
Jerk-Minimizing Trajectory Generator in C

Donald C. Wells*

December 31, 1999

Abstract

When a mechanical system is accelerated and decelerated to perform some desired trajectory, it is
likely to vibrate. The vibrations are excited by the beginning and end of acceleration/deceleration
intervals, not by constant acceleration/deceleration itself. The amplitude of the vibrations can be
reduced if the rate of change of acceleration (the jerk) is reduced. This memo describes the C function
jmCalcTrajectoryO, which computes multiple jerk-minimizing trajectories. This memo also documents
the C function jmPosicastTrajectoryO, which implements the "Posicast" algorithm by convolving
multiple trajectories computed by jmCalcTrajectoryO with pairs of impulses; if the time separations of
the impulse pairs is half of the vibrational period(s) of the system being driven, the jerk-induced vibrations
can be cancelled (minimized all the way to zero). The current version of the jm package is available under
GNU Public License as file ftp://fits.cv.nra0.edu/pub/gbt_dwells_jm.tar.g2 [468 kilobytes].

Contents

1 Vibrations, servo controllers & piecewise-parabolic trajectories 2

2 Tyler's "three-region" algorithm, with five profile functions 3

2.1 jmCalcTrajectory 4

2.2 jmHeadTrajectory, jmEvalTrajectory, jmFreeTrajectory & jmPrintTrajectory 17

2.3 Demonstration program 18

2.4 Numerical simulations of Tyler 3-region trajectories 21

3 Smith's "Posicast" algorithm (vibration cancellation) 24

3.1 jmPosicastTrajectory 28

3.2 Numerical simulations of Posicast jerk-cancelling trajectories 36

A jmStrError — descriptions of jm-package error codes 39

B The include, enum and struct sections of jmlnclude.h 41

* dwellsOnrao.edu http://www.cv.nrao.edu/'dwells
National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 USA

2 Page Jerk-Minimizing Trajectory Generator in C GBT Memo 203

Bibliography 41

1 Vibrations, servo controllers & piecewise-parabolic trajectories

Large radio antennas are easily excited into vibration at their modal frequencies by jerky motions.
Consequently many authors have discussed various methods of minimizing such jerk-induced vibration.
In the early days of the GBT [Green Bank Telescope1] project a test problem was specified to guide this
discussion: a 10 x 10 raster of points on the sky is to be measured; the beam is to settle within 15 arcsec
of each point, observe for 10 s and then move to the next point 10 arcmin away. The assymetric, off-axis
design of the GBT means that the feedarm which supports its Gregorian optics is rather flexible, so that
it is peculiarly susceptible to the vibration problem, and this means that the total time to scan the raster
will be substantially longer than might be expected. The contractor's design study [PCD93, Table 6-2,p.76]
found that the GBT would take 1376 s (23min) to scan the raster, compared to the theoretical minimum
time 1090 s (18min). This result was reviewed by NRAO engineers, who concluded [LW93] that

"..moving 16 million pounds of steel with high accuracy is going to take a bit more time than
people are used to."

In response to [LW93], Mellstrom [Mel93] argued for use of trajectories generated by a preprocessor which
will keep servo systems operating in the linear regime with reduced vibration levels, and he mentioned the
preprocessor work by Tyler which appeared in a report about a year later [Tyl94]. Simulations by Gawronski
and Parvin [GP95] showed that Tyler's technique, which uses sin21 profiles (often called "CPP-B" [Command
Pre-Processor-B] in the GBT project), will achieve substantial reductions in the vibration induced by step
motions. This led to the decision to implement CPP-B in the Monitor & Control system of the GBT, and
the C-code described in this report is the ultimate consequence of that decision. An early version of function
jmCalcTrajectory (Section 2.1 [p.4]) was installed in the GBT M&C system in October 1999, and the
version of jmPosicastTrajectory (Section 3.1 [p.28]) described in this report will soon replace it.

The philosophy of servos and trajectories which the author advocates is that all trajectories should be such
that the servo error register never saturates; the error register should always contain values near zero during
trajectories. The goal is to maintain linearity by generating feasible trajectories which will demand nearly
maximum performance from the servos (i.e., no use of a "slew" mode in the servo). Servos which are always
presented with feasible commands behave better [Mel93, Tyl94]. This strategy implies that the positions
during trajectories are actually controlled to within the noise level of the linear servo system (assuming
mechanical noise is not a problem). The GBT azimuth and elevation drive servos are specified to be able to
operate in the linear regime up to their maximum velocities (40o/min for Az, 20o/min for El).

The interface between the GBT M&C system and the GBT servo system is implemented as a computer
communication protocol which transmits new commanded positions every 100 ms (10 Hz). These
transmissions specify a velocity and acceleration along with each position. The GBT servo system executes
five times faster, at 50 Hz; it uses these PVA values to compute four commanded positions p(t) during the
intervals between 100 ms updates as p = P + Vt + ^At2. It follows that the code described in this report
needs to be able to compute these PVA update values directly, with 100 ms spacing (see variable dt in
Section 2.1 [p.4]), and that trajectories should be computed with durations which are an integral multiple
of the update time dt. The latter requirement led to development of a binary search algorithm (see Step 11
[p. 13] and Step 27 [p.32]) to find the optimum integer multiple total trajectory time (which is returned in
variable timelnterval in Section 2.1 [p.4]). The use of this piecewise parabolic function approximation
technique facilitated development of the Posicast algorithm described below, because the convolution over
intervals which are not necessarily commensurate with dt requires interpolation to arbitrary time, which is
easy with the PVA approach.

1see http://info.gb.nrao.edu/GBT/GBT.html

GBT Memo 203 Jeric-Minimizing H-ajectory Generator in C Page 3

2 Tyler's "three-region" algorithm, with five profile functions

Tyler's four "three-region" algorithms [Tyl94] were motivated by the problem of acquiring and tracking
satellites in low earth orbits, which are moving rapidly across the sky, and for which the angular accelerations
can even be a problem. Tyler calls his concept "The Three-Region Method" [Tyl94, Sect.II, p.140].2 He
says that his concept

"..was inspired by the following scenario. A target is far away and one wishes to move the antenna
towards the target trajectory as quickly as possible. So one begins by accelerating the antenna
to its maximum speed; that is region 1. Then, in region 2 one moves the antenna at maximum
speed until one is near the target. Finally, in region 3, the antenna is decelerated until it matches
the apparent target angular position and angular velocity.."

Tyler derived algorithms for four different acquisition situations:

Scheme 1: Match initial and final angular position and velocities. Use the maximum allowable acceleration
thorughout each acceleration region.

Scheme 2: The same as scheme 1, but use a sinusoidal acceleration pattern to avoid large discontinuities
in acceleration.

Scheme 3: The same as scheme 2, but match the final acceleration as well.

Scheme 4: The same as scheme 2, but match both initial and final accelerations.

The C-code described in this GBT Memo implements the first three of Tyler's schemes as profile functions
jmTylerA, jmTylerB and jmTylerC respectively. In addition, two other profile functions suggested by
von Hoerner [vH96], jmSvH3 and jmSvH4, are also implemented. Other profile functions could be implemented
in addition to the five which we currently have. For example, we could add a version of jmTylerA which
supports a/ ^ 0, analogous to jmTylerC; this would enable us to generate faster Posicast trajectories for
accelerating targets. In addition to the sinusoidal profiles which we currently have, two other functional
forms for position trajectories have been suggested: (1) the Error Function [Woo95] (velocity trajectory is
the Gaussian profile) and (2) the hyperbolic tangent (velocity trajectory is dt^"hx = co ^); the latter
function has been used for waveguide transitions.3 Both of these forms pose a problem for implementation:
they extend to infinity, whereas the sinn forms are finite. Anyway, the Posicast algorithm (jerk-cancellation)
has proven to be superior to all types of jerk-minimization, and therefore effectively discourages any further
experimentation with additional profile functions.

The jerk minimization [prefix "jm"] trajectory generator package operates as a four-phase process:

• jmCalcTrajectoryO calculates the trajectory information and returns it in a private data structure,

• jmHeadTrajectoryO returns key parameters from the private structure,

• jmEvalTrajectoryO evaluates the trajectory table in the structure for specific times and

• jmFreeTrajectoryO deletes the private data structure.

