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Abstract 

Corrections are given to the laser scanner position coordinates of retrore- 
flector targets to be tracked by a GBT laser ranger as a function of the 
deviation from perpendicularity of the elevation and azimuth scan axes. 

1.   Definition Of The Scan Tracking Problem 

The task of tracking a target retroreflector on the Green Bank Telescope may be 
stated in the following way: 

The scan mirror of each laser range station mounts on an elevation rotor shaft 
which is coupled, through bearings, to an elevation rotation yoke which is part of 
a machined azimuth rotor shaft. The azimuth rotor is coupled via bearings to the 
base plate of the station, to which other optical components are attached. The 
relative orientation of the elevation and azimuth scan axes is determined by the 
quality of machining of the azimuth rotor piece, because the bearing seats for the 
rotation shaft bearings are machined into this piece. 

Given a tracking program describing the coordinates of a target retroreflector 
mounted on the Green Bank Telescope, relative to some ground-fixed coordinate 
system, a set of laser mirror elevation scan angle and azimuth angle coordinates 
is computed for each laser range station.  The elevation and azimuth scan angle 
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Figure 1.   Plan View Of The Scan Geometry. 



coordinates are used as input data to drive elevation and azimuth servomecha- 
nisms to point the laser beam of each station, from the center of its scan mirror 
towards the retroreflector target. 

Each ranging station is provided with a local station-based coordinate system. 
This system is also a ground-fixed system for those stations that are used as ground 
stations, after they are surveyed into place and aligned with respect to a survey 
control network. The relation of feed arm stations to earth-fixed coordinates 
is determined dynamically. In the present discussion, it is assumed that laser 
pointing is described by a local station-based cartesian coordinate system, which 
can be related to ground-based coordinates, by means which we do not mention 
explicitly. The local station coordinate system is a cartesian (x ,y , z) system. 
This coordinate system is defined in GBT drawing D35420M051, and shown in 
Fig.l. The ^-coordinate is directed along the rotation axis of the azimuth rotor, 
pointing from the scan mirror towards the detector, through the detector lens. 
The optical axis of the detector lens is coincident with the 5-axis. The x- and y- 
coordinates are perpendicular to the z-axis. and unit vectors in the x,y,z directions 
in that order form a right-hand triple. The x-axis lies parallel to the base plane 
of the station. For ground stations, the azimuth rotation axis will be set close to 
horizontal when the station is mounted into position at its ground location; the 
y-aods will be set to lie close to vertical upwards. 

The origin of this coordinate system is defined to be the intersection point of 
the azimuth and elevation scan axes. We assume here that the scan axes, which 
are defined mechanically by two sets of bearing seats machined into the azimuth 
rotor piece do, in fact, intersect. This definition of the local coordinate system 
origin is independent of any assumptions made regarding perpendicularity of the 
azimuth and elevation axes. 

We assume that the station scan mirror is mounted so that its plane of reflec¬ 
tion contains the elevation axis. 

The axes of elevation and azimuth for each station are determined by the 
two sets of bearing seats machined into the azimuth rotor piece. The two axes 
should be, ideally, mutually perpendicular to one another and intersect. If the 
axes intersect, but deviate from perpendicularity, software corrections will have 
to be made to the target's scan coordinates computed assuming perpendicularity. 
Errors of the order of an arc-minute will lead to several centimeters error, for 
target distances near 100 meters. The present memo is a computation of the 
target pointing errors to be corrected for when the azimuth and elevation axes 



intersect, but deviate from perpendicularity. 

2.   Computation Of Target Coordinates. 

In this section we compute the retroreflector target's local station-based coordi¬ 
nates as a function of the station elevation and azimuth angles and the offset angle 
of the azimuth and elevation axes from perpendicularity. The scan geometry is 
shown in Figure 1. 

