most recent resets are
at the bottom of the file.

3.7.1 Communications Problems
Problem: ZY is up and running, but connection is refused, or connection is read-only.

Possible Cause: Some other program may already be connected to the ZY.

Remedial Action: Wait for ZY to become free or disconnect the other program.

Problem: ZY is up and running, but host cannot be found.

Possible Cause: The network software on the ZY may not be properly configured.

CHAPTERS. OPERATION 23

Remedial Action: Check the connection with the 'ping' command from another host. If this
fails, verify the configuration of the network software on the ZY.

3.7.2 Servo Problems
Problem: Servo system acts normal, but servos do not move.

Possible Cause: Either the acceleration value or the velocity value is currently set to 0. This will
cause the LM628 to signal a completed move, but not move the servos. This problem typically
arises when the acceleration value is loaded before the velocity value during initialisation.
When the system is started, the LM628 comes up with both the velocity and acceleration set
to 0. By loading the acceleration first, the requirement that the acceleration value be less than
the velocity value is violated and the acceleration is left at it's current value, 0.

Remedial Action: Place the ABV command before the ABA command during initialisation.

Problem: Servo move takes a long time to complete, or do not complete at all.

Possible Cause: The servo system is not properly tuned, causing the servo motors to oscillate
about their destination. This problem usually occurs during operations that require the servo
to settle on target, such as FHM, CWT, WAI, VHM or SCN.

Remedial Action: Tune the servos.

Problem: Some high level commands fail with the message "axis n not homed".

Possible Cause: The servo axis 'n' is not homed. Coordinates used on this axis will be invalid,
so operations that require absolute servo coordinates will faiL

Remedial Action: Execute FHM for that axis

3.7.3 Data Acquisition Problems
Problem: Measured amplitude is sero for all cubes.

Possible Cause: The oscillator may not locked to the 100 MHs reference or to the IF reference.
This is a safe bet if the amplitude is exactly 0.00 for all cubes, including the reference cube
(ZRG).

Remedial Action: Ensure that the 100 MHs reference and the IF reference are getting to the
oscillator. If so, trouble-shoot oscillator.

Problem: Measured amplitude is low for some cubes.

Possible Cause: The servos are not pointing to a comer cube. The comer cube may be covered
(by dew or frost, for instance) or an obstacle may be in the optical path.

Remedial Action: Check coordinates of the cube under test. Check for any obstructions in the
optical path.

Chapter 4

List of Commands by Function

4.1 Instrument Control

These are general instrument control/status commands.

BYE - Disconnect from ZY
GTI - Get ZY Tine
INI - Create cube objets
INITZY - Initialize the ZY program
QQQ - Terminate the ZY program
RDF - Read a file on the ZY's disk
RST - Reset the ZY computer
STI - Set ZY Time
STS - Return ZY status string
STW - Return ZY status word (2 byte)
VER - Returns the ZY version number

4.2 Data Acquisition
These commands allow direct control of the data acquisition sub-system.

CYC - Sets/returns the number of cycles of the IF signal to sample
DAT - Returns one or more samples from memory
IFF - Sets the frequency of the IF signal.
MAG - Returns the last calculated magnitude
MPC - Commands the Data Acquisition sub-system to calculate

a phase and magnitude from data stored in memory
RAD - Returns the last calculated phase, in radians
SEQ - Returns a sequence of magnitude and phase values, each

belonging to an individual cycle from a string of cycles
stored in memory

SFQ - Sets/returns the number of samples per cycle
TRG - Commands Data Acquisition system to begin acquire new data

4.3 Servo

The servo sub-system controls 2 axes of movement. The axis number must be specified when using
each one of the following commands.

24

CHAPTER 4. LIST OF COMMANDS BY FUNCTION 25

ABA
ABP
ABV
ACP
AXS
CLE
DSP
ERL
FHM
FIL
FKD
FKI
FKP
FLT
FSI
IDX
LIMIT
RDS
STT
VHM
VAI
VCNT
VTMO
VTOL
VMD

- Sets/returns the absolute acceleration
- Sets a target position for a subsequent move
- Sets/returns the absolute velocity
- Returns the current encoder position
- Returns the axis status word
- Clears the axis error flag
- Returns the desired encoder position
- Sets/returns the position error limit
- Finds home
- Sets/returns PID filter integration limit
- Sets/returns PID filter derivative constant
- Sets/returns PID filter integration constant
- Sets/returns PID filter proportional constant
- Sets/returns all PID filter constants
- Sets/returns PID filter derivative sampling interval
- Returns current index position
- Sets/returns 'software stops' for the servo motor
- Returns the integration sum
- Starts the motor on a move
- Verify home position
- Vait for move to complete

'wait count' parameter
'wait time out' parameter
'wait tolerance' parameter
'wait mode' parameter

Sets/returns the
Sets/returns the
Sets/returns the
Sets/returns the

4.4 Pointing

Most of these commands are used to initialise the ZY. They alter system parameters that allow a
ZY to point it's laser to a 3 dimensional coordinate, instead of using raw encoder coordinates. The
actual encoder coordinates are calculated as

az = XOl + XO2(0 + AZO) + X03(^ + ELO) (4.1)

where 0 and ^ are defined on drawing D35420M051, and XOl, X02, and X03 are constants measured
in the calibration lab. This equation will be modified to include monument constants in the final
form.

AZO - Sets/returns azimuth offset
BX - Sets/returns base X coordinate of ZY
BY - Sets/returns base Y coordinate of ZY
BZ - Sets/returns base Z coordinate of ZY
ELO - Sets/returns elevation offset
INVC - Invalidates current coordinate az/el coordinates for each cube
XOl - Sets/returns X 1st order constant
X02 - Sets/returns X 2nd order constant
X03 - Sets/returns X 3d order constant
YOl - Sets/returns Y 1st order constant
Y02 - Sets/returns Y 2nd order constant
Y03 - Sets/returns Y 3d order constant

CHAPTER 4. LIST OF COMMANDS BY FUNCTION 26

4.5 High level, or Cube Commands
Each one of these commands takes a cube name or number as a parameter. The value or action
specified belongs to that cube.

AMP - Returns last calculated amplitude
AZM - Sets/returns azimuth coordinate
CIL - Illuminate cube with laser
COO - Sets/returns cube index, name and coordinates
CTR - Triggers data acquisition
CVT - Blocks until CIL has completed
CX - Sets/returns X coordinate
CY - Sets/returns Y coordinate
CZ - Sets/returns Z coordinate
DST - Returns last calculated distance
ELV - Sets/returns elevation coordinate
NUM - Sets/returns the number of cubes to scan
ORD - Sets/returns the order of a scan
PHI - Returns last calculated phase
SCN - Scans all the cubes in the scan list

Chapter 5

Detailed Description of
Commands

ABA

Mnemonic ABsolute Acceleration

Function Sets absolute acceleration for LM628

Syntax ABA <n>[, a]
n: axis value (0: asimuth, or 1: elevation)
a: acceleration value 0 to (230) — 1
If <a> is ommitted, current value is returned.

Returns On Success: axis number, and new or current acceleration value.
On Failure: axis number and an error message.

Remarks The acceleration value must not exceed the velocity value. It will
take effect the next time the servos are moved. For an explanation
of the units used for the acceleration, see pg. 14 of the National
Semiconductor data sheet for the LM628.

Example send: ABA 1, 20000
receive: ABA 1, 1, 2000

send: ABA 0
receive: ABA 1, 0, 1000

See Also ABV, STT

ABP

Mnemonic ABsolute Position

Rinction Sets target destination in absolute encoder counts.

27

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 28

Syntax

Returns

Remarks

Example

See Also

ABP <n, p>
n: axis value (0: asimuth, or 1: elevation)
p: position in encoder counts —(2s0) to (230) — 1
If this value is not present, ABP returns an error. Current position
can be obtained using ACP for actual position or DSP for desired
position.

On Success: axis number and the new position.
On Failure: axis number and an error message.

It is important to keep in mind that the units used are encoder
counts, and are therefore dependent on the encoder used. In order
to complete the move, STT <n> must be issued.

send: ABP 0, 15000
receive: ABP 1, 0, 1500

ACP, STT

ABV

Mnemonic

Function

Syntax

Returns

Remarks

Example

ACP

ABsolute Velocity

Sets the absolute velocity to be used in all subsequent moves.