These four C functions are described in the following subsections.
2Johann Schraml, while he was with the GBT project in 1991 (on leave from the Max Planck Institute fur Radioastronomie),

gave a brief description [Sch91] of an algorithm for generating trajectories; his discussion is somewhat similar to that in [Tyl94].
3Michael Goldman, private communication

4 Page Jerk-Minimizing Trajectory Generator in C GBT Memo 203

2.1 jmCalcTrajectory

Function jmCalcTrajectoryO accepts arguments describing the trajectory to be computed and the velocity
and acceleration capabilites of the system. The total duration of the trajectory timelnterval can be either
an input or output argument. When trajectories are computed, a pointer to the table of PVA values returns
in pTS:

enum jmF.rr or Codes jmCalcTrajectory (/* returns enum code on error */
enum jmCalc mode, /* jmFastest,jmSpecifyTime,.. */
enum jmFunct fimct, /* jmTylerA,jmTylerB,.. */
double dt. /* time step, e.g. 0.1 s */
int nAxes, /* num axes for p0[] ,a_max[] ,etc */
double pOCl, /* initial position ft velocity */
double v0[],

double pf[]. /* final position */
double vf[], /* final velocity */
double af[], /* final acceleration (jmTylerC) */
double tf, /* time for pf+vf+af target traj */
double v. .max [] , /* +/- limits for axes */
double a. .max [] ,

double ♦timelnterval, /* ptr to total trajectory time */

If jmCalcTrajectoryO is called with mode argument jmFastestTime, it will compute the fastest possible
time and return the result as *timelnterval. If the mode is jmFastest, the trajectory will be computed
and it will returned along with the *timelnterval. If a slower-than-optimum trajectory is desired, the
mode jmSpecif yTime will cause the *timelnterval argument to be used and it will not be changed.
If *TimeInterval is less than the optimum interval jmCalcTrajectoryO will return an error code. In
modes jmFastest and jmSpecif yTime the private data structure will be mallocO-ed and pointer **pTS
will be returned; it should be passed to jmFreeTrajectoryO when the trajectory information is no longer
needed. Mode jmFastestTime should be used if the **pTS information is not needed. State information
about the trajectory computation is kept in the private structure, which permits multiple invocations of
jmCalcTrajectoryO and jmEvalTrajectoryO to execute simultaneously.

Argument p0[] to jmCalcTrajectoryO is the initial position and v0[] the initial velocity; pf [] and vf []
are the final position and velocity. The initial accelerations axe assumed to be zero, and the final accelerations
are assumed to be zero also for all modes except jmTylerC, where af [] is used. The maximum velocities
and accelerations are assumed to be symmetric; i.e., the maximum negative velocity for an axis has the same
absolute value as the maximum positive velocity for that axis. jmCalcTrajectoryO will return an error
code if any of the arguments vO [] and vf [] are inconsistent with v_max [], or if af [] is inconsistent with
a .max [] •

If nAxes is greater than one, the *timelnterval returned by jmCalcTrajectoryO in the jmFastest mode
will be the time needed on the slowest of the nAxes. Function jmCalcTrajectoryO will find this by calling
itself recursively for the individual axes in jmFastestTime mode and getting the longest*timeInterval. It
will then call itself in jmSpecif yTime mode to produce **pTS for all axes. All axes will arrive at their final
(pf G) positions simultaneously.

Trajectories will be computed by jmCalcTrajectoryO with a specified time step dt; as the step dt is made
smaller the *timelnterval result will approach the theoretical minimum, but the space required by the
**pTS private structure will grow larger. Result *timeInterval returned by jmCalcTrajectoryO will be
an integral multiple of step dt.

jmCalcTrajectoryO and jmEvalTrajectoryO regard the time and position units of arguments dt, p0[],
v_max[], etc, as dimensionless. The different axes may use different position units (e.g. the subreflector

GBT Memo 203 Jerk-Minimizing Trajectory Generator in C Page 5

displacement interface has three translation axes [inches] and three tilt axes [degrees]).

Variable tf controls whether the final position, velocity and acceleration axe to be regarded as values to
be achieved at some arbitrary time (the tf=0 case), or as the trajectory of a moving target with whose
trajectory our trajectory is to osculate (tf nonzero). If the target trajectory option is wanted, but the target
PVA is specified at the starting time (zero), simply set tf to a small number like le-6. It is generally
possible to estimate the total trajectory time before calling the trajectory generator; the target PVA values
will be more accurate if they are computed for such an estimated time close to the optimum total time.

Regarding the need for an accelerated jmTylerA profile: The "Posicast" algorithm (Section 3 [p.24]) eliminates
the need for the jmTylerB (aka "CPP-B") functional form to minimize vibrations; instead, as we will see, the
fastest and jerkiest functional form, jmTylerA, can be used instead, */ the vibrations caused by its jerkiness
are being cancelled. For the o/ ^ 0 case (accelerated target trajectory), this means that the jmTylerC
function, which is an accelerated version of jmTylerB, is suboptimal. Obviously we need to add another
functional form which will be an accelerated version of jmTylerA. This development effort has been deferred
until operational experience has been obtained with the current code.

Regarding the use of recursion in this C function: Function jmCalcTrajectoryO calls itself at several
places in the code. This tactic is merely an elegant convenience which enables all portions of the trajectory
algorithm to be incorporated into a single module of code; i.e., recursion is not an organic element of the
algorithm implemented here. If this ANSI-C function were to be transliterated to Fortran-77, which does
not support recursion, it could be broken into several (probably three) subroutines.

/* jmCalcTrajectory.c Jerk-minimizing trajectory generator algorithm
1997-05-31: D.Veils <dwellsflnrao.edu>, started, then development deferred
1999-08-09: resumed work on this code.
1999-08-18: code works for jmSpecifyTime ft jmTylerA ft nAxes=l case
1999-08-19: jmTylerB ft jmTylerC implemented, jmFastestTime started
1999-08-30: implementing jmSvHS ft jmSvH4 functions
1999-10-17: changes for jmTylerC
1999-11-11: fixed v2>v_max bug
1999-12-07: change from numeric to enum error codes
1999-12-08: implemented target trajectory feature
1999-12-14: accelerated target trajectories now work.

*/

[GNU General Public License copyright notice omitted;see http://www.gnu.org/copyleft/gpl.html/

#include "jmlnclude.h"

enum jmErrorCodes jmCalcTrajectory(/* returns enum code on error */
enum jmCalc mode, /* jmFastest,jmSpecifyTime,.. */
enum jmFunct funct, /* jmTylerA,jmTylerB,.. */
double dt, /* time step, e.g. 0.1 s */
int nAxes, /* num axes for pOD ,a_max[] .etc */
double p0[], /* initial position ft velocity */
double v0[],
double pf[], /* final position */
double vf[], /* final velocity */
double af[], /* final acceleration (jmTylerC) */
double tf, /* time for pf+vf+af target traj */
double v_max □ , /* +/- limits for axes */
double a_maxn,
double *timelnterval, /* ptr to total trajectory time */
struct jmPS **pTS) /* return ptr to private struct */

f
int status, i, j, k, k_trial, k_first, k_total, i_save;
double T, dp, dv, am, x, y, y2, eO, ef, al, a3, v2, tl, t3, t2,

t, p, t_start, p.start, p_half, v, a, ww, T_save, z, Tmt, tmT,

6 Page Jerk-Minimizing Trajectory Generator in C GBT Memo 203

pfp, vfp, Ttf;

const double eps = le-8;

struct jmPS *q, qTrial;

if (mode != jmTrial) {

if ((0>=nAxes)11(nAxes>MAINAXES))

if (dt <= 0.)

if (v_max[0] <= 0.)

if (a_max[0] <= 0.)

if (fabs(vO[0]) > v_max[0])

if (fabs(vf[0]) > v_max[0])

if (fabs(af[0]) > a_max[0])

if ((tf == 0.) && (af[0] != 0.) &J

E3

E4

return (jmcNAxesError) ; | El |

return(jmcNegDtError);

return(jmcNegVmaxError);

return(jmcNegAmaxError);

return(jmcVOBigError);

return(jmcVfBigError);

return(jmcAfBigError); [E7|

j (funct != jmTylerC))

return(jmcAfNonzeroError); E8

Step 1 One axis, or more than one?

Tyler's algorithm is for a mechanical motion in one variable, or "axis". If the problem has
more than one axis our technique will be to first determine, by calls to this function for each
axis in the jmFastestTime mode, which axis is going to be take the longest time, and then to
call this function for each axis in the jmSpecifyTime mode (see Step 13 [p.14]).

if (nAxes == 1) f

What is the value of argument mode? The actual computation of a trajectory occurs only for the
jmSpecifyTime case. For the jmFastest and jmFastestTime modes we search for the fastest feasible
trajectory; code for these modes appears later in this C function, at Step 11 [p. 13].

switch(mode) {
case(jmSpecifyTime):
case(jmTrial): /* private mode used by jmFastestTime ft jmFastest */
case(jniNoAloc): /* private mode used by nAxes>l */

Step 2 Initialize private data object struct jmPS

Mode jmSpecifyTime will check T, mallocQ the trajectory struct, and then calculate the
trajectory

if ((mode != jmTrial) ftft (mode != jmNoAloc))
if ((status = jmAlocTrajectory(pTS, jmAlocAndlnit)) != 0) return(status);

Step 3 Get total position change Ap & total velocity change Av

If funct is jmTylerC (a/ ^ 0), dp and dv are modified in order to "..switch to a frame of
reference which has an acceleration equal to that of the target.." [Tyl94, p.151]. Also, if tf ^0
the algorithm will osculate its trajectory to a parabolic target trajectory.