We use the following notation to describe the scan geometry and kinematics: 
The local cartesian coordinate system at a given ranging station is defined to 

be an (5,^,z) coordinate system, with z-axis along the azimuth rotor axis, and 
the origin at the intersection point of the azimuth and elevation axes. 

Motion of the azimuth rotor is described by a rotation angle A about the 
positive scan azimuth axis. The "start position of the azimuth rotor" is defined 
to be the rotor position such that the elevation axis lies in the (x,z)-plane and 
the elevation axis' positive direction (from scan mirror center towards the angle 
encoder) points in the sense of the positive x-axis. (When the scan azimuth and 
elevation axes are accurately perpendicular, the positive elevation axis will point 
along the positive x-axis). The azimuth angle A = 0 when the azimuth rotor is 
in its start position. 

The "start position of the scanning station" is defined by the conditions that 
the azimuth rotor is in its start position and. simultaneously, the plane of the scan 
mirror is perpendicular to the (x,z)-plane. 

Motion of the elevation rotor is described by a rotation angle E about the 
positive elevation axis. Elevation angle E = 0 when the scanning station is in its 
start position. We will say that "the elevation rotor will be in its start position" 
in the general case that E = 0 , for arbitrary values of A . 

We note that the station will be in its starting position when both the azimuth 
and elevation rotors are in their start positions. 

We assume that the optical position encoders used to sense the rotor elevation 
angle E and azimuth rotor angle A will be set in the following manner when the 
scanning station is in general position (A, E): 

105(/t+f) 
(1.1a)     Na(A) = Nao + 2_ 

ZTT 



(1.1b)    Ne(E) = Neo+W{
2^
E) 

The encoders each have a count increment of 105 counts per rotor shaft revo¬ 
lution. 

The allowed range for scanning will be limited to the intervals: 

(1.2a)    -TT < A < TT 

(1.2b)    ~ < E < 0 . 

We call ex , ey , ez the unit vectors along the positive x- . y - and z-axes. 

When the azimuth and elevation rotors are both in home position, we call the 
unit vector pointing along the positive elevation axis e^ , and call a unit vector 
pointing along the azimuth axis e^ . Since the azimuth axis is fixed with respect 
to the (x£j,z) coordinate frame, e^ = el . not only when the azimuth rotor is in 
start position, but also in general position A ^ 0 . 

When the station and rotors are in start position, the elevation axis lies in the 
(x,z)-plane. We define the angle between the x-axis and the positive elevation 
axis in home position to be ip . This angle is the deviation from perpendicularity 
of the two scan axes. The geometry is illustrated in Figure 1. 

We let e,4 be the unit vector pointing in the positive direction of the azimuth 
axis. This is a fixed vector and 

(2.1)        e^ = -e; . 



We call CEO the unit vector pointing in the positive direction along the eleva¬ 
tion axis, in the case that the station is in start position. 

We call e^ the unit normal to the scan mirror surface, in the case that the 
station is in start position. This vector lies in the (x,z)-plane. 

When the scan mirror is in general position, we define the unit vector pointing 
along the elevation axis to be e^(A. E,xl)) . 

When the elevation rotor is in its start position, A = 0 ; then 
e^ (A = 0, E = 0, ip) = e^o . We have, 

(2.2) e^o = (cosxp)e^+ (s'mip)^ . 

When the scan mirror is in general position we define the unit vector pointing 
along the normal to the mirror to be e^(A. E, ip) . 

When the elevation rotor is in its home position, 0 = 0; then 
e^ (A = 0, E = 0, ip)  = e^o . We have. 

(2.3) e^= (—sin^)e^+(cos^)e^ . 

We now rotate the mirror in azimuth, about   e^ = e^" , by angle A . 

The mirror unit normal and unit elevation axis direction vector are then moved 
to: 

(2.4) eZ —► e^X  = [Rot(e2 . A)] eZ 

(2.5) ei;  -»• e^  =  [Rot(eX , A)} e£~o ■ 

We use the result (A2.1) of Appendix II to compute these vectors. 