ABV <n>{, v]
n: axis value (0:azimuth or l:elevation)
v: velocity value 0 to (230) - 1
If <v> is ommitted, current value is returned.

On Success: axis value and the new or current velocity value
On Failure: error message.

The velocity value must equal or exceed the acceleration value.
It will take effect the next time the servos are moved. For an
explanation of the units used for the velocity, see pg. 14 of the
National Semiconductor data sheet for the LM628.

send: ABV 1, 2000000
receive: ABV 1, 1, 2000000

send: ABV 1
receive: ABV 1, 1, 2000000

See Also ABA, STT

Mnemonic ACtual Position

function Returns the current encoder count for the specified axis.

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 29

Syntax ACP <n>
n: axis number (0:asimuth or l:elevation)

Returns On Success: axis value and current encoder count
On Failure: error message.

Remarks The returned value will be in the range -{2s0) to (230) - 1

Example send: ACP 0
receive: ACP 1, 0, -29885

See Also DSP

AMP

Mnemonic AMPlitude

Function Requests the most recent signal magnitude for specified cube.

Syntax AMP <n>
n: cube number.

Returns On Success: cube number and signal magnitude in volts.
On Failure: cube number and error message.

Remarks This is a cube based command, therefore INI must be called before
this command can be successful. AMP will fail if cube<n> is not
in range.

Example send: AMP 5
receive: AMP 1, 5, 0.385

See Also CIL, CLC, COO, CTR, INI, PHI

AXS

Mnemonic AXis Signals register

Function Requests the signal word for the specified axis controller

Syntax AXS <n>
n: axis number

Returns On Success: axis number and LM628 status word (in hexadecimal).
On Failure: error message.

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 30

Remarks The status word will be returned as a 16 bit hexadecimal number.
The 16 bits have the following meaning:

Bit 15 : Host Interrupt
Bit 14 : Acceleration Loaded (But Not Updated)
Bit 13 : UDF Executed (But Filter Not Yet Updated)
Bit 12 : Forward Direction
Bit 11 : Velocity Mode
Bit 10 : On Target Bit 9 : Turn Off Upon Excessive Position Error
Bit 8 : Eight-Bit Output Mode
Bit 7 : Motor Off
Bit 6 : Breakpoint Reached
Bit 5 : Excessive Position Error
Bit 4 : Wraparound Occured
Bit 3 : Index Pulse Acquired
Bit 2 : Trajectory Complete
Bit 1 : Command Error
Bit 0 : Acquire Next Index

AZO

Example

Mnemonic

Function

Syntax

Returns

Remarks

Example

For a full explanation of these flags, see pg 15 of the National
Semiconductor LM628 data sheet.

send: AXS 0
receive: AXS 1, 0, 0x0604

AZimuth sero

Load a new asimuth offset value for the coordinate transforma¬
tion module, or optionaly requests the old value, if parameter is
ommitted.

AZO [value]
value: asimuth encoder count offset — (230) to (230) — 1

On Success: new asimuth offset value, if one was specified, or the
current value if not.
On Failure: This function should not fail

This function, allong with it's companion functions, load coor¬
dinate transformation constants that allow the laser to correctly
point to any 3 dimensional coordinate in an arbitrary coordinate
system.

send: AZO 23000
receive: AZO 1, 23000

send: AZO
receive: AZO 1, 23000

See Also BX, BY, BZ, ELO, XOl, X02, X03, YOl, Y02, Y03, INVC

AZM

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 31

Mnemonic cube AZiMuth

Function Loads new asimuth encoder coordinate for the specified cube. If
no value is specified, requests current value.

Syntax AZM <c>[, enc.val]
c: cube number or name
encval: new encoder value -(230) to (230) - 1

Returns On Success: cube number and new or current encoder coordinate,
depending on whether one was provided.
On Failure: cube number and an error message

Remarks This command is used to load a new encoder coordinate for any
cube. This new value is permanent only for the reference cube,
however. For all other cubes, this value will be overwritten when
the coordinate transformation module recalculates a new coordi¬
nate. This will happen, for any cube except the reference, when
new X, Y and Z coordinates are sent to that cube, or for all cubes
except the reference when the INVC command is sent to the ZY.

Example send: AZM 0, 12345
receive: AZM 1, 0, 12345

send: AZM 0
receive: AZM 1, 0, 12345

See Also CIL, COO, CX, CY, CZ, ELV, INVC

BX

Mnemonic Base X

Function Loads the X coordinate of the laser system, or requests the current
X coordinate value for the laser system

Syntax BX [value]
value: new X coordinate value -(1.7 X 10308) to (1.7 x 10308)

Returns On Success: the current or new value of the X coordinate of the
laser system.
On Failure: This function should not fail.

Remarks The location of the laser system in 3-space is represented by the
set (X, Y, Z). The coordinate transformation system is dependent
upon this point when it determines how to aim the laser at a par¬
ticular cube. Any changes to the base X, Y, or Z values requires
that the encoder coordinates for every cube but the reference be
recalculated. When all changes to these values and to the other po¬
sitioning offsets have been made, then the command INVC should
be issued to inform every cube of the change.

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 32

BY

Example send: BX 123.4
receive: BX 1, 123.4

send: BX
receive: BX 1, 123.4

See Also AZO, BY, BZ, ELO, INVC, XOl, X02, X03, YOl, Y02, Y03

Mnemonic Base Y

Function Loads the Y coordinate of the laser system, or requests the current
Y coordinate value for the laser system

Syntax BY [value]
value: new Y coordinate value -(1.7 X 10308) to (1.7 x 10308)

Returns On Success: current or new value of the Y coordinate of the laser
system.
On Failure: This function should not fail

Remarks The location of the laser system in 3-space is represented by the
set (X, Y, Z). The coordinate transformation system is dependent
upon this point when it determines how to aim the laser at a par¬
ticular cube. Any changes to the base X, Y, or Z values requires
that the encoder coordinates for every cube but the reference be
recalculated. When all changes to these values and to the other po¬
sitioning offsets have been made, then the command INVC should
be issued to inform every cube of the changes.

Example send: BY 123.4
receive: BY 1, 123.4

send: BY
receive BY 1, 123.4

See Also AZO, BX, BZ, ELO, INVC, XOl, X02, X03, YOl, Y02, Y03

BYE

Mnemonic

Function

Syntax

Returns

Remarks

goodBYE

Gracefully shuts down socket connection to client.

BYE

On Success: No return.
On Failure:

Upon receipt of this command, the ZY closes the connection to the
client computer and immediately waits for a new one.

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 33

BZ

Example

See Also

Mnemonic

Function

Syntax

Returns

Remarks

send: BYE
receive: nothing.

QQQ, RST

BaseZ

Loads the Z coordinate of the laser system, or requests the current
Z coordinate value for the laser system

BZ [value]
value: new Z coordinate value -(1.7 x 10308) to (1.7 x 10308)

On Success: current or new value of the Z coordinate of the laser
system.
On Failure: This function should not fail

The location of the laser system in 3-space is represented by the
set (X, Y, Z). The coordinate transformation system is dependent
upon this point when it determines how to aim the laser at a par¬
ticular cube. Any changes to the base X, Y, or Z values requires
that the encoder coordinates for every cube but the reference be
recalculated. When all changes to these values and to the other po¬
sitioning offsets have been made, then the command INVC should
be issued to inform every cube of the changes.

Example send: BZ 123.4
receive: BZ 1, 123.4

send: BZ
receive: BZ 1, 123.4

See Also AZO, BX, BY, ELO, INVC, XOl, X02, X03, YOl, Y02, Y03

CIL

Mnemonic Cube ILluminate

Function Commands ZY to illuminate the specified cube.

Syntax CIL <n>[, <as , el> — <x, y, s>]
n: cube name or number
as: new asimuth value -(230) to (230) - 1
el: new elevation value -(230) to (230) - 1
x: new X coordinate -(1.7 x 10308) to (1.7 x 10308)
y: new Y coordinate -(1.7 X 10308) to (1.7 x 10308)
s: new Z coordinate -(1.7 x 10308) to (1.7 x 10308)

Returns On Success: cube number
On Failure: error message.