T = *timelnterval;

pfp = pf[0];
vfp = vf[0];
if (tf != 0.) { /* pf[0],vf[0],af[0] define parabolic target trajectory */

Ttf = T - tf; /* at time tf wrt start time at zero. */
vfp += (af[0]*Ttf);
pfp += (vf[0]*Ttf + 0.5*afC0]*Ttf*Ttf);

}
dp = pfp - p0[0];
dv = vfp - v0[0] ;

GBT Memo 203 Jerk-Minimizing Trajectory Generator in C Page 7

if (funct «= jmTylerC) {
dp — 0.5 * af[0] * T*T;
dv -= af[0] * T;

}
(*pTS)->n_T = floor((T / dt) + le-8);

/* T must be a positive integral multiple of dt: */

if ((T <= 0.) ||

Step 4

((fabs(T-(dt*((*pTS)->n_T)))/dt)>eps)) return(jmcBadTError);

Get maximum allowable acceleration am

E9

swit ch(funct) {
case(jmTylerA):

am = a_max[0] ;
break;

case(jmTylerB):

am = a_max[0] * (1./2.);
break;

See [Tyl94, p. 152] for the following formula for am for the case of o/ ^ 0 (Tyler's "Third Acquisition
Scheme"):

case(jmTylerC):

am = a_max[0] - fabs(af[0])/2.;
break;

The use of sin31 as an acceleration profile was advocated by von Hoerner [vH96]. In the jmTylerB case
above, the maximum acceleration is scaled by ^ for purposes of computing ti and ts because the mean
acceleration during regions 1 and 3 is

/ ^(l-cos2*)<ft = /
Jo 2 Jo

sin2i<ft= | = 0.50

of that for jmTylerA. The analogous factor for the jmSvH3 function will be

Jo
sin3 tdt=^-= 0.42 :

case(jmSvH3):
am = a_max[0] * (4./(3.*PI));
break;

case(jmSvH4):
am = a_max[0] * (3./8.);
break;

default: /* unrecognized function enum value */

return(jmcFunctEnumError);

}

E10

Step 5 Get normalized position change x & normalized velocity change y

(*pTS)->x[0] = x = (dp / (am * T*T)) - (v0[0] / (am * T));
(*pTS)->y[0] = y = (dv / (am * T));

Step 6 Test whether this (x, y) trajectory is feasible

The two clauses of this test correspond to the outer boundaries of the normalized phase space
illustrated in Figure 1. If the test fails (i.e., (x,y) is an impossible trajectory) we delete the
private data structure and return NULL for its pointer and an error code for the function value.

8 Page Jerk-Minimizing IVajectory Generator in C GBT Memo 203

y =

X =
omr2 amT

Figure 1: Areas of valid solutions for ao = a/ = 0 in normalized phase space

if ((x < ((y*y + 2.*y - 1.) / 4.))
(x > ((1. + 2.*y - y*y) / 4.))

if ((mode != jmTrial) ftft (mode !=
return(jmFailed); | Ell|

II
) {
jmNoAloc)) jmFreeTrajectory(pTS);

Step 7 Determine which of four phase-space regions

Any feasible {x, y) trajectory is in one of four categories, depending on whether the
accelerations in Tyler's first and third regions are positive or negative. In Figure 1 these
categories are labelled as "+/+", "-/-", "+/-" and "-/+"; for example, an area marked "-/+"
means that a trajectory with (x, y) in this area starts with negative acceleration in region one,
continues with constant velocity in region two and ends with positive acceleration in region
three. The signs axe conveyed in Tyler's algorithm by variables eo and e/ which have values
±1. Note: the second test here (the one for the eo = £f = +1 region) is printed incorrectly in
[Tyl94]. It reads [Tyl94, Eq.(lO), p.143]

V2 V2

eo = 6/ = 1 when y < 0 and ^— < x < — y — *— (10) Wrong.

It should read

£0 = ef — 1 when y > 0 and
2 2

y < x < y - V- (10) Corrected.

This can be seen from the pattern of the terms in the four tests, and by inspection of the
topology of the regions in Figure 1 (which should resemble Tyler's Figure 5 [Tyl94, p. 147]).

if ((y <= 0.) ftft ((y + y*y/2) <= x) ftft (x <= -y*y/2)) eO=ef=-l.;
else if ((y > 0.) ftft (y*y/2 <= x) ftft (x <= (y - y*y/2))) e0=ef=+l.;
else if (((y > 0.) ftft (x > (y - y*y/2))) II

GBT Memo 203 Jerk-Minimizing Trajectory Generator in C Page 9

<(y <= 0.) ftft (x > -y*y/2))) { e0=+l.; ef—1.; }
else if (((y > 0.) ftft (x < y*y/2)) II

((y <= 0.) ftft (x < (y + y*y/2)))) { e0=-l.; ef=+l.; }
else { /* it should be impossible to reach these statements: */

jmFreeTrajectory(pTS);
return (jmdmpossError);

}
E12

Step 8 Get accelerations and times for regions 1 & 3, velocity for region 2

The formula for t3 below corrects an omission in the list of Tyler-C changes on p. 152 of
[Tyl94]: equation (19) on p. 144 reads

and should read

t3 = ^I—Hi (19) [Misleading] (1)
as

t3=(vo + Av)-vi (19) fCorrectedJ (2)

as

(*pTS)->al[0] = al = eO * am;
(*pTS)->a3[0] = a3 = ef * am;
if (eO == ef) {

y2 = ((y*y*ef) - 2.*x) / (2.*(y*ef - 1.));
} else {

ww = y*y*e0*ef - 2.*y*ef + 2.*x*(ef-e0) +1.;
y2 = (y*ef - 1. + sqrt(ww)) / (ef-eO);

}
(*pTS)->v2[0] = v2 = (am * T * y2) + v0[0];
if (mode == jmTrial) { /* private success/failure return */

return((fabs(v2) <= v_max[0]) ? jmNoError : jmFailed);
}
(*pTS)->tl = tl = (v2 - v0[0]) / al;
(*pTS)->t3 = t3 = ((v0[0]+dv) - v2) / a3;
(*pTS)->t2 = t2 = T - tl - t3;
if (t2 < 0.) return(jmFailed);
(*pTS)->v0[0] = v0[0]; /* pOQ not needed, first PVA specifies it */
(*pTS)->pf[0] = pfp;
(*pTS)->vf[0] = vfp;
if (funct « jmTylerC) {

(*pTS)->af[0] = afCO];
} else {.

(*pTS)->af[0] =0.;
>

Step 9 Calculate piecewise-parabolic trajectory

Allocate space for arrays

/* malloc space for pva arrays: */
if (((*pTS)->pP[0] = (double *)

calloc((*pTS)->n_T, sizeof(double)))==NULL) return(jmcPAlocError); | E13
if (((*pTS)->pV[0] = (double *)

calloc((*pTS)->n_T, sizeof(double)))==NULL) return(jmcVAlocError); | E14
if (((*pTS)->pA[0] = (double *)

calloc((*pTS)->n_T, sizeof(double)))==NULL) return(jmcAAlocError); jE15
(*pTS)->nAxes = 1;
(*pTS)->t_first =0.;
(*pTS)->dt = dt;

10 Page Jerk-Minimizing TVajeetory Generator in C GBT Memo 203

Acceleration Velocity

0.5

Figure 2: First-region profiles for jmTylerA, jmTylerB, jmSvHS & jmSvH4, with ai = l,ti = 1, VQ = po = 0

The computation proceeds by half-steps (dt/2):

for (i = 0, j = 0; i < (2 * ((*pTS)->n_T) + 1); i++) {
t = (*pTS)->t_first + i*(dt/2.);

Step 10 Calculate p(t) with specified formulae

Figure 2 shows the jerk, acceleration, velocity and position profiles of four of the five available
functions in region-1 (region-3 is a mirror reflection). The choice of parameters normalizes
the acceleration profiles to unit area.