Starting from (2.4) , and using (2.1) and (2.3) we have 



(2.6) CnA = (cos A)eA + (1 - cos A)(eA • eno)eno + {smA)(eA xeno)     giving 

(2.7) e^4 = [(—sin'0)(cosA)e^ + (cos x/^)(cos A)e2j + [(1 — cos A)(cos V^e^] 
4-[(sin^)(e7xe^)j   , 

which simplifies to 

(2.8) e^X == (— sin ip) (cos A)e^ 4- (— sin ip) (sin A)e^ 4- (cos ^Je^ . 

Starting from (2.5) , and using (2.1) and (2.2) we have 

(2.9) e^ = (cos A)eA + (1 - cos A) (e^ • ei;)ei; + (sin A)(e^ x ei;)     giving 

(2.10) CEA = [(cos^)(cosy4)e^ + (sin ^) (cos A)ez] 

+[(1 - cos A)(sin^)e;] + [(sin A)(e^ x e^0)}   , 

which simplifies to 

(2.11) CEA 
= (cosip)(cosA)e^ + (cos'0)(sin>l)ej+ (sin'0)e7 • 

We now rotate the mirror by an elevation angle E about the elevation axis 
CEA • The elevation rotor axis remains fixed in direction, that is 

(2.12) ei^  —>• e^  =  [Bx)t(e^ : E)] ^EA  = ZEA ■ 

Under this rotation, the mirror normal now points in the direction of the unit 
vector e^ where, 

(2.13) e^A   —> Cn —  [Rot(e^A , E)] e^A     is computed using (A2.1): 

(2.14) e^ = (cosE)e^ + (1 - cosE)(e^' e^X)e^ + (s'mE)(e^ x e^X) . 

The middle term in equation (2.14) vanishes because CEA  and    e^A   are per¬ 
pendicular to one another. After some algebraic manipulation one gets: 



(2.15) e^ = [(sin£)(sin,4) - (cosi?)(cos A)(smip))e^ 

+[(—sin£')(cos74) + (cos£')(sin/l)(sinV,)]eJ +(cosJ£')(cos?/')e^ . 

In Appendix I the reflected unit ray, e^. from a plane mirror is computed in 
terms of the incident ray e^ and the unit normal e^ to the mirror, 

(Al.2)        ev = ^5 -I- 2(e^ • e^)e^ . 

We now compute the unit vector in the direction of the reflected laser beam 
from the scan mirror. 

Using (Al.2), with  e^-e^= (cosip)(cosE) , we get 

(2.16) ep= re; + 2(cos£;)(cos^){ [(sin E) (sin A) - (cos E) (cos A) (sin ip)] e^ 

+[(- sin E) (cos A) + (cos E) (sin A) (sin ip)] ej+ [(cos E) (cos ip)] e^} . 

Consider the situation where the scan mirror has been moved from its home 
position to an azimuth angle A and elevation angle E . A laser beam directed 
initially along the negative z axis towards the mirror will reflect at the scan cen¬ 
ter point, which is the intersection of the scan azimuth and elevation axes, in the 
direction of e^ . A field target point along the reflected ray, at range distance R 
from the scan center point, will have local (x.y,z) station coordinates: 

(2.17) x(A E,ip) = (e;-rx)R = [{sm2E){$mA){cos\b)-(cos2E)(zosA)(sm2ilj)]R 

(2.18) y{A,E,ip) = (e;-eJ)JR= [{-sm2E)(cosA)(cosip)+(cos2E)(smA){sm2iP)]R) 

(2.19) z{A, E,ip) = (e;'e;)R = [2(cos2 EXcos2 ip) - l]R ,     where 

(2.20) R2=x2 + yz + z2 . 

If the azimuth rotor is properly machined, so that il> = 0 , then these reduce to: 

(2.21) xo = x(A,E,ip = 0) = [(sin2£)(sin,4)]# , 



(2.22) y0 = y(A, E} ip = 0) = [ (- sin 2E) (cos A) ]R . 