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 34

Remarks <n> must be within the range of cubes specified when INI was
called. CIL will return an error if it is called before INI is called,
or if the cube is out of range. For instance:
INI 20; // set aside space for 20 cubes.
CIL 25; // error. CIL will report the error and do nothing.

There are 3 ways CIL can be used:

Example

See Also

With 1 parameter: CIL assumes the parameter is the cube num¬
ber, or name. It will then use previously calculated asimuth and
elevation encoder coordinates to aim the servos. If INVC was pre¬
viously issued, or if the cube's X, Y, and/or Z coordinates where
changed since the last move (with CX, CY, and/or CZ or COO),
the Coordinate TVansformation Module will recalculate this cube's
asimuth and elevation encoder values before they are sent to the
servo controllers. The only exception to this is the reference cube.
With 3 parameters: CIL assumes the first parameter is the cube
number, and that the next two are new asimuth and elevation en¬
coder coordinates. CIL will then use these coordinates instead of
the calculated ones to aim the laser at. the cube. These coordinates
will be wiped out the next time the Coordinate TVansformation
Module recalculates this cube's coordinates.
With 4 parameters: CIL assumes the first parameter is the cube
number followed by new X, Y, and Z coordinates for this cube.
The Coordinate TVansformation Module will then use these new
coordinates to calculate a new set of encoder coordinates for this
cube. CIL then uses these new encoder coordinates to aim the laser
at the cube.

send: CIL 5 receive: CIL 1, 5
send: CIL 5, -29000, -10000 receive: CIL 1, 5, -29000, -10000
send: CIL 5, 82000, 540, -100034 receive: CIL 1, 5, 82000, 540,
-100034

CWT

CLC

Mnemonic cube CaLCulate

Function Commands the specified cube to calculate a phase and magnitude
from the acquired waveform in the DMA buffer.

Syntax CLC <n>
n: cube name or number.

Returns On Success: cube number
On Failure: cube number and an error message

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 35

Remarks CLC will fail if the cubes have not been initialised or the cube <n>
is out of range or if the data in the DMA buffer does not belong to
this cube. If CLC is successful, cube <n> will have updated phase
and magnitude values. To obtain the digitised data for the cube
<n>, use CTR, not TRG, as TRG is a low level function and the
cubes would have no way to know which cube is associated with
the DMA data, causing this function to fail

Example send: CLC 3
receive: CLC 1, 3

See Also AMP, CTR, DST, PHI

CLE

Mnemonic CLear Error

Function

Syntax

Returns

Remarks

Example

See Also

Clears any error condition in the specified axis.

CLE <n>
n: axis number (0:asimuth, or l:elevation).

On Success:
On Failure: Axis number and error status

If an axis error occurs, an error flag is set for that axis, and the
software will ignore any command to that axis until the error is
cleared with the CLE command.

send: CLE 1 receive: CLE 1, 1

COO

Mnemonic cube Coordinates

Function Reads/sets the specified cube's data (index, name, 3 dimensional,
coordinates (X, Y, Z), and its initial encoder coordinates (as and
el)).

Syntax COO <n—name>—<n—name, X, Y, Z, as, el>—<n, name, X, Y,
Z, as, el>;
n : cube number.
name : ASCII string identifier for cube.
X : floating point number, part of 3D coordinate.
Y : floating point number, part of 3D coordinate.
Z : floating point number, part of 3D coordinate.
as : integer, part of encoder coordinates,
el: integer, part of encoder coordinates.

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 36

Returns On Success: cube number, name, X, Y, Z, as, el
On Failure: cube number along with an error message

Remarks Like CIL, COO has 3 distinct functions, and behaves according to
how many parameters it receives:

With 1 parameter: COO assumes that the parameter is either the
name or index number of an existing cube, and returns the current
information (X, Y, Z, as, el) for that cube.

With 6 parameters: COO assumes that the first parameter is the
name or index number of an existing cube and that the following
parameters are new X, Y, Z, as, and el values for that cube.

With 7 parameters: COO assumes that the first parameter is the
index number for a new cube. It deletes any cube that may already
be at that index number, and creates a new cube in its place, using
the remaining parameters to supply the name, X, Y, Z, as, and el
for the new cube.

NOTE: The as and el parameters have been rendered obsolete by
the addition of the 3D to AZ/EL coordinate transformation mod¬
ule. They are there for backwards compatibility, and may be set
to any value. When COO responds, the values for as and el may
not match those that where sent. The only exception to this is the
reference cube, for which no coordinate calculations occur. Since
those encoder values can be set with AZM and ELV, the as and el
parameters may be eliminated in future versions.

Example To create a new cube ZGll:

send: COO 4, ZGll, -207339.04, -78346.73, 2358.98, 0, 0
receive: COO 1, 4, ZGll, -207339.040, -78346.730, 2358.980, 0, 0

To get the values for that cube:

send: COO ZGll receive: COO 1, 4, ZGll, -207339.040, -
78346.730, 2358.980, 0, 0

To change values for that cube:

send: COO ZGll, -103945.90, -45898.7, 106.34, 0, 0
receive: COO 1, 4, ZGll, -103945.900, -45898.700, 106.340, 0, 0

See Also AZM, CX, CY, CZ, ELV

CTR

Mnemonic Cube TRigger

Function Triggers A/D conversion and DMA storage of data for the specified
cube and links the cube to this data.

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 37

Syntax

Returns

Remarks

Example

See Also

CWT

Mnemonic

Function

Syntax

Returns

Remarks

CTR <n>
n: cube name or number.

On Success: cube number
On Failure: cube number and an error message.

CTR will trigger an A/D conversion and associate this data to the
specified cube. Subsequently, this data can only be used by that
cube to calculate amplitude, phase and distance. CTR will fail if
the system has not been initialised for cubes with INI or if the cube
<n> is out of range.

send: CTR ZGll
receive: CTR 1, ZGll

AMP, CIL, CLC, DST, PHI

Cube WaiT

Waits for servos to settle on the specified cube

CWT <n>
n: cube name or number.

On Success: cube number
On Failure: cube number and an error message.

CWT will block while the laser beam is not settled on the cube. It
decides whether a laser is settled on target by continuously reading
the actual position of the servo. To return, it must read n straight
readings within a specified tolerance, and within a specified time
period. If CWT times out, it may still return a success status code
if WMD was last used with a parameter of '0'. WTOL is used
to set the settling tolerance, WCNT is used to set n and WTMO
is used to set the time-out value. This is a cube object based
command, therefore INI should have been called sometime prior to
using CWT. If not, CWT will report an error.

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 38

CX

CY

Example send: CWT 3
receive: CWT 1, 3

TVpical sequence:

WCNT 0, 5
WTOL 0, 5
WTMO 0, 18
WMD 0, 0

CIL 3
CWT 3
CLC 3

See Also WAI, WCNT, WMD, WTMO, WTOL

Mnemonic Cube X

Fanction Loads new X coordinate value for the specified cube, or requests
the current value if a new one is not provided.

Syntax CX <n>[, value]
n: cube name or number
value: new X coordinate value ±1.7 X lO-308 to ±1.7 x 10308

Returns On Success: cube number and new/current cube X value
On Failure: cube number and error message.

Remarks sending this command with a new X value will cause the as and el
coordinates for that cube to be updated next time a CIL command
is sent to that cube.

Example send: CX 5, 20342.24
receive: CX 1, 5, 20342.24

See Also BX, BY, BZ, COO, CY, CZ, INVC

Mnemonic Cube Y

Function Loads new Y coordinate value for the specified cube, or requests
the current value if a new one is not provided.

Syntax CY <n>[, value]
n: cube name or number
value: new Y coordinate value ±1.7 x lO"308 to ±1.7 x 10308

Returns On Success: cube number and new/current cube Y value
On Failure: cube number and error message.

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 39

Remarks

Example

See Also

sending this command with a new Y value will cause the as and el
coordinates for that cube to be updated next time a CIL command
is sent to that cube.

send: CY 5, 20342.24
receive: CY 1, 5, 20342.24

BX, BY, BZ, COO, CX, CZ, INVC

CYC

CZ

Mnemonic CYCles

Fanction Requests/sets the number of cycles that the A/D system will inte¬
grate during the course of one measurement.