Tmt = (T-t);
tmT = -Tmt;
switch(funct) {

The jmTylerA formulae (simple maximum acceleration with maximum jerk, takes shortest possible time)
are from [Tyl94, pp.142-3]:

/* before first region: */
case(jmTylerA):

if (t < 0.) i
p = p0[0] + v0[0]*t;

} else if (t < tl) { /* first region formula: */
p ■ p0[0] + v0[0]*t + (al*t*t)/2;

} else if (t < (tl + t2)) { /* second region formula: */
p ■ p0[0] + v0[0]*tl + v2*(t-tl) + (al*tl*tl)/2;

} else if (t < T) { /* third region formula: */
p = pfp - vfp*Tmt + (a3*Tmt*Tmt)/2;

} else { /* after third region: */

GBT Memo 203 Jerk-Minimizing Trajectory Generator in C Page 11

p ■ pfp + vfp*tmT;
}
break;

The jmTylerB formulae, which use the raised-cosine 5(1 — cost) = sin21 acceleration profile for reduced
jerk, but which take more time because Om = amax/2, are from [Tyl94, p.148]. They have often been
called "CPP-B" [Command Preprocessor B] in the GBT project.

case(jmTylerB):
if (t < 0.) { /* before first region: */

p = p0[0] + v0[0]*t;
} else if (t < tl) { /* first region position formula: */

p = pOCO] + v0[0]*t
+ al*(0.5*t*t + (tl*tl/(4.*PI*PI))*(cos(2.*PI*t/tl) - 1.));

} else if (t < (tl + t2)) { /* second region position formula: */
p = p0[0] + v0[0]*tl + v2*(t-tl) + 0.5*al*tl*tl;

} else if (t < T) ■(/* third region position formula: */
p = pfp - vfp*Tmt + a3*(0.5*Tmt*Tmt +

(t3*t3/(4.*PI*PI))*(cos(2.*PI*Tmt/t3) - 1.));

} else { /* after third region: */

p = pfp + vfp*tmT;

}
break;

The jmTylerC formulae (raised-cosine acceleration for case of a/ ^ 0) axe from [Tyl94, p.152]. These
formulae were derived by transforming the derivation of jmTylerB into an accelerated coordinate system.

case(jmTylerC):
if (t < 0.) { /* before first region: */

p = p0[0] + v0[0]*t;
} else if (t < tl) {. /* first region position formula: */

p = p0[0] + v0[0]*t
+ al*(0.5*t*t + (tl*tl/(4.*PI*PI))*(cos(2.*PI*t/tl) - 1.))
+ 0.5*af[0]*t*t;

} else if (t < (tl + t2)) { /* second region position formula: */
p = pOCO] + v0[0]*tl + v2*(t-tl) + 0.5*al*tl*tl

+ 0.5*af[0]*t*t;
} else if (t < T) { /* third region position formula: */

z = (t3*t3)/(4.*PI*PI);
p - (p0[0] + dp) - (v0[0] + dv)*Tmt

+ a3*(0.5*Tmt*Tmt - z + z*cos((2.*PI*Tmt)/t3))
+ 0.5*af[0]*t*t;

} else { /* after third region: */
p = pfp + vfp*tmT

+ 0.5*af[0]*tmT*tmT;
}
breai;

The jmSvHS formulae (sin31 acceleration) below were adapted from Mathematica4 output; the formula
for the first region was produced by feeding the expressions

d3=Integrate[Sin[t]~3, {t, 0, Pi}]/Pi
as = (l/d3) al Sin[Pi t / tl]~3
vs = Simplify[vO + Integrate[as, {t, 0, t}]]
ps = Simplify[pO + Integrate[vs, {t, 0, t}]]
CFormCps]

to Mathematica.

'see http://www.wolfram.com/

12 Page Jerk-Minimizing Trajectory Generator in C GBT Memo 203

case(jmSvH3):
if (t < 0.) i /* before first region: */
p - pOCO] + v0[0]*t;

} else if (t < tl) { /* first region position formula: */

z = PI*t/tl;

p - pOCO] + v0[0]*t
+ al*(0.5*t*tl + ((tl*tl)/(48*PI))*(sin(3.*z) - 27*sin(z)));

} else if (t < (tl + t2)) {. /* second region position formula: */
p ■ p0[0] + v0[0]*tl + v2*(t-tl) + 0.5*al*tl*tl;

} else if (t < T) {. /* third region position formula: */
z = PI*Tmt/t3;

p = pfp - vfp*Tmt

+ a3*(0.5*Tmt*t3 + ((t3*t3)/(48.*PI))*(sin(3.*z) - 27*sin(z)));

} else ■(/* after third region: */

p = pfp + vfp*tmT;

}
bre^;

The jmSvH4 formulae (sin41 acceleration) below were adapted from Mathematica output; the formula for
the first region was produced by feeding the expressions

d4=Integrate[Sin[t]~4, {t, 0, Pi}]/Pi
a4 = (l/d4) al Sin[Pi t / tl]-4
v4 = Simplify[vO + Integrate[a4, {t, 0, t}]]
p4 = Simplify[pO + Integrate[v4, {t, 0, t}]]
CForm[p4]

to Mathematica.

case(jmSvH4):

if (t < 0.) { /* before first region: */

p = pOCO] + v0[0]*t;

} else if (t < tl) { /* first region position formula: */

z = 2.*PI*t/tl;

p = p0[0] + v0[0]*t

+ al*(0.5*t*t +

(tl*tl/(48.*PI*PI)) * (-15. +16.*cos(z) -cos(2.*z)));

} else if (t < (tl + t2)) { /* second region position formula: */

p = p0[0] + v0[0]*tl + v2*(t-tl) + 0.5*al*tl*tl;

} else if (t < T) { /* third region position formula: */

z = 2.*PI*Tmt/t3;

p = pfp - vfp*Tmt +

a3*(0.5*Tmt*Tmt +

(t3*t3/(48.*PI*PI)) * (-15. +16.*cos(z) -cos(2.*z)));

} else {. /* after third region: */
p = pfp + vfp*tmT;

}
break;

default: /* unrecognized function enum value */

E16 return(jmcUnrecFunctError);
}

The piecewise-parabolic approximation to the trajectory is computed by evaluating the trajectory at half-
steps and setting the PVA such that in each interval dt the PVA parabola passes through the starting
value, the half-step value and the final value.

if ((i 7. 2) == 0) { /* at whole ticks: */
if (i > 0) i

v = (-3.*p_start +4.*p_half -l.*p) / dt;

GBT Memo 203 Jerk-Minimizing Trajectory Generator in C Page 13

a = (4.*p_start -8.*p_half +4.*p) / (dt*dt);
((*pTS)->pP[0])[j] = p.start;
((*pTS)->pV[0])[j] = v;
((*pTS)->pA[0])[j] = a;

}
t_start - t;
p_start = p;

} else { /* at half ticks: */
p_half = p;

}
} /* end of the trajectory PVA-computation for-loop */
return(jmNoError); /* exit from the nAxes*!/jmSpecifyTime case */

/* (also exit here from jmNoAloc private mode) */

Step 11 Find the minimum possible time for a single axis (begin jmFastestTime section)

Tyler does not give a derivation of the minimum feasible T; he suggests [Tyl94, p.158] a
search procedure: "One can guess a time of 1 sec, and should that be insufficient, continue
with guesses of 2, 4, 8, 16, 32, 64 and 128 sec until a solution is found. If powers of two
seem inappropriate, one can try powers of 3, 1.5, 1.2, or whatever. One can be satisfied with
the first acceptable solution, or one can backtrack, looking for an even better one." The
implementation below is a full binary search which is designed to find the minimum possible
integral multiple of dt which produces a feasible trajectory. As argument dt is made smaller,
arbitrarily accurate values of *timelnterval can be calculated. Mode jmFastest returns not
only the minimum time but also the actual trajectory, whereas jmFastestTime determines
only the minimum feasible value for T and returns it in argument *timelnterval (with NULL
returned for the trajectory pointer).

case(jmFastestTime):
case(jmFastest):

q = ftqTrial;
status = jmAlocTrajectory(&q, jmlnitOnly);

Binary search algorithm: The current implementation initializes search variable k_trial to one, and does
a full binary search; typically this needs 10-20 trial calculations to converge (the limit set in the code below
is 30 trials). Numerical experiments have shown that a good starting guess can often halve the number
of trials. For example, one can try estimating the optimum time and then setting fctriai = 7estimate/Af.
This estimate must be less than twice as large as the true optimum, or the binary search will not converge
to the true optimum time. Any k_trial less than the optimum will work because the first pass will keep
doubling it until it gets within a factor of two of optimum,5 and then the binary search will converge,
k-trial need not start out as a power of two, but it must be greater than zero. The simplest, cleanest
implementation is to start it as one:

k.trial = 1;

k.first = 1;

k.total = 0;

k = 0;

while (k_trial > 0) { /* loop halts when division by two yields zero. */

T = (k + k.trial) * dt;

status = jmCalcTrajectory(jmTrial, funct, dt, nAxes,

pO, vO, pf, vf, af, tf, v_max, a_max,
&T, ftq);

if ((status != jmNoError) ftft

(status != jmFailed))

5 Note that it is conceivable that the doubling strategy will fail in the a/ ^ 0 case because the velocity might increase fast
enough at a high enough velocity that we can never "catch up", or else the accelerating target trajectory might exceed Umax-
These possibilities are unlikely in practical situations.