(2.23) z0 = z(A, E1ip = 0)=     (cos 2E) R ,    where 

(2.24) R2 = x2
0 + ^ + i2 . 

3.   Computation Of Corrected Azimuth And Elevation Co¬ 
ordinates. 

We solve the following pointing problem, using the results of Section 2. 

We wish to point the laser beam of a ranging station at a distant target, given 
the local station coordinates (xt, yt, zt) of the target center. If the elevation and 
azimuth axes determined by the azimuth rotor piece are mutually perpendicular, 
then the pointing azimuth angle At and the pointing elevation angle Et of the 
target are computed using (2.21) through (2.23). 

For each station, the deviation angle from perpendicularity of the azimuth 
and elevation axes, ip , is measured. Typically ib is found to range from 0.2 to 1.5 
arc- minutes. A one minute arc of a 100 meter radius circle has an arc length of 
TT -r- (0.6 X 1.8) cm = 2.909 cm. For targets at 100 to 200 meters distance, which 
are typical for laser ranging , the beam landing at target range could typically be 
several centimeters off target systematical!}', if values At and Et computed using 
equations (2.21)-(2.23) were used to set the pointing of the station's scan mirror. 

Instead, pointing angles, Av and Ev, should be used to set the scan mirror, 
where Ap and Ev satisfy equations (2.17)-(2.19) using the given values of ip and 
xu Vt, zt • 

Equation (2.19) can be solved explicitly for Ep . Using R? = £2-\-yf+z2 , we get 

(2.25)    Ep = -(l^Hcos-1!-! + (R + it)(sec2 ti)/2R]} ; 



here we choose the solution where Ep is negative (—7T/2 < Ep < 0). 

Equations (2.17) and (2.18) are linear in sinAp and cosAp, after Ep and R 
have been computed from the known values of xt,yt. zt and ip . 

Call: 
&i = Xt/R 62 = yt/R 

(2.28) an = (sin 2EP)(cosip) a12 = (- cos2 Ep)(sm2ip) 
0-21 = (cos2 Ep)(sin2ip) 0.22 = (— sin 2Ep)(cosip) 

Then 

(2.29) 
61 = an (sin Ap) + a^icosAp) 
62 = a2i{smAp) + a22(cos Ap) 

where   a2i = —0-12   and   a22 = — an, 

which is solved directly to give: 

.              fcian + ^2^12 
smAp = ^ ^— 

a?! — a 
ft, 

cos Ap 
(2-30) M^T^an 

2 2 a12 — all 

The angle Ap is computed from the relation 

(2.31)        Ap = atan2 (sin Ap , cosAp ). 

Angles Ep and Ap are in radians, and convert to shaft encoder counts by sub¬ 
stituting them into equations (1.1a) and (1.1b). 

4. Small Angle Correction. 

Since the angle ip is small, typically below 2 arc-minutes, it is convenient to 
compute the uncorrected pointing angles At and Et from the cartesian target 
coordinates xt,yt,Zt using the equations (2.21)-(2.24) which hold for the case of 
perpendicular rotor axes, and making a first order small correction in ip . This 
is allowable, provided the elevation angle of the target is not near zero. As an 
example, it is easily seen geometrically that for a target situated on the azimuth 
axis, one would have to rotate the azimuth angle by a large value. 7r/2, as an 



azimuth correction, before making a small elevation angle correction to point the 
beam, when ip ^ 0 . In this case the first order correction in ip of the azimuth 
angle is divergent. Due to scan angle limiting in the scanner structure such a case 
will not occur physically, and a first order correction in ip of the pointing angles 
At and Et is adequate. 