Syntax CYC [c]

Returns On Success: new/current cycles value.
On Failure: error message.

Remarks The value of <c> must be 4 or greater, and cycles x samples should
be 65535 or less. If either condition is violated, CYC returns an
error message.

Example send: CYC 32
receive: CYC 1, 32

Typical sequence:

SFQ 64 // sets the number of samples/cycle to 64.
CYC 128 // O.K., cyclesxsamples = 8192.
CYC // request current cycle value.

See Also IFF, SFQ

Mnemonic Cube Z

Function Loads new Z coordinate value for the specified cube, or requests
the current value if a new one is not provided.

Syntax CZ <n>[, value]
n: cube name or number
value: new Z coordinate value ±1.7 X 10~308 to ±1.7 x 10308

Returns On Success: cube number and new/current cube Z value
On Failure: cube number and error message.

Remarks sending this command with a new Z value will cause the as and el
coordinates for that cube to be updated next time a CIL command
is sent to that cube.

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 40

Example send: CZ 5, 20342.24
receive: CZ 1, 5, 20342.24

See Also BX, BY, BZ, COO, CX, CY, INVC

DAT

Mnemonic DATa

FHinction Requests a range of DMA buffer data points

Syntax DAT <start, 8top>
start: starting index of DMA buffer (0-65535)
stop : ending index of DMA buffer (0-65535) && start <= stop;

Returns On Success: succession of values requested, in the form
DAT 1, start + 0, val
DAT 1, start + 1, val

DAT 1, start + n, val
where n = stop - start.
On Failure: error message

Remarks The values returned here are the individual DMA data points, NOT
the individual cycles of laser distance data (see SEQ).

Example send: DAT 0, 3;
receive: DAT 0, -1;
DAT 1, 0;
DAT 2, 5;
DAT 3, -6;

See Also SEQ

DSP

Mnemonic DeSired Position

Function Requests desired LM628 position

Syntax DSP <n>
n: axis value (0 = asimuth, 1 = elevation)

Returns On Success: axis value and the desired encoder position.
On Failure: axis value and an error message.

CHAPTER S. DETAILED DESCRIPTION OF COMMANDS 41

Remarks The meaning of the desired encoder position depends on whether
the move has been completed yet. If it has, then the value returned
should be the same as the target position at the time of the last STT
command. If the move is ongoing, however, the desired position is
the point along the projected trajectory, calculated by the LM628,
that the servo should be at when the request is made.

Example send: DSP 1
receive: DSP 1, 29000

See Also ABP, ACP, RDS

DST

Mnemonic DiSTance

FVmction Returns the absolute distance between the specified cube and the
laser instrument.

Syntax DST <n>
n: cube name or number.

Returns On Success: cube number and the absolute distance, in millimeters.
This value will be within the range ±1.7 x lO-308 to ±1.7 x 10308.
On Failure: cube number and an error code.

Remarks DST will fail if the system has not been initialised for cubes, or
if cube<n> is out of range. Only a standard cube can return a
meaningful distance. The other cubes have the following behavior:
-The reference cube returns 0. -The benchmark cube returns the
survey distance, rounded down to the nearest 100 mm.

Example send: DST 17
receive: DST 1, 17, 108453.287

See Also AMP, CLC, CTR, PHI

ELO

Mnemonic ELevation 0 (sero offset)

Fanction Loads a new elevation encoder offset, for use with the coordinate
transformation system. If the parameter is omitted, ELO returns
the current elevation encoder offset.

Syntax ELO [value]
value: new elevation encoder offset — (230) to (230) — 1.

Returns On Success: new/current elevation encoder offset.
On Failure:

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 42

Remarks The value entered by ELO is an angle measure, in encoder units,
that is used by the coordinate transformation module to calculate
the direction (in local AZ and EL encoder counts) to any cube,
given that cube's absolute 3D coordinate. This value is used pri¬
marily to compensate for the location of the encoder's home po¬
sition as mounted on the instrument. Despite the range of legal
values that this command will accept, only angles within ± one
revolution should be used. For example, if 100 000 counts per rev¬
olution encoders are being used, the value used for ELO should
range from -100 000 to +100 000.

Example send: ELO 27000
receive: ELO 1, 27000

Subsequently:

send: ELO
receive: ELO 1, 27000

See Also AZO, BX, BY, BZ, XOl, X02, X03, YOl, Y02, Y03

ELV

Mnemonic cube ELeVation coordinate

Function ELV loads a new elevation encoder coordinate for the specified
cube. If no value is specified, the current value is returned.

Syntax ELV <c>[, enc.val]
c: cube number or name
enc.val: new encoder value for asimuth LM628 — (230) to (230) — 1

Returns On Success: The cube number and new or current encoder coordi¬
nate, depending on whether one was provided.
On Failure: The cube number and an error message.

Remarks This command is used to load a new encoder coordinate for any
cube. However, this coordinate may subsequently change due to
any changes in laser position or offsets or cube cartesian coordi¬
nates. The only cube for which the new coordinate is permanent is
the reference cube. For that cube, repeating this command or is¬
suing a CIL or COO command to that cube with new asimuth and
elevation values is the only way to change the encoder coordinates.

Example send: ELV 0, 12345
receive: ELV 1, 0, 12345

subsequently:

send ELV 0
receive: ELV 1, 0, 12345

See Also AZM, CIL, COO, CX, CY, CZ, INVC

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 43

ERL

Mnemonic ERror Limit

Fanction Requests/sets the error limit for the specified axis.

Syntax ERL <n>[, lim];
n: axis number (0:asimuth, l:elevation).
lim: new error limit (0 - 25000).

Returns On Success: axis number and the new/current error limit.
On Failure: axis number and an error message.

Remarks For the LM628 servo controller chip, the position error is defined as
the difference between the actual position and the desired position.
ERL sets the maximum tolerable error. If this is exceeded, the
servo controller will shut of the servo motor. The cause of the error
can be static, i.e. something is physically preventing the servo from
moving, or dynamic, where the servo motor cannot keep up with
the computed trajectory. The latter is an indication of a mis-tuned
servo system or an amplifier failure. A command to move to a new
destination, if possible, will re-enable the servo motor.

Example send: ERL 0, 5000
receive: ERL 1, 0, 5000

send: ERL 0
receive: ERL 1, 5000

See Also ACP, AXS, DSP, RDS, STS, STW

FHM

Mnemonic Find HoMe

Rtnction Causes the specified axis to set its home position at the index pulse
position.

Syntax FHM <n>;
n: axis number (0:asimuth, l:elevation).

Returns On Success: axis number.
On Failure: axis number and an error message.

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 44

Remarks The servo system must be homed prior to any use that requires
absolute encoder coordinates. Once homed, the servo system need
not be homed again unless the LM628 controller chip is reset or in
the unlikely event that it should lose count. The 'homed' status of
each axis can be determined by reading the system status word.
The find home operation works by moving the servo until the index
pulse is detected or until it has moved one full revolution. Upon
detecting the index pulse, the position counter reading is latched
into the index position register and the servo is moved back to this
position. When the servo has settled on this position, the position
register is cleared to sero. Encoder counts can subsequently be
treated as absolute encoder coordinates.
FHM attempts to complete the find home operation within 30 sec¬
onds. It can fail to do so if the servos do not move, if the index
pulse is not detected within one full revolution, or if the servos
cannot settle on the index pulse position. If FHM fails, or if FHM
is never executed, operations that require absolute coordinates will
also fail.

Example send: FHM 1
receive: FHM 1, 1

See Also STS, STW, VHM

FIL

Mnemonic

Function

Syntax

Returns

Remarks

Example

Filter Integration Limit

Requests/sets value of the IL (Integration Limit) filter parameter
for the specified axis.