14 Page Jerk-Minimizing IVajectory Generator in C GBT Memo 203

return(status); /* Unexpected nonzero status; return it */

k_total++;

if (k.total > 30) retum(jmcBigKtotalError) ; | E17 |

if (status == jmFailed) {

if (k_first) {

k_trial *= 2; /* First pass: keep doubling until succeed */

if (k_trial >= 1073741824) return(jmcKbigFailure); /* 2~30 */

} else {

k = k + k_trial;

k.trial /= 2;

}
} else { /* trial time succeeded: */

T_save = T;

if (k.first) -C

k = k + k_trial / 2; /* First pass: set up binary search */

k.trial /= 4;

k.first = 0;

} else {

k.trial /= 2;
}

}

E18

The fact that this binary search loop halts when integer k.trial has been reduced to zero by successive
division by two implies that T-save is the smallest integral multiple of dt for which a feasible trajectory
exists:

♦timelnterval = T_save; /* return optimum time */
if (mode == jmFastestTime) {

♦pTS = NULL;
return(jmNoError); /* exit from the nAxes=l/jmFastestTime case */

}

Step 12 Optimum T is known, compute trajectory

status = jmCalcTrajectory(jmSpecifyTime, funct, dt, nAxes,

pO, vO, pf, vf, af, tf, v_max, a_max,

timelnterval, pTS);

return(status); /* exit from the nAxes=l/jmFastest case */

default: /* unrecognized jmMode value; return error code */

E19 return(jmcUnrecModelError);
} /* end of nAxes^l/jmHode switch-statement */

Step 13 Generate trajectories for nAxes>l situations

In the multiple trajectory case, if we are in jmFastest mode, we loop over the axes with
jmFastestTime mode to find which axis will take the longest time, and then we loop again in
jmSpecifyTime mode to calculate the actual trajectories. (If we axe in jmFastestTime mode,
we return the time without computing the trajectories.) If we are called with jmSpecifyTime
mode we can skip the first loop.

} else {
switch(mode) {

case(jmFastest):

case(jmFastestTime):

T_save = 0.;
i_save = 0;
q = ftqTrial;

GBT Memo 203 Jerlc-Minimizing IVajectory Generator in C Page 15

status = jmAlocTrajectory(&q, jmlnitOnly);
for (i = 0; i < nAxes; i++) {

if ((status ■ jmCalcTrajectory(jmFastestTime, funct, dt, 1,
&p0[i], ftvOCi], &pf[i], ftvf[i].

if (T > T.save) {

T_save = T;

i_save = i;

}

ftaf [i] , tf, ftv_max [i] , fta_max [i] ,
ftT, ftq)) != 0) return(status);

♦timelnterval = T_save;

Mode jmFastestTime will return here, jmFastest continues as though mode were jmSpecifyTime:

if (mode == jmFastestTime) {
♦pTS = NULL;
return(jmNoError);

>

Create instance of private struct, do jmSpecifyTime:

case(jmSpecifyTime):

if (mode == jmSpecifyTime) i_save = 0;

if ((status = jmAlocTrajectory(pTS, jmAlocAndlnit)) .'= 0) return(status);

q = ftqTrial;

status = jinAlocTrajectory(ftq, jmlnitOnly);
for (i = 0; i < nAxes; i++) {

if ((status = jmCalcTrajectory(jmNoAloc, funct, dt, 1,
&p0[i], &v0[i], ftpfCi], ftvf[i],
ftaf[i], tf, &v_max[i], &a_max[i],
timelnterval, ftq)) != 0) return(status);

? 0 : 1;
if (i == i_save) {

(♦pTS)->slowest[i] = (mode == jmSpecifyTime)
(♦pTS)->nAxes = nAxes;
(♦pTS)->n_T = q->n_T;
(♦pTS)->t.first = q->t.first;
(♦pTS)->dt - q->dt
(♦pTS)->tl = q->tl
(♦pTS)->t2 = q->t2
(♦pTS)->t3 = q->t3

} else {
(♦pTS)->slowest[i] = 0;

(♦pTS)->v0[i] = q->v0[0];
(♦pTS)->vf[i] = q->vf[0];
(♦pTS)->pf[i] = q->pf[0];
(♦pTS)->af[i] = (funct == jmTylerC) ? q->af[0]
(♦pTS)->x[i] = q->x[0];
(♦pTS)->y[i] = q->y[0];
(♦pTS)->al[i] = q->al[0];
(♦pTS)->v2[i] = q->v2[0];

Move pointers to PVA vectors for axis i from the internal private structure qTrial to the ♦pTS struct:

(♦pTS)->pP[i] = q->pP[0]
(♦pTS)->pV[i] = q->pV[0]
(♦pTS)->pA[i] = q->pA[0]

16 Page Jerk-Minimizing Trajectory Generator in C GBT Memo 203

y
return (jmNoError);

Unrecognized mode:

default:
return(jmcUnrecMode2Error);

>
return(jmNoError);

>

}

E20

GBT Memo 203 Jerk-Minimizing Trajectory Generator in C Page 17

2.2 jmHeadTrajectory, jmEvalTrajectory, jmFreeTrajectory & jmPrintTrajectory

The use of the functions described below is illustrated in program jmDemoProgram (Figure 3 [p.18]) in
Section 2.3 [p.18]. The reader can compare the descriptions of the calling sequences and actions of the
functions given here to the code in that program.

Functions jmCalcTrajectory and jmPosicastTrajectory return their results in a private data structure.
Function jmHeadTrajectory will return the key parameters from the header of that structure. Variable n-T
is the number of PVA segments used in the piecewise parabolic approximation to the trajectory and dt is
the time step of the segments; therefore the total duration of the trajectory is (n_T x dt). Variable t_f irst
is the time of the first PVA segment; it is normally zero.

enum jmErrorCodes jmHeadTrajectory(/* returns enum code on error */
struct jmPS *pTS, /* pointer to private struct */
int *nAxes, /* returns nAxes from struct */
int *n_T, /* returns n_T from struct */
double *t_first. /* returns t_first from struct */

Function jmEvalTrajectoryO computes the position, velocity and acceleration of a trajectory for an
arbitrary specified time t. jmEvalTrajectoryO finds the trajectory table entry appropriate for t and
evaluates the PVA values; if the time is not a multiple of the dt spacing of the table this amounts to
interpolation. If the time is before the beginning or after the end of the interval for which jmCalcTrajectory
or jmPosicastTrajectory generated the trajectory, jmEvalTrajectoryO will extrapolate the trajectory.

enum jmErrorCodes jmEvalTrajectory(/* returns enum code on error */
struct jmPS ♦pTS, /* pointer to private struct */
double t, /* time */
double pD. /* returns position[nAxes] */
double v[], /* returns velocity[nAxes] */

Function jmPrintTrajectory is a useful tool for debugging implementations based on this package. See
Figure 4 [p. 19] for an example of its output.

enum jmErrorCodes jmPrintTrajectory (/* returns error code */
FILE *fp, /* output file stream ♦/
struct jmPS *pPS, /* private struct ptr */
char string[], /* up to 40 char */
int k.rows) /♦ which rows to print?*/

Function jmFreeTrajectory deletes an instance of the private trajectory structure created by
jmCalcTrajectory or jmPosicastTrajectory. See the last statements of Figure 3 [p.18] for an example
of its use. Function jmAlocTrajectory is called by jmCalcTrajectory and jmPosicastTrajectory in
jmAlocAndlnit mode to create the structure; it is not intended for public use, and its calling sequence is
illustrated here for background information.

enum jmErrorCodes jmFreeTrajectory(/* returns enum code on error */
 struct jmPS ♦*pTS) /* private struct is free()-ed ♦/

enum jmErrorCodes jmAlocTrajectory(/* returns enum code on error */
/* THIS IS A *PRIVATE* FUNCTION OF THE jm PACKAGE! NOT FOR GENERAL USE. */

struct jmPS ♦*pTS, /* private struct is malloc()-ed */
 enum jmCalc mode) /* jmlnitOnly skips malloc() ♦/

18 Page Jerk-Minimizing Trajectory Generator in C GBT Memo 203

/♦ jmDemoProgram — program to illustrate use of jm package
1999-12-13: D.Wells, NRAO-CV ♦/

[GNU General Public License copyright notice omiUed;see http://www.gnu.org/copyleft/gpl.html7