We compute the first order corrections as follows: 

Given a target point T = (xl, yt, zt). where xj + yf + z% = R2, we call 
the scan angle coordinates required to point the laser beam, from the coordinate 
origin (the scan axis intersection point) to this point. Ap and Ep. Let 

(4.1) £ = xt/R,    rj = yt/R.    C = 5 'R ■ 

Then from (2.17)-(2.19), 

(4.2) f = (sin 2Ep)(sin Ap)(cos ip) - (cos2 Ep)(cosAp)(sm2ip)    , 

(4.3) 77 = (sin2Ep)(cos Ap)(- cosip) - (cos2 Ep)(sin Ap)(sin2ip)    , 

(4.4) C = 2(cos2 Ep) (cos21/>) - 1 ,     where 

(4.5) £2 + 7?
2-K2 = l. 

As ip is departs from zero the scan angles Ap and Ep required to point to the 
fixed target point T become functions of v. That is. Ap = Ap('0) and 

Ep = Ep(ip) . The derivatives of these functions, with respect to ip are deter¬ 
mined by the conditions that £ , ?]. and £ should not change as ip varies. That is: 

(4.6) dt/dip = 0 , dr)/dip = 0 . d^/dv = 0 . 

The last equation of (4.6) also follows from the first two and (4.5). 

We then have: 

10 



(4.7a)     o = (ae/0i4p)^ + (a£/My^| + (d€/d0)    . 

(4.7b)   o = (at,/dAr)^ + (an/BEp)^ +(an/dtp)  . 

For small \ip\ , when Ep ^ 0 , we have the first order corrections: 

(4.8a)    ArW = At + rl,(^\       , 

(4.8a)    EM = Et + 4,(^)       . 

The derivatives appearing in equations (4.8) are computed by calculating the 
partial derivatives of equations (4.2) and (4.3) to obtain the coefficients appear¬ 

ing in equations (4.7), then solving the pair of equations (4.7) for —— and —- , 
dip dip 

using Ap(V> = 0) = A£    and Ep(ip = 0) = Et . 

After some extended manipulation and trigonometric simplification, we get: 

(4.9a)     ( ^ )        = (1 + sec 2£t)(cos 2At)(cot 2Et)    , 

(4-9b) (#)^0
=G)(i+sec2^(sin2^ • 

The shaft angles for pointing are. to first order in ib (ip in radians), then: 
(4.10a)    Ap(iP) = At + ip(l + sec 2£t)(cos 2At)(cot 2Et)    . 

(4.10b)    Ep(iP) = Et+ f|j (l + sec2Et)(sm2At) 

In Appendix III it is demonstrated that the pointing angles At and Et , re¬ 
quired when the scan axes are perpendicular, can be expressed in a very simple 
way, in terms of the spherical polar coordinates of the target point T . 

(A3.3.1)    At = e-^ 

(A3.3.2)    Et = ~. 

11 



The pointing angles then become, to first order in ip, in terms of the target 
point spherical angle coordinates 0 and $: 

(4.11a)    Ap(ip) =    G - ^ -\-ip(l -f-sec$)(cos2G)(cot$)     , 

(4.11b)    Ev(i>) = -\-  ('|Vl+sec$)(Sin2e)     . 

The shaft encoder setting counts become, to first order in ^, in terms of the 
target point spherical angle coordinates 0 and $: 

(4.12a)    Ara(e, », *) = Nao+ 105(e^[(l+sec^)(cos2e)(cot^)]) 
27r 

(4.12b)  ive(e^^) = ^+
10^ + ^1+/ec$)(sin2e)1)   . 

47r 

Equations (4.12) are the results we are seeking. 

The count increments to be added to the encoder settings are then: 

105^[(1 + sec $)(cos 26) (cot $) ] 
(4.13a)    AiV0(e , $ , iP) 

27r 

(4.13b)    A7Ve(9,^,^)^1Q5^[(1+S:C^(sin29)1     , where * is in radians. 
47r 

If ip is given in arc-minutes (1 arc-minute =  ( —— ) ( — 1 radian), then the 
\180/ V60/ 

encoder count increments are: 
(4.13a)    AiV0(e,$, iP)= 4.63(^^3)1(1 + sec$)(cos28)(cot$)]    , 

(4.13b)    ANe(e i$)ip)= 4.63(^minutes)[(l 4- sec$)(sin2e)]    . 