FIL <n>[, f];
n: axis number (0:asimuth, l:elevation)
f: new integration limit 0 to 32767

On Success: axis number and current/new IL value.
On Failure: axis number and an error message.

send: FIL 1, 50
receive: FIL 1, 1, 50

send: FIL 1
receive: FIL 1, 1, 50

See Also FKD, FKI, FKP, FLT, FSI

FKD

Mnemonic Filter KD (KD = derivative constant)

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 45

Rmction

Syntax

Returns

Remarks

Example

Requests/sets value of KD (derivative) filter parameter for the
specified axis.

FKD <n>[, f];
n: axis number (0:asimuth, l:elevation).
f: new derivative value 0 to 32767

On Success: axis number and current/new KD value.
On Failure: axis number and an error message.

send: FKD 0, 3000
receive: FKD 1, 0, 3000

send: FKD 0
receive: FKD 1, 0, 3000

See Also FIL, FKI, FKP, FLT, FSI

FKI

Mnemonic Filter KI (KI = integration constant)

Function

Syntax

Returns

Remarks

Example

Requests/sets value of KI (integration constant) filter parameter

FKI <n>[, f];
n: axis number (0:asimuth, l:elevation).
f: new integral value (0 - 32767)

On Success: axis number and current/new KI value.
On Failure: axis number and an error message.

send: FKI 1, 500
receive: FKI 1, 1, 500

send: FKI 1
receive: FKI 1, 1, 500

See Also FIL, FKD, FKP, FLT, FSI

FKP

Mnemonic Filter KP (KP = proportional constant)

Fanction Requests/sets value of KP (proportional) filter parameter

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 46

Syntax

Returns

Remarks

FKP <n>[, f];
n: axis number (0:asimuth, l:elevation).
f: new proportional value (0 - 32767)

On Success: axis number and current/new KP value.
On Failure: axis number and an error message.

Example send: FKP 0, 50
receive: FKP 1, 0, 50

send: FKP 0
receive: FKP 1, 0, 500

See Also FIL, FKD, FKI, FLT, FSI

FLT

Mnemonic FiLTers

Function

Syntax

Returns

Remarks

Requests/sets all filter values (proportional, integral, derivative,
integration limit, and derivative sampling interval) with one com¬
mand.

FLT <n>[<, kp, ki, kd, il, dsi>];
n : axis number (0:asimuth, l:elevation)
kp : proportional (0 - 32767)
ki: integral (0 - 32767)
kd : derivative (0 - 32767)
il: integration limit (0 - 32767)
dsi: derivative sampling interval (0 - 255)

On Success: axis number and all the filter paramters, in the same
order as above.
On Failure: axis number and an error message.

Example send: FLT 1, 200, 300, 3500, 20, 1
receive FLT 1, 1, 200, 300, 3500, 20, 1

send: FLT 1
receive: FLT 1, 1, 200, 300, 3500, 20, 1

See Also FIL, FKD, FKI, FKP, FSI

FSI

Mnemonic Filter derivative Sampling Interval

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 47

Fanction

Syntax

Returns

Remarks

Example

Requests/sets value of SI (derivative sampling interval) filter pa¬
rameter

FSI <n>[, f J;
n: axis number (0:asimuth, l:elevation).
f: new derivative sampling interval value (0 - 255)

On Success: axis number and current/new SI value.
On Failure: axis number and an error message.

send: FSI 1, 2
receive: FSI 1, 1, 2

send: FSI 1
receive: FSI 1, 1, 2

See Also FIL, FKD, FKI, FKP, FLT

GTI

Mnemonic Get Time

Fanction Request the current value of ZY's time of day and date clock.

Syntax GTI

Returns On Success: Time in seconds since Jan 1 1970, and a time string in
the form: day of week, month, day, time(hour:min:8ec) and year.
On Failure:

Remarks The environment variable TZ should be set as follows:
TZ=sss[+/-]d[d][lll]
sss is a 3 character string represinting the name of the current time
sone, and all three characters are required, example: PST (pacific
std time) or EST (eastern std time). [+/-]d[d] is a required field
containing an optionally signed number of 1 or more digits. This
number is the local time sone's difference from GMT. Negative
numbers adjust eastward from GMT. Ill is an optional 3 character
string (all 3 characters must be present or none at all) that repre¬
sents the local timesone's daylight saving time. For instance, EDT
for EST. If the environment variable TZ is missing or is not in the
preceding form, then TZ=EST5EDT is assumed.

Example send: GTI
receive: GTI 1, 725665107, Tue Dec 29 16:38:27 1992;

See Also STI

IDX

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 48

IFF

Mnemonic InDeX position

Fanction Requests the current index position for the specified axis.

Syntax IDX <n>
n: axis number (0 or 1)

Returns On Success: axis number and index position.
On Failure: axis number and error message.

Remarks 'index position' refers to the value held in the LM628'8 index reg¬
ister. This value was latched in when the LM628 encountered an
index pulse after an LM628 SINDEX command.

Example send: IDX 0
receive: IDX 1, 0, 12345

See Also FHM, VHM

Mnemonic Indtermediate Frequency

EVinction sets a new Intermediate Frequency for the oscillator system. If
parameter is omitted, requests current IF value.

Syntax IFF [value]
value: new value for IF (.5 - 25 KHs)

Returns On Success: new IF
On Failure: error message describing error condition

Remarks This command and SFQ interact, therefore some thought must be
used when using either command; IFF or SFQ can fail if (IFF value
* SFQ value) exceed 100000, which is the maximum sampling rate
of the Quatech DAQ-16 board currently in use. For best results, the
IFF should not exceed SFQ / 4. In case of failure, these commands
will leave the old values intact, so that the system will still work.

Example send: IFF 20000
receive: IFF 1, 20000

See Also

NOTE: in this case, SFQ n will work only if n <= 5. if SFQ n
was issued prior to this command with an n > 5, this command
will faiL

SFQ

INI

Mnemonic INItialise cubes

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 49

FVinction

Syntax

Returns

Remarks

Example

See Also

INITZY

Mnemonic

Fanction

Syntax

Returns

Remarks

Allocates enough memory for the specified number of cube objects.

INI <n>;
n: number of cube objects desired.

On Success: number of cube objects allocated (allways the same
number as requested).
On Failure: error message.

If this command fails for any reason other than a missing parame¬
ters, it is because it there is not enough free memory in the program
heap to allocate the number of cubes requested.

send: INI 1600
receive: INI 1, 1600

AZM, ELV, COO, CX, CY, CZ

INITialise ZY

Initialises ZY to a known state

INITZY [d]
d: debugging flag, not useful from a remote connection as output
goes to a local display. 1 turns on debug output.

On Success: 1
On Failure: 0 and an error message

INITZY initialises the ZY by downloading (via FTP) from a server
2 initialisation files containing many of the commands outlined in
this document. The first file, CUBES.INI, contains device inde¬
pendent commands, all dealing with cubes and their coordinates.
The second file, ZY.INI, is distinct to each ZY and contains such
device dependent information as the location and orientation of
each ZY, the servo filter parameters for that ZY etc. Once the
ZY has downloaded both files, it opens them (CUBES.INI first)
and executes them one line at a time, much as MS-DOS executes
the lines in CONFIG.SYS and AUTOEXEC.BAT on boot-up. If
there where previous copies of CUBES.INI and ZY.INI on the ZY
host, these are backed up. If the FTP operations fail, INITZY will
return a failure code and error message, and the backup files are
restored and used, so that the ZY can be initialised even if the
FTP server is down. It is up to the client program to determine
whether this is acceptable. If the FTP operations succeed, then
the backup files are deleted.

INITZY allows all ZY's to get their initialisation from one single,
easily managed source.

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 50

Example send: INITZY
receive: INITZY 1

INVC

Mnemonic INValidate Coordinates

Function invalidates the as and el coordinates for every cube in the system.

Syntax INVC

Returns On Success: Nothing
On Failure: Nothing

Remarks This command is used to force recalculation of new AZ and EL
encoder coordinates next time those coordinates are needed. This
recalculation may be needed as a result of changing base coordi¬
nates (location of laser system).

Example send: INVC
receive: INVC 1

See Also AZO, BX, BY, BZ, ELO, XOl, X02, X03, YOl, Y02, Y03

LIMIT

Mnemonic LIMIT move

Rmction Establish 'software stops' on the specified axis, to limit the move¬
ment range of that axis.