#include "jmlnclude.h"

int mainO
{

FILE ♦fp;
int nAxes, n_rows, h.nAxes, h_n_T;
double T, dt, tf, h_dt, h_t.first, T_e, p_e[2], v_e[2], a_e[2],

p0[2], vO[2], pf[23, vf[2], af[2], v_max[2], a_max[23;
char string[JM_MAX_ERROR_MSG_LENGTH];
enum jmErrorCodes status;
struct jmPS *pPS;

fp = fopen("jmDemoProgramOut.txt", "w");
dt = 0.020; nAxes = 2;
/♦ initial conditions for trajectory: ♦/
pO[0] = 104.144423; pO[l] = 48.766487;
v0[0] = -0.000404; vO[l] = 0.000000;
/♦ target trajectory to match: ♦/
tf = 9.9;
pf[0] - 106.603651; pf[1] = 47.693706;
vf[0] = 0.003625; vf[1] = 0.003136;
af[0] = 0.; af[l] = 0.;
/♦ capabilities of the system: ♦/
v_max[0] = 0.66; v_max[l] = 0.33;
a_max[03 = 0.2; a_max[l] = 0.2;
status = jmCalcTrajectory(jmFastest, jmTylerB, dt, nAxes,

pO, vO, pf, vf, af, tf, v_max, a_max,
&T, &pPS);

jmStrError (status, string) ; fprintf(fp," JmCalcTrajectoryO status: */s\n", string) ;
if (status!=jmNoError) exit(EXIT.FAILURE);
status = jmHeadTrajectory(pPS, &h_nAxes, &h_n_T, &h_t_first, &h_dt);
jmStrError (status, string) ; fprintf(fp," JmHeadTrajectoryO status: 5£s\n", string) ;
if (status!=jmNoError) exit(EXIT.FAILURE);
T_e = 9.0137;
status = jmEvalTrajectory(pPS, T_e, p_e, v_e, a_e);
jmStrError (status, string) ; f printf (f p," jmEvalTrajectoryO status: '/.sXn", string) ;
if (status!=jmNoError) exit(EXIT.FAILURE);
fprintf(fp, "T=y,g, nAxes=,/,d, n_T=y.d, dt=,/.g, T_e-Xgt pva_e[l]=7.g 7,g y.g\n",

T, h.nAxes, h_n_T, h_dt, T_e, p_e[l], v_e[l], a_e[l]);
n_rows = 1.0 / dt; /♦ specify 1-second spacing in table ♦/
status = jmPrintTrajectory(fp, pPS, "jmDemoProgram output", -n_rows);
jmStrError(status,string); fprintf(fp,"jmPrintTrajectory0 status: XsXn",string);
if (status!=jmNoError) exit(EXIT.FAILURE);
status = jmFreeTrajectory(fcpPS);
jmStrError (status, string) ; fprintf(fp," jmFreeTrajectoryO status: '/.sW, string);
if (status!=jmNoError) exit(EXIT_FAILURE);
fclose(fp);
exit(EXIT_SUCCESS);

}

Figure 3: Demonstration program

2.3 Demonstration program

Program jmDemoProgram (Figure 3 [p.18]) calls most of the functions described previously to compute a
two-axis trajectory and print a summary of it. The intent of this program is to illustrate the appropriate
syntax for utilizing the functions to accomplish a typical task. The target trajectory has constant velocity;
the position for t = 9.9 s is specified (the rate specified is approximately the sidereal rate, so this example
might be a celestial source rising in the southeastern sky, with the telescope's initial position about 2° from

GBT Memo 203 Jerk-Minimizing Trajectory Generator in C Page 19

jmCalcTrajectoryO status: jmNoError — Normal successful return
jmHeadTrajectoryO status: jmNoError — Normal successful return
jmEvalTrajectoryO status: jmNoError — Normal successful return
T=9.9, nAxes=2, n_T=495, dt=0.02, T_e=9.0137, pva_e[l]=47.7247 -0.104586 0.132149

jmDemoProgram output

nAxes a 2 1
n_T s 495 I

t_first s 0 1
dt s 0.02 I

pPS
j

->slowest[j]
pPS->v0[j]
pPS->pf[j]
pPS->vf[j3
pPS->af[j]
pPS->x[j]

s

s

s

s

s

c

0 1
1 1

■0.000404 I
106.6037 I
0.003625 1

0 I
). 2513241 1

pPS->y[j] = 0.004069697 I
pPS->al[j] = 0.1 I
pPS->v2[j] 0.4702944 I
pPS->a3[j] s -0.1 1

pPS
j

->slowest[j]
s

s
1 1
0 1

pPS->v0[j] s 0 I
pPS->pf[j] = 47.69371 1
pPS->vf[j] ss 0.003136 I
pPS->af[j] s 0 I
pPS->x[j] = -c). 1094563 I
pPS->y[j] = 0.003167677 1

pPS->al[j] = -0.1 1
pPS->v2[j] = -0.1243898 1
pPS->a3[j] a 0.1 I

pPS->tl = 4.706984 I
pPS->t2 c). 5263219 1
pPS->t3 = 4.666694 I

j t p[0] v[0] a[0] I p[l] v[l] a[l]

-1 -0.02 104.1444 -0 .0004 0.0000 1 48.7665 0.0000 0.0000

0 0.0 104.1444 -0 .0004 0.0000 1 48.7665 0.0000 -0.0001
50 1.0 104.1510 0 .0268 0.0779 1 48.7191 -0.1187 -0.0621

100 2.0 104.2375 0 .1655 0.1897 I 48.5951 -0.1244 0.0000
150 3.0 104.5006 0 .3565 0.1640 I 48.4707 -0.1244 0.0000
200 4.0 104.9196 0 .4603 0.0402 1 48.3463 -0.1244 -0.0000
250 5.0 105.3881 0 .4703 0.0000 1 48.2219 -0.1244 -0.0000
300 6.0 105.8559 0 .4574 -0.0499 I 48.0975 -0.1244 -0.0000
350 7.0 106.2677 0 .3450 -0.1732 I 47.9731 -0.1244 0.0000
400 8.0 106.5175 0 .1527 -0.1827 I 47.8487 -0.1244 0.0000
450 9.0 106.5957 0 .0241 -0.0636 1 47.7261 -0.1064 0.1321

I 495 9.9 I 106.6037 0.0036 0.0000 I 47.6937 0.0031 0.0000 I
+ + + +

jmPrintTrajectory() status: jmNoError — Normal successful return
jmFreeTrajectoryO status: jmNoError — Normal successful return

Figure 4: Demonstration program output (example of jmPrintTrajectory() output)

20 Page Jerk-Minimizing Trajectory Generator in C GBT Memo 203

the source). The jmFastest mode is specified in order to obtain the fastest possible trajectory which will
osculate to this target trajectory. The total time returns in variable T; time increment dt is specified as
20ms (50 Hz) (for the GBT, 100ms would be appropriate). The jmTylerB profile function (sm2t, often
called "CPP-B" in the GBT project) is specified for the computation.

The program writes its output to a specified file, and this is shown in Figure 4 [p. 19]. The status return
lines are shown as an illustration of error-handling technique; a production program would be silent for
jmNoError. The program calls jmHeadTrajectoryO to obtain some key parameters, which it prints; in
particular, it prints the total time for this trajectory, T = 9.9s. The program calls jmEvalTrajectoryO
for an arbitrary time te = 9.0137 s, and prints the position, velocity and acceleration for the second axis at
that time. The remainder of the output is produced by the utility function jmPrintTrajectoryO, which is
especially useful as a dump tool for debugging algorithms.

Variable n_T is the number of entries in the trajectory table of the private structure computed by
jmCalcTraj ectory (). Axis-indexed values are printed in two blocks headed by the value of the axis index j.
slowest [j] is a flag which indicates the slowest axis in jmFastest trajectories like this one; we see that the
first axis is slowest in this case. The initial and final PVA values were supplied to jmCalcTrajectory, while
the x, y, al, v2 and a3 values were computed by it. The x and y values can be located on Figure 1 [p.8];
the slowest axis will be closest to an outer boundary of the area of valid solutions and other axes will be
closer to the origin. The acceleration used during the first Tyler "region" is ai; as is for the third region.
The magnitude of these accelerations is half of the amax = 0.2 value because we are using jmTylerB rather
than jmTylerA (see Step 4 [p.7]). The constant velocity in the second region is V2, which will be closest to
Umax for the slowest axis. The final header values shown are ii, £2 and £3, the durations of Tyler's three
regions; these are not multiples of dt, so the computed trajectory table entries do not generally match the
boundaries between regions 1 and 2 and regions 2 and 3.

The trajectory table has an initial line for a time one step before the trajectory begins, in order to illustrate
the extrapolation capability of jmEvalTrajectory. The trajectory table in Figure 4 [p. 19] is shown for every
second,6 plus the final line of the table, which gives the PVA values for one time step before the end of
the total trajectory time. Finally, a line for the end time of the trajectory is printed; if jmEvalTrajectory
is called for later times these PVA values will be extrapolated. The reader can verify by examining the
trajectory table that the second-axis PVA values for te printed at the top of Figure 4 [p.19] are plausible.