Equations (4.13) give the count increments to be added to the shaft encoders, 
to correct for non-perpendicularity of the scan angle axes. 

12 



5. Discussion. 

The corrections (4.13) for the scanner shaft angles should, in principle, improve 
the laser pointing and tracking of target reflectors. In practice this will depend 
strongly upon correct knowledge of the initial angle encoder counts TVao and Neo. 
These count values are typically determined by laboratory optical bench measure¬ 
ments using one or more autocollimators. One measures encoder counts when the 
station is in start position, or when one or both shafts are 180 degrees from start 
position, and notes changes in the autocollimated return spot. The measurements 
are complicated by the fact that the scan mirror is in a two axis gimbal mount, 
when mounted in the scanning station, and one has to adjust four angles properly 
to set up the measurements. The encoder offset counts Nao and TVe,, must be deter¬ 
mined independently of the first order angle corrections, which are invalid when E 
is near zero. To do the laboratory measurements of Nao and Neo, one must be able 
to set the azimuth rotor's axis coincident with or parallel to a known z-axis, also 
set the plane of the azimuth and elevation rotor axes coincident with or parallel 
to a known (x, z)-plane, and set the scan mirror to both contain the elevation 
axis and lie perpendicular to the (x . z)-plane. Careful attention to the technique 
of measurement is needed. Offset error in Ar

ao or Neo will produce a constant shift 
in the pointing azimuth or elevation angle, respectively, which may compare in 
size with the computed counts corrections (4.13). We do not discuss any details 
of the initial scan mirror and angle encoder alignment and setting measurements 
in this note. This is a topic for a separate, extended treatment. But it is im¬ 
portant to observe that errors in setting the scan mirror or shaft angle encoders 
can produce pointing errors large as or larger than the error corrected in this note. 

The corrections (4.13) are easily entered into the software controlling the scan¬ 
ning unit's pointing commands. The angle ib is available for each scanning unit, 
as a single measured number. The angles 0 and $ are provided to command the 
scanner. Instead of commanding the scanner to rotate its shafts to generate the 
count signals Na(® , <!>) and Ne(Q , $) specified by equations (ASA) one com¬ 
mands the scanner to move its shafts to give the count signals Aro(0 , $ , ip) and 
7Va(0 , $ , ip) given by equations (4.12), a modification of two lines of code. 

13 
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6.   Appendix I. Ray Reflection From A Plane Mirror. 

Here we compute the unit vector along the reflected ray when an incident ray is 
reflected from a plane mirror. We assume that e^ is the unit outward normal to 
the plane mirror surface and e^ is the unit vector along the incident ray direction. 

We call e^ the unit reflection ray vector. Referring to Fig. 2, 

OC = OA+AD + DC = dA + 2(AD) .      Alsoe; = OC. 

AD = AO + OD 

OD = [(S) • (-£)]£ ,  AO = ei. 

These give: 

(Al.l) ep = e* —2(e^ • efie^ . 

In the present memo we assume that, always, el = — eT    , giving 

(Al.2)        e^ = —e2 + 2(e^ • e^)e^ ,     which is our desired result. 

7.    Appendix II.  Rigid Body Rotation With  One Body 
Point Fixed. 

We use the following result from vector analysis in computing the motion of the 
normal to the scan mirror and elevation axis. 

We are given a rigid body with one point, 0, fixed and a rotation of the body 
about an axis OA, through 0, by an angle a . (Figure 3). 

Let e^ be a unit vector along the rotation axis. Let P be a point in the rigid 
body. 

The point P will be moved to a point Q. The vector OP = V will be trans¬ 

formed by the rotation (e^ , a ) to the vector OQ = [Rot(e^ , a )] V . 