Syntax LIMIT <n>[<min, max>]
n: axis number, min, max: encoder coordinates past which the
servo must not go. see remarks for range of values.

Remarks LIMIT allows the movement of an axis to be confined within the
2 values, min and max. Legal values for min and max range from
-(230) to (230) -1, but it makes sense only to use LIMIT within ±1
revolution of home. LIMIT is useful if there is a physical or safety
reason for preventing the servo from moving within the excluded
range.

Example send: LIMIT 0, -60000, 25000 //limits servo to range -60000 to
25000
receive: LIMIT 1, 0, -60000, 25000

send: LIMIT 0 // requests current limits
receive: LIMIT 1, 0, -60000, 25000

MAG

Mnemonic MAGnitude

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 51

FVinction Returns the last magnitude calculated by the phase calculating
system.

Syntax MAG

Returns On Success: The last calculated magnitude in volts. The value will
always be between 0 and 10
On Failure:

Remarks This command is distinguished from it's cube counterpart, AMP,
in that it returns the latest magnitude value the phase system com¬
puted. AMP returns the latest magnitude computed for a specific
cube.

Example send: MAG
receive: MAG 2.384

See Also AMP, CLC, CTR, MPC, PHI, RAD, TRG

MPC

Mnemonic Magnitude and Phase Calculate

FVinction

Syntax

Returns

Remarks

Example

Commands phase sub-system to calculate phase and magnitude
from data in the DMA buffer.

MPC;

On Success:
On Failure:

This command, like it's cube counterpart, CLC, commands the
phase sub-system to calculate new phase and amplitude values from
the acquired data. Unlike CLC, MPC will work with any acquired
data.

send: TRG
MPC
RAD
MAG
receive: TRG 1;
MPC1;
MAG 1, 0.351
RAD 1, 3,14159

See Also AMP, CLC, CTR, MAG, PHI, RAD, TRG

NUM

Mnemonic NUMber of cubes to scan

FVinction Requests/sets the number of cubes to scan.

CHAPTER S. DETAILED DESCRIPTION OF COMMANDS 52

Syntax NUM [n]
n: number of cubes to use in a scan.

Returns On Success: new/current number of cubes to scan.
On Failure: error message.

Remarks The number of cubes to scan must not exceed the maximum num¬
ber of cubes as set by INI. If INI has not been called, this command
will faiL

Example send: NUM 20
receive: NUM 1, 20

send: NUM
receive: NUM 1, 20

See Also INI, ORD, SCN

ORD

Mnemonic scan ORDer

FVinction Requests/sets the scan list, which determines the order in which
the cubes are scanned.

Syntax ORD [[index]], c(l)[, c(2),.., c(n-l), c(n)]]];
index: starting point of list, must be less than total number of
cubes. c(n): value of cube in nth position in scan list.

Returns On Success: scan list
On Failure: error message

Remarks ORD assumes that the first parameter is an index into the scan
list. All subsequent parameters are cube names or numbers that
will enter the list starting at the index position. This allows a list
to be initialised in many steps. For instance, if a list of 20 cubes is
desired, the ORD command can be used to initialise the list in 4
steps, if 5 cubes are loaded into the list each time: The first time,
index = 0, the second time, index = 4, etc. If no parameters are
specified, ORD assumes an index of 0, and returns the entire list. If
one parameter is supplied, ORD treats it as the index and returns
the list starting from that index. The list maintained by ORD is
the sise specified by the NUM command.
If any of the cubes are out of range (that is, they do not exist),
ORD will report failure. Although cube names can be used in place
of the cube number, ORD will return the numbers of the named
cubes. NOTE: A cube may be added twice to the list. However, the
total number of entries in the list cannot exceed the total number
of cubes.

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 53

Fbcample The folluwing example assumes a NUM 10 command was issued:

send: ORD 0, 0, 1, 8, 5, 3 // scan cube 0 first, then cube 1,
then cube 8, etc.
receive: ORD 1, 0, 0, 1, 8, 5, 3

send: ORD 5, 9, 2, 4, 6, 7 // add cubes 9, 2, 4, 6, 7 to list,
starting at index = 5 receive: ORD 1, 5, 9, 2, 4, 6, 7

send: ORD
receive: ORD 1, 0, 0, 1, 8, 5, 3, 9, 2, 4, 6, 7

send: ORD 7
receive: ORD 1, 7, 4, 6, 7

Names are also possible:

send: ORD 0, ZRG, ZBG
receive: ORD 1, 0, 0, 1 // ORD does not return names, but the
number of the
// named cubes

See Also INI, NUM, SCN

PHI

Mnemonic cube phase <f>

FVinction Requests the last calculated phase for the specified cube.

Syntax PHI <n>
n: number of cube.

Returns On Success: cube number and the phase in radians.
On Failure: cube number and an error message.

Remarks The phase value returned differs for different types of cubes:

-Reference cube: raw phase.
-Benchmark cube: reference cube phase - raw phase
-Std cube : reference cube phase - raw phase

PHI differs from the related command RAD inasmuch as RAD
returns the last phase calculated by the system, regardles of which
cube it was calculated for (if any).
PHI is a cube object based command, therefore it will fail if INI
has not been called or if the cube number is out of range.

Fbcample send: PHI 2
receive: PHI 1, 2, 3.14159;

See Also AMP, CLC, DST, RAD

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 54

QQQ

Mnemonic Quit program. This command is not supposed to be easy to re¬
member.

FVinction Ends ZY program, returns to DOS prompt

Syntax QQQ

Returns On Success: Nothing
On Failure: Nothing

Remarks It is not recommended that this command be used unless the pro¬
gram is in console mode (i.e. not driven accross the network),
because there is no way to re-launch it remotely. If the program
needs to be remotely restarted use RST instead (see RST).

Example send: QQQ
receive: nothing.

See Also BYE, RDF, RST

RAD

FVinction Returns the phase that was last calculated by the phase sub-system.

Syntax RAD

Returns On Success: last calculated phase, in radians
On Failure:

Remarks RAD is similar to PHI, but returns the last calculated phase,
whether it was calculated for a cube by CLC, or calculated by
MPC, a low level command. PHI returns the last calculated phase
for a specified cube.

Fbcample send: RAD
receive: RAD 1, 2.45833

See Also AMP, CLC, DST, MAG, MPC, PHI

RDF

Mnemonic ReaD File

FVinction Read a disk file located on ZY computer

Syntax RDF <filename>

Returns On Success: file, line by line, each line prefixed by 'RDF »'
On Failure: error message

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 55

Remarks

Fbcample

See Also

This command is used primarily for trouble-shooting purposes.
The contents of the system files CONFIG.SYS, AUTOEXEC.BAT
and PCTCP.INI can be read over the network, typically in a telnet
session. ZY also maintains a log of resets and their causes called
REMOTE.LOG that can be read in this manner.

send: RDF config.sys
receive: RDF »FILES=10
receive: RDF »BUFFERS=10
etc.

RST

RDS

Mnemonic ReaD Sum

FVinction Reads the LM628 servo controller's integration sum.

Syntax RDS <n>
n: axis number (0:asimuth, l:elevation)

Returns On Success: axis number and the axis integration sum 0 to 65535.
On Failure: axis number and an error message.

Remarks The integration sum is useful for trouble-shooting positioning prob¬
lems: If the sum is equal to the integration limit set with FIL, then
the servo is having difficulty maintaining it's position.

Example send: RDS 1
receive: RDS 1, 1, 50

See Also FIL, FKI

RST

Mnemonic ReSeT

FVinction

Syntax

Returns

Remarks

Fbcample

See Also

Reset ZY computer (warm boot)

RST

On Success: Nothing
On Failure: Nothing

Causes the host (ZY) computer to perform a warm boot. Grace¬
fully disconnects any TCP connection first.

send: RST;
receive: Nothing.

BYE, QQQ

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 56

SCN

Mnemonic SCaN cubes

FVinction Causes the cubes listed in the scan list to be measured in turn.

Syntax SCN

Returns On Success: During the scan, for each cube, SCN returns the cube
number, the magnitude (in volts), the phase (in radians) and the
distance (in millimeters).
On Failure: Error message.