6Which lines are printed in the table is controlled by jmPrintTrajectoryO argument k_rows. If k_rows is 0 or 1, the entire
table is printed. If k-rovs is negative, as in the demonstration program, it is the modulo factor; the formula for n_rows in
Figure 3 [p.18] shows how to print lines for a specified time step. If k_rows is positive, the first k-rovs lines of the table and
the last k_rows lines of the table will be printed; this can be useful for debugging starting and stopping transient problems.

GBT Memo 203 Jerk-Minimizing Trajectory Generator in C Page 21

K « spring constant
M « moved mass
B * internal friction

Simpitfted model for the telescope drive Y(t),
and its resulting movement X{t}

Figure 5: Model of damped mass driven via a spring (copy of [vH96, Fig.2])

2.4 Numerical simulations of Tyler 3-region trajectories

Figure 5 [p.21] is a simple form of the schematic model for a large radio telescope driven by a servo system,
assuming that the servo has sufficient torque to maintain the driven axis nearly at the commanded position
when the telescope vibrates (this will generally be true for the GBT). The spring represents the large number
of steel beams of the moving structure, while M represents its mass. When the driven axis is moved by the
servo, the structure will bend due to the inertia of M. If Y(t) is jerky, M (i.e., X(t)) will exhibit vibration;
if we are clever in constructing the form of Y(t), it will have minimal vibration when the trajectory ends.
In the ideal case, {X(t) — Y(i)) will be displaced from its equiUbrium value smoothly and will return to the
equilibrium value smoothly.

If we take X(0) - Y(0) = 0 and v = X'(t) - Y'(t), the trajectory X(t) and velocity v(t) of M in this model
can be computed by integrating the differential equations [vH96, (2)]

li - -ffi-(#)c-n dv
dt

dX
dt

= v

(3)

(4)

The terms on the right-hand side of (3) are the accelerations which cause changes in the velocity. The first
such term is the damping, an acceleration proportional to the current velocity. The second term is the
acceleration due to the spring force (Hooke's Law). The latter term assures that the mean position of the
system must track the commanded trajectory, unless we have constant acceleration in which case we will
have a constant offset (see Figure 14 [p.38] for an example). The frequency of the vibration will be

(5)

and the logarithmic damping decrement (ratio of successive maxima) will be [vH96, (4)]

TTB
Qd =

y/KM
(6)

22 Page Jerlc-Minimizing IVajectory Generator in C GBT Memo 203

/* jmTrajectoryDerivs.c — Trajectory derivatives for odeintO
1999-08-26: D.Wells <dwellsflnrao.edu>, adapted from jerk.impulse.c [1995]

*/

[GNU General Public License copyright notice omitted;see http://www.gnu.org/copyleft/gpl.htiniy

#include "jmTrajectorySimulate.h"

void jmTrajectoryDerivs(
float x, /* independent variable */
float jD, /* dependent variables */
float dydxQ) /* derivs of yD wrt x at x */

{

}

enum jmErrorCodes status;
double t, v, p, pt, dvdt, dpdt;
double peCMAXNAXES], ve[MAXNAXES], ae[MAXNAXES];
extern struct JMTS_Private JMTS;

t = x; /* time */
v = yCl]; /* velocity */
p = y[2]; /* position */
if ((status = jmEvalTrajectoryQMTS.pTS, t, pe, ve, ae)) «= 0) {

printf("jmTrajectoryDerivs(): jmEvalTrajectory status^/dlXn", status);
jmPerror(status, "in jmTrajectoryDerivsO") ;
exit(13);

}
pt = pe[0]; /* trajectory position commanded */

dvdt = -(JMTS.B/JMTS.M)*v -(JMTS.K/JMTS.M)*(p - pt);
dpdt = v;

dydx[l] = dvdt;
dydx[2] = dpdt;

Figure 6: Derivatives function supplied to Runge-Kutta integrator

The ratios in equation (3) are [vH96, (5)]

jj^Wd" and ^ = (2^)2 (7)

The C function jmTrajectoryDerivs shown in Figure 6 [p.22] implements (3) and (4) as the two statements
near the end of the function. It computes Y(t) (here pt) by calling function jmEvalTrajectoryO with the
current value of t; the previously computed trajectory data structure and the values of B, M and K are
available via an externally defined struct called JMTS. This derivatives function is supplied to the Numerical
Recipes function odeint.c [PFTV88, Section 15.2, "Adaptive Stepsize Control for Runge-Kutta"], which
integrates the set of ordinary differential equations over a specified range of time.7 A simulation driver has
been built to perform this process for various combinations of parameters; it writes the results to files where
they are available for plotting.

Figure 7 shows four trajectories which perform a one degree step motion, the typical demonstration case for
GBT servo studies. The fastest trajectory uses the jmTylerA function, which applies and removes maximum
acceleration abruptly; it excites vibrations in the system and the resulting position residuals are plotted with
10x enlargement. The maximum error after the trajectory completes is about ±0.01 degree (±40 arcsec),
and it is slowly decreasing due to the damping Q^ = 0.05 assumed in this case (damping in the actual
GBT is about 10x smaller). The jmTylerB trajectory takes slightly longer, 6.3 versus 4.5 s, but excites a
much smaller amount of vibration (note 100x enlargement), about one arcsecond! This is the "CPP-B"
algorithm which has been much discussed, and previously simulated [GP95] for the GBT project. Two other

7Presumably von Hoerner [vH96] used similar technology for his trajectory calculations.

GBT Memo 203 Jerk-Minimizing Trajectory Generator in C Page 23

-0.2

-0.4 -

-0.6

t[8]

Figure 7: Four l0-step trajectories with vibrations (P = ls,Qd = 0.05, Amax = 0.2 0/s2, V^ax = 0.67 0/s)

trajectories are also plotted, using functions jmSvHS (recommended by von Hoerner [vH96]) and jmSvH4,
which produce even smaller vibration levels. The values of T (total time) are plotted as vertical lines from
the trajectories to the upper border of the plot so that their relative magnitudes can be estimated by eye.

Using "smoother" acceleration profiles with smaller average accelerations will generally reduce vibration
levels, but experiments show that the vibration levels depend on the exact timing of the trajectories. It is easy
to find combinations of parameters which will cause the jmSvHS profile to be inferior to the jmTylerB profile,
a counter-intuitive result at first glance. Furthermore, as we will see, it is easy to find parameter combinations
for which jmTylerA, the fastest and most violent trajectory function, produces zero net vibration!

24 Page Jerk-Minimizing Trajectory Generator in C GBT Memo 203

i /—wv p
Figure 8: Mass m, spring constant fc, force /(£) and displacement x [Hil62, Fig.2.4, p.68]

3 Smith's "Posicast" algorithm (vibration cancellation)

In June 1993, while thinking about the problem of jerk-induced vibrations in the GBT, the author consulted
one of his undergraduate mathematics textbooks to get the differential equation of a damped mass on a spring
(i.e., equation (3) on p.21), and noticed the following discussion of the undamped case [Hil62, pp.68-71]:

u[p.68] ..we take as a simple example the case of forced vibration of a mass m attached to a spring
with spring constant k.. If the applied force is f{t) and if no damping is present (Figure 8), the
differential equation of motion is

d2x
m-^ + kx = f{t) (8)

.. [p.70] If a constant force f(t) = A is applied when t > 0, there follows.. [Laplace Transform
derivation omitted] and hence..

A
x =

ma;, (1 — cos WQ*)- (9)

Thus, in this case, the mass oscillates with its natural frequency between the points x = 0 and
s — lAjiJ^ = 2A/k, when damping is absent.

If constant force is applied only over the interval 0 < t < to, and no force acts when
t > to, there follows., [another Laplace Transform derivation omitted] [and] hence we have,
when 0 <t <to,

A
x =

mui
(1 — cosuot); [same as (9)]

and, when t > to, ..
2A. . uJoto. . ,. £<K

X = T^ "T")smu}0^ ~ ~2)*

(10)

(11)

Thus, while the force acts (0 < t < to), the mass oscillates at its natural frequency, with amplitude
A/k, about the point x = A/k; however, after the force is removed (t > to), the mass oscillates
about the point of equifibrium (x = 0), at the same frequency, but with an ampUtude ^ sin |wo£o-
If to = ~ = T,8 where T is the period of the natural mode of vibration, then x = 0 when t > to,
so that the mass returns to its equilibrium position as the force is removed, and then remains at
that position.."

The idea of that last sentence is that when the force ends at t = to, it creates a impulse which is equal and
opposite to the impulse created by the initial force transient at t = 0, and that if the delay is exactly one
vibration period the two impulses will cancel. The author noted in his logbook [1993-06-04] the "..idea of
applying a precisely timed and calibrated negative impulse to stop a vibration." One month later, at the
end of notes about jerk-limited trajectories, the author again noted [1993-07-08] that "..it may be possible

8The second term of (11) becomes SUITT = 0 in this case (actually, it will be zero for any to = nT, with n = 2,3,...).