14 



The following result holds: 

(A2.1)     [Rot(eZ,a)]V = (cosa)V-{-(l-cosa)(e^-V)e^+ (sina)(e^ xV) 

This result is given in H. Goldstein, Classical Mechanics. 

15 



8. Appendix III. Target Polar Coordinates. 

On occasion it will be convenient to specify the location of a target point in spher¬ 
ical coordinates. In the (x, y , z) coordinate system let the coordinates of a scan 
target point T be (xj, yt, zt), where x2 + yf + z% = R2. We express the coordi¬ 
nates of T in spherical polar coordinates R . 0 , and $ : 

(A3.1.1)    3% = R(sin$)(cose) 

(A3.1.2)    yt = #(sin$)(sine) 

(A3.1.3)    Zt = R(cos$) 

If the azimuth scan rotor were machined perfectly, so that -0 = 0, then the 
scan angles of the target, At and Et in this case, would be determined, from 
(2.21)-(2.24), by the relations: 

(A3.2.1)    x; = R(sm 2Et)(cos At) 

(A3.2.2)    yt = R(sm 2Et)(- cos A£) 

(A3.2.3)    ^ = #(cos2£t) . 

In the case where the azimuth and elevation scan axes are accurately per¬ 
pendicular ( so that ip = 0), the target scan angles are easily found in terms of 
the target point spherical coordinates, by comparing equations (A3.1) and (A3.2): 

(A3.3.1)    At = 9 - ~ , 

(A3.3.2)    Et = -*. 

The shaft encoder readings can then, when ip = 0, be set in terms of the polar 
coordinates 0 and   $  of the target point   T  to be: 

16 



1056 
(A3.4a)    iVa(e , $ ) = Nao + -^r—    , 

ZTT 

1053> 
(A3.4b)    ^(9 , $) = Nee, + -r-    '   from (lla) and ^■lh) ■ 

■±7r 

The scan ranges are then 

(A3.5a)    |<e<f    , 

(A3.5b)    0 < $ < TT    . 

We see that the azimuth shaft's rotation angle At and encoder count setting 
A^a depend only on the polar coordinate 0 , while the elevation shaft's rotation 
angle Et and encoder count setting iVg depend only on the polar coordinate $ , 
when the scan axes are perpendicular. 

This separability is not available when the scan axes are non-perpendicular. 
For a given target point T = (xiz yt, Zt) . whose spherical polar coordinates R , 
0 , and $ are given by (A3.1.1)-(A3.1.3), when ip ^ 0 , the shaft rotation angles 
and encoder count settings become functions of all three variables 0 , $ , and ip. 
We let the new shaft rotation angles, in azimuth and elevation respectively, re¬ 
quired to point the laser beam from the scan center point to point T be : 

(A3.6)    Ap = Ap(T-tt) = Ap(G.$1iP)    ., 

(A3.7)    Ep = Ep(T]il>) = Ep(Q.<S>,iP)    . 

The angles Ap and Ep are the corrected shaft angles to be used for pointing, 
when the scan axes are non-perpendicular. We introduce angle corrections from 
the 

ideal settings: 

(A3.8)    Ap = At + AA = Q-^AA(Q.^)iP)    , 

(A3.9)    Ep = Et + AE= -|^A£(0. $,^)    . 

17 



The corrected shaft angles are computed in Section 3, and approximated to 
first order in ip in Section 4. The corrected encoder counts then become: 

(A3.10a)    tf.(e,#.*)-tf. + !^+A4e-#'*» 

(A3.10b)    Ne(Qi$i\l>) = Neo + 

2TX 

ltf,(§-2AE(e, §,ip)) 
47r 

The count increments to be added to the encoder settings when ip ^ 0 are: 

1O5AA(0, $,V) 
(A3.11a)    AiV0 = 

(A3.11b)    AiVe = 

27r 

-1O5A^(0, Qrf) 
2-K 
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