Remarks The following commands must have been executed before a scan
can take place:
INI - create the cubes;
COO - load coordinate values in cubes;
NUM - specify number of cubes to scan;
ORD - create list of cubes to scan;
FHM - homes the servos, so that encoder coordinates are no longer
relative.

When scanning a list of cubes, it is advisable to include the refer¬
ence cube and the benchmark cube as cubes 0 and 1 respectively in
the list. This will allow the system to correct for drift in both the
electronics and the index of refraction of the air. Future releases
will incorporate alternate methods of determining the index of re¬
fraction of the air, but the benchmark method will always work.

Fbcample This example assumes a scan list of {0, 1, 3}:

send: SCN receive: SCN 1, 0, 1.765, 3.14159, 0
receive: SCN 1, 1, .354, 1.53948, 98500.000
receive: SCN 1, 3, 2.085, 0.54673, 76845.498

See Also COO, FHM, INI, NUM, ORD

SEQ

Mnemonic SEQuence

FVinction Gets a sequence of laser ranging cycles.

Syntax SEQ

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 57

Returns On Success: the string
SEQ 1, n, ampl, phi, amp2l ph2
for each cycle measured, where n is the cycle number, ampl and
phi are the amplitude and phase for A/D system 1, and amp2 and
ph2 are the amplitude and phase for A/D system 2 (if installed).
On Failure: error message.

Remarks When a typical measurement is made, data is acquired over several
intermediate frequency cycles. For instance, if IFF was used to set
the IF to 1 KHs and CYC was used to sample 128 cycles, the
measurement would integrate over 128 ms. Those cycles are then
summed, and the phase and amplitude calculated from that sum.
For experimental purposes, however, it may be desirable to know
the phase and amplitude of each individual cycle in that string of
cycles. This is what SEQ does.
The ZY instrument is capable of using 2 A/D converters, one to
measure the phase of the reference oscillator, and the other to make
the actual measurement. If this feature is disabled, the data values
that correspond to the second A/D converter are set to 0.

Fbcample send: SEQ;
receive: SEQ 1, 0, 3.534, 4.23489882, 0, 0 // only 1 A/D system
installed
SEQ 1, 1, 3.499, 4.23398948, 0, 0

SEQ 1, n, 3.529, 4.23459893, 0, 0

See Also CYC, IFF, MPC, SFQ

SFQ

Mnemonic Sampling FreQuency

FVinction Requests/Sets the data acquisition samples per cycle

Syntax SFQ [sf];
sf: sample frequency in samples per cycle (4 - 100).

Returns On Success: current/new sample frequency.
On Failure: error message.

Remarks The meaning of SFQ has changed over time. Originally, SFQ set
the frequency at which the A/D converter sampled the input sig¬
nal. SFQ now sets the number of samples per cycle, with the A/D's
sampling frequency being determined by IFxS, where IF is the in¬
termediate frequency, and S is the samples per cycle. This product
cannot exceed 100 KHi, the maximum sampling frequency of the
A/D system. SFQ will also fail if the product S X (cyclesmeasured)
exceeds 65536, which is the maximum number of words the DMA
system of an AT class computer can handle at one time.

CHAPTER S. DETAILED DESCRIPTION OF COMMANDS 58

Fbcample send: SFQ 8
receive: SFQ 1, 8

See Also CYC, IFF

STI

Mnemonic Set Time

FVinction sets the local ZY time.

Syntax STI <s>;
s: present time in number of seconds since 0 Hour 1/1/70.

Returns On Success:
On Failure: Error message

Remarks For this command to work, the TZ environment variable must be
properly set. See GTI for an explanation of the TZ environment
variable.

Example send: STI 725669478; // sets time to Tue Dec 29 17:51:18 1992
receive: STT 1

See Also GTI

STS

Mnemonic STatuS

FVinction Requests ZY status information.

Syntax STS

Returns On Success: following information, in order:
-The compilation date of the program (ASCH, Month Day Year)
-The compilation time of the program (ASCH, HH.MM.SS)
-The startup time of the ZY program, (seconds since Oh 1/1/70)
-The amount of free memory on the ZY computer
-A status word in hexadecimal format (see remarks)
On Failure:

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 59

Remarks The bits in the status word have the following significance:
Bit 0: (NOT)IF Phase Lock
Bit 1: (NOT) 100 MHs Phase Lock
Bit 2: cube objects initialised
Bit 3: axis 0 homed
Bit 4: axis 1 homed
Bit 5: axis 0 home failed
Bit 6: axis 1 home failed
Bit 7: axis 0 verify home failed
Bit 8: axis 1 verify home failed
Bit 9: axis 0 error
Bit 10: axis 1 error
Bit 11: axis 0 motor on
Bit 12: axis 1 motor on
Bit 13: spare, always 0
Bit 14: spare, always 0
Bit 15: spare, always 0

Use STW to retrieve just the status word.

send: STS;
receive: STS 1, Dec 29 1992,16:18:34, 725666027, 114432, OxlSlC;

Fbcample

See Also STW

STT

Mnemonic STarT

Function Commands the specified axis to start a move

Syntax STT <n>
n: axis number (0:asimuth, Irelevation)

Returns On Success: axis number
On Failure: axis number and a error message

Remarks STT will command the axis to begin moving to a target destination
specified earlier by ABP. STT will also cause a new acceleration
and/or velocity (loaded by ABA and ABV respectively) to take
effect. This command is a low level command, used primarily for
trouble-shooting purposes. CIL, the command that aims the laser
at a particular cube, issues it's own STT to the two servo controllers
to achieve it's purpose.

Example send: ABP 0, 50000; // new target for axis 0
STT 0; // begin the move
receive: ABP 1, 0, 50000
STT 1, 0

seealsoABA, ABP, ABV, ACP, CIL
STW

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 60

Mnemonic STatus Word

Function Requests the ZY's status word

Syntax STW

Returns On Success: the status word, in hexadecimal format
On Failure:

Remarks The bits in the status word have the following significance
BitO (NOT)IF Phase Lock
Bitl (NOT)IOO MHs Phase Lock
Bit 2 cube objects initialised
Bit3 axis 0 homed
Bit 4 axis 1 homed
Bit5 axis 0 home failed
Bit6 axis 1 home failed
Bit 7 axis 0 verify home failed
Bit8 axis 1 verify home failed
Bit 9 axis 0 error
Bit 10: axis 1 error
Bit 11: axis 0 motor on
Bit 12: axis 1 motor on
Bit 13: spare, always 0
Bit 14: spare, always 0
Bit 15: spare, always 0

Example send: STW
receive: STW OxlSlC

TRG

Mnemonic TRiGger

FVinction TViggers A/D conversion and storage into DMA buffer.

Syntax TRG

Returns On Success: Allways returns 1
On Failure: this function should not fail

Remarks TRG should not be confused with CTR, the cube object based
trigger. CTR requires a parameter, the cube for which the data is
being taken. This is important, because it allows the cube objects
to determine the owner of the data. See below for an example.
TRG does not require the system to have been initialised for cube
objects to work.

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 61

VER

Fbcample

See Also

Mnemonic

FVinction

Syntax

Returns

Remarks

Fbcample

See Also

send: TRG
receive: TRG 1

AMP, CLC, CTR, DST, MAG, PHI, RAD

VERsion number

Returns the ZY program's version number

VER

On Success: status and the version number in the form 'Ma¬
jor. Minor*.
On Failure: status and an error message

None

send: VER
receive: VER 1, 0.3

STS

VHM

Mnemonic

FVinction

Syntax

Returns

Remarks

Fbcample

See Also

Verify HoMe

Verifies home position of the specified axis.

VHM <n>;
n: axis number (0:asimuth, l:elevation)

On Success: axis number and the home position.
On Failure: axis number and an error message.

VHM works by passing the servo through the index position. If the
servo was previously homed, the index pulse should occur when the
position register reads 0. If not, this is a sign that the LM628 is
loosing counts for some reason. Whether or not VHM reports suc¬
cess is not dependent on the location of the index pulse, however.
VHM will report success if it can complete it's function. VHM will
fail if the specified axis was not homed first.

send: FHM 0; // find home for axis 0.
receive: FHM 1, 0; // FHM reports success
send: VHM 0; // verifies home position of axis 0
receive: VHM 1, 0, 0; // VHM reports success, axis number
// and home position.