GBT Memo 203 Jerk-Minimizing TTajectory Generator in C Page 25

■D

-0.2

-0.4 -

jmTylerA fastest 4.5 s
10x

jmSvH3 fastest 6.9 s
100x

jmTylerA cancellation for 6.0 s
100x

-0.6
10

t[s]

Figure 9: Jerk cancellation with precisely timed (T = 6P) jmTylerA damped trajectory

to choose a jerk value such that duration of acceleration impulse is a multiple of fundamental period,
oscillations cancel out."

and

Other people associated with the GBT project were thinking the same general idea. In 1995, von Hoerner
published a GBT Memo [vH95] in which he demonstrated vibration cancelling for step motions with durations
of an even number of vibration cycles. Figure 9 is similar to a simulation described by von Hoerner [vH95,
Fig.2] in which the duration of the trajectory is six times the vibration period (von Hoerner's case was
undamped, whereas this one has some structural damping). The notable fact is that the vibration level
after the precisely timed trajectory completes is much less than an arcsecond - it is effectively zero! Two

26 Page Jerk-Minimizing IVajectory Generator in C GBT Memo 203

(a)

i m f
! ! >

ri ! !

w

(b)

(c)

(d)

-—o

W

Figure 10: A travelling-crane version of Smith's 'Posicast' concept8

trajectories from Figure 7 [p.23] are plotted again here as a reference. The jmTylerA trace is the fastest
possible trajectory (4.5 s) for the parameters of the problem. We see that its jerkiness excites vibrations
during the motion which persist after the trajectory ends. A subsequent memo by von Hoerner [vH96]
advocated use of higher-order sinnt acceleration trajectories analogous to those advocated by Tyler to
further minimize jerk. The figure shows an example of a trajectory computed with the jmSvHS function
(sin3t); we see that although it excites less vibration than does jmTylerA (note 100 x scale for residuals
versus 10x), it cannot compete with the exact-timing technique, which completely cancels the vibrations.

In September 1998 the author read Andersen's MMA Memo 231 [And98], which is concerned with the
problem of minimizing vibrations in the ALMA [Atacama Large Millimeter Array] antennas when they
make "fast switching" motions, 1.5° in 1.5 s. (The ALMA problem is mathematically identical to the GBT
problem, of course.) Andersen showed a simulation of a step trajectory computed as a convolution with
several impulses, and advocated use of this sort of technique in the ALMA project to improve response time
by cancelling vibrations. Andersen cited a considerable number of papers on impulse cancellation in his
memo. Although most of these papers were not readily available to the author, it was easy to do a Web
search on several of the author names, which led to retrieval of copies of many of their papers (with their
own citations) and thereby to discovery of the full literature and history of the subject. In particular, the
author first learned of the "Posicast" algorithm from these citations.

The earliest published reference to the idea of using impulse cancellation for control of machinery was by
Smith [Smi57].10 In addition to his 1957 paper, Smith also published a book in which the concept is
thoroughly discussed; he says [Smi58, p.332] that 'the [required] control motion is like casting a fly; hence
the name "positive cast," or Posicast, control.' In Figure 10 he illustrates the concept for the case of

9from [Smi58, Fig. 10-18, p.332]
10The Hildebrand book cited earlier [Hil62, pp.68-71] was a revision of an earlier Hildebrand book [Hil48]; the exact same

impulse cancellation derivation appears in [Hil48], which shows that the basic concept existed before Smith's work.

GBT Memo 203 Jerk-Minimizing IVajectory Generator in C

4.1

Page 27

1 *-&

Figure 11: Smith's schematic of the "Posicast" system concept ii

"Posicast control of a pendulum position through force application to the suspension only,
(a) Initial position, (b) Control computer takes half of a unit input step and move the support
instantly to the mid-point m. Support remains fixed for one-half period, (c) Maximum swing of
pendulum weight with support still fixed at mid-point m. (d) Support suddenly moved to the
final position / directly above the maximum swing point." [Smi58, Fig.10-18 caption, p.332]

Smith's Posicast concept has been implemented for at least one astronomical application: the secondary
mirror of an infrared telescope was being driven to "chop" the beam between two points on the sky and
vibrations were being excited in the telescope structure. A Posicast controller was implemented, and it
greatly reduced these vibrations [Set94].

There are two simple forms of the general impulse-cancellation idea, which Smith called "half-cycle" and
"quarter-cycle" Posicast. The usual Posicast implementation is the half-cycle, in which there are two impulses
separated by P/2 which are convolved with the input function (jmPosicastTrajectoryO does this). Smith
[Smi58, Sect. 10-20,p.339,"One-quarter-cycle Response"] showed that three impulses, an initial positive plus
a negative at P/8 plus a final positive, with a total duration of P/4 can also be used; this is "quarter-cycle
Posicast" ([Set94] describes a quarter-cycle implementation). The author regards the even-cycle technique
[vH96] as yet another variation on Posicast, and suggests "double-cycle" as a good name. The quarter-cycle
technique requires impulses with amplitude greater than unity (1.707); in many real systems this option will
not be available. The double-cycle technique is slow and somewhat inflexible (it implicitly assumes that
the last half of the trajectory duphcates the first half). Half-cycle Posicast offers the best combination of
simplicity, generality and performance, and so it was chosen for the jmPosicastTrajectory implementation
described in the next section of this report.

The previous discussion in this section has a tutorial character, because it is intended to convey intuitive
concepts to telescope control-system programmers and astronomers who are unlikely to be familiar with
this surprising subject. A discussion intended for servo engineers would be expressed in the mathematical
notations of their discipline, and would be more general. For readers who want such a description, the author
offers the following quotation to convey the key idea:

"The frequency response [of Posicast] can also be interpreted from the s-plane plot.. The Posicast
compensating section 1+ P [see Figure 11 [p.27]] has an infinite column of complex zeroes spaced
at odd integers along the frequency scale. The lowest-frequency complex zeros are made to
coincide with the resonant poles. They cancel the poles completely from a frequency-response
viewpoint.." [Smi58, p.334]

Achieving low residual vibration levels with Posicast depends on accurate knowledge of period P and damping
ratio C- In the case of the GBT, we will have a number of accelerometers and a 2-axis "quadrant detector"

11 from [Smi58, Figure 10-24a, p.338] "Posicast control of a lightly damped feedback system.. Statement of best control as an
operation on the input signal.."

28 Page Jerk-Minimizing Trajectory Generator in C GBT Memo 203

which will be used to monitor the vibrational states of the important modes of the structure continuously;
we will know P and £ at all times and therefore Posicast will be the optimum algorithm for our application.
One possible motivation for extensions to Smith's Posicast idea is that these two critical parameters are not
known well enough (or else they vary) in many other systems. Readers interested in exploring extensions
and generalizations of "command shaping" along these lines are advised to consult the following URLs:12

http://www-mit.mit.edu/shaping/www/dates.html
http://www-mit.mit.edu/shaping/www/onlinepapers.html
http://www-mit.mit.edu/shaping/www/othershaping.html

3.1 jmPosicastTrajectory

The argument list of this C function is identical to that of jmCalcTrajectory (Section 2.1 [p.4]) except for
the addition of arguments P G and zeta[]:

enum jmErrorCodes jmPosicastTrajec tory(/* returns enum code on error */
enum jmCal c mode, /* jmFastest,jmSpecifyTime,.. */
enum jmFunct funct, /* jmTylerA,jmTylerB,.. */
double dt. /* time step, e.g. 0.1 s */
int nAxes, /* num axes for p0[] ,a_max[] ,etc */
double p0[], /* initial position */
double v0[], /* initial velocity */
double pfC], /* final position */
double vf[], /* final velocity */
double af[], /* final acceleration (jmTylerC) */
double tf, /* time for pf+vf+af target traj */
double v_max [] , /* +/- limit for velocity */
double a_max [] , /* +/- limit for acceleration */
double PCI, /* period of resonant mode */
double zeta[] , /* damping ratio of resonant mode */
double ♦timelnterval, /* ptr to total trajectory time */

The P [] argument in the current implementation of this algorithm supports only one period per axis. The
Posicast concept works for more than one period [Smi58, p.344, "Every pole of the system must have a zero
superimposed"]. It should be feasible to add a P2[] argument to jmPosicastTrajectoryO to specify a
second period for each axis, and to implement it by a convolution of the first-period trajectory by a pair of
impulses separated by P2/2 (a zeta2[] argument would also be added, of course.) This development effort
has been deferred until we have operational experience with the current single-period implementation.

/* jmPosicastTrajectory.c Command-shaping trajectory generator algorithm
1999-08-25: D.Wells