FHM, IDX

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 62

WAI

Mnemonic WAIt for servo

FVinction Waits for specified servo system to settle on target.

Syntax WAI <n>
n: axis number (0 or 1)

Returns On Success: 1
On Failure: 0 and an error message

Remarks The function of WAI is to block until the servo has settled on target.
How strict the definition of 'On Target' is depends on the previous
use of the WCNT, WTMO, WTOL and WMD commands. In
some cases where the servos must settle on target for an operation
to succeed, WAI may fail. WAI will also fail if the axis number is
out of range. For cube operations, use CWT instead of WAI.

Example send: WAI 0
receive: WAI 1, 0 // OK, servo has settled.

See Also CWT, WCNT, WMD, WTMO, WTOL

WCNT

Mnemonic Wait CouNT

Function Sets/requests the number of consecutive in-tolerance position read¬
ings used to determine if the servo is on target.

Syntax WCNT <n>[, count]
n: axis number 0 or 1
count: number of consecutive in-tolerance readings to use

Returns On Success: 1, the axis number and the new/current count
On Failure: 0 and an error message

Remarks Both WAI and CWT work by sampling the position of the servo
system to see if it is at it's destination. WAI and CWT will block
until a number of consecutive position readings that are within a
certain tolerance of the destination is observed, or a time-out is
reached. WCNT sets the number of consecutive readings, WTMO
sets the time-out, WTOL sets the tolerance, and WMD determines
whether WAI or CWT will report failure or success in the event of
a time-out.

Fbcample send: WCNT 1, 10
receive: WCNT 1, 1, 10

send: WCNT 1
receive: WCNT 1, 1, 10

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 63

See Also CWT, WAI, WMD, WTMO, WTOL

WTMO

Mnemonic Wait TiMe Out

FVinction Sets/requests the time-out value for the servo wait commands WAI
and CWT

Syntax WTMO <n>[, to]
n: axis number 0 or 1
to: time out value in milliseconds, 0to(230). Large values are not
recommended.

Returns On Success: 1, the axis number and the new/current time out
value.
On Failure: 0, and an error message

Remarks Both WAI and CWT work by sampling the position of the servo
system to see if it is at it's destination. WAI and CWT will block
until a number of consecutive position readings that are within a
certain tolerance of the destination is observed, or a time-out is
reached. WCNT sets the number of consecutive readings, WTMO
sets the time-out, WTOL sets the tolerance, and WMD determines
whether WAI or CWT will report failure or success in the event of
a time-out.

Example send: WTMO 1, 1000 // wait a maximum of 1000 mS for this axis
to settle
receive: WTMO 1, 1, 1000

send: WTMO 1
receive: WTMO 1, 1, 1000

See Also CWT, WAI, WCNT, WMD, WTOL

WTOL

Mnemonic Wait TOLerance

FVinction Sets/requests the position tolerance value for the servo wait com¬
mands WAI and CWT

Syntax WTOL <n>[, tol]
n: axis number 0 or 1
tol: tolerance value in encoder units, 0 to (230). Large values are
not recommended.

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 64

Remarks Both WAI and CWT work by sampling the position of the servo
system to see if it is at it's destination. WAI and CWT will block
until a number of consecutive position readings that are within a
certain tolerance of the destination is observed, or a time-out is
reached. WCNT sets the number of consecutive readings, WTMO
sets the time-out, WTOL sets the tolerance, and WMD determines
whether WAI or CWT will report failure or success in the event of
a time-out.

Fbcample send: WTOL 0, 5 // sets target tolerance to ±5
receive: WTOL 1, 0, 5

send: WTOL 0
receive: WTOL 1, 0, 5

See Also CWT, WAI, WCNT, WMD, WTMO

WMD

Mnemonic

FVinction

Syntax

Returns

Remarks

Wait MoDe

Requests/Sets the servo wait mode for the specified axis.

WMD <n>[, m];
n: axis number (0:asimuth, Irelevation)
m: mode (0:loose, 1:tight)

On Success: axis number and wait mode.
On Failure: axis number and an error message.

This determines the way both CWT and WAI operate:
-Loose: servos settle or timer times out, whichever comes first.
WAI or CWT return succes in any event.
-Tight: servos must settle. Time out causes WAI or CWT to faiL

Fbcample send: WMD 0, 0
receive: WMD 1, 0, 0

send: WMD 0
receive: WMD 1, 0, 0

See Also CWT, WAI, WCNT, WTMO, WTOL

XOl

Mnemonic None

FVinction Sets or requests first order laser X position constant

Syntax XOl [value]
where value is some experimentaly derived real number

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 65

Returns On Success: 1 and the value of XOl
On Failure:

Remarks The laser system uses the functions AZO, BX, BY, ELO, BZ, XOl,
X02, X03, YOl, Y02, YOS to set values that will enable it to
correctly point to a cube given only the cube's XYZ coordinates.

Fbcample send: XOl 1.234
receive: XOl 1, 1.234

See Also AZO, BX, BY, BZ, ELO, INVC, X02, X03, YOl, Y02, Y03

X02

Mnemonic None

FVinction Sets or requests second order laser X position constant

Syntax X02 [value]
where value is some experimentally derived real number

Returns On Success: 1 and the value of X02
On Failure:

Remarks The laser system uses the functions AZO, BX, BY, ELO, BZ, XOl,
X02, X03, YOl, Y02, YOS to set values that will enable it to
correctly point to a cube given only the cube's XYZ coordinates.

Example send: X02 1.234
receive: X02 1, 1.234

See Also AZO, BX, BY, BZ, ELO, INVC, XOl, X03, YOl, Y02, Y03

XOS

Mnemonic None

FVinction Sets or requests third order laser X position constant

Syntax X03 [value]
where value is some experimentally derived real number

Returns On Success: 1 and the value of XOS
On Failure:

Remarks The laser system uses the functions AZO, BX, BY, ELO, BZ, XOl,
X02, XOS, YOl, Y02, YOS to set values that will enable it to
correctly point to a cube given only the cube's XYZ coordinates
(see).

Example send: XOS 1.234
receive: XOS 1, 1.234

See Also AZO, BX, BY, BZ, ELO, INVC, XOl, X02, YOl, Y02, Y03

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 66

YOl

Mnemonic None

FVinction Sets or requests first order laser Y position constant

Syntax YOl [value]
where value is some experimentally derived real number

Returns On Success: 1 and the value of YOl
On Failure:

Remarks The laser system uses the functions AZO, BX, BY, ELO, BZ, XOl,
X02, XOS, YOl, Y02, YOS to set values that will enable it to
correctly point to a cube given only the cube's XYZ coordinates
(see).

Fbcample send: YOl 1.234
receive: YOl 1, 1.234

See Also AZO, BX, BY, BZ, ELO, INVC, XOl, X02, XOS, Y02, YOS

Y02

Mnemonic None

FVinction Sets or requests second order laser Y position constant

Syntax Y02 [value]
where value is some experimentally derived real number

Returns On Success: 1 and the value of Y02
On Failure:

Remarks The laser system uses the functions AZO, BX, BY, ELO, BZ, XOl,
X02, XOS, YOl, Y02, YOS to set values that will enable it to
correctly point to a cube given only the cube's XYZ coordinates
(see).

Example send: Y02 1.234
receive: Y02 1, 1.234

See Also AZO, BX, BY, BZ, ELO, INVC, XOl, X02, XOS, YOl, YOS

Y03

FVinction Sets or requests third order laser Y position constant

Syntax YOS [value]
where value is some experimentally derived real number

CHAPTER 5. DETAILED DESCRIPTION OF COMMANDS 67

Returns On Success: 1 and the value of YOS
On Failure:

Remarks The laser system uses the functions AZO, BX, BY, ELO, BZ, XOl,
X02, XOS, YOl, Y02, YOS to set values that will enable it to
correctly point to a cube given only the cube's XYZ coordinates
(see).

Fbcample send: YOS 1.234
receive: Y03 1, 1.234

See Also AZO, BX, BY, BZ, ELO, INVC, XOl, X02, X03, YOl, Y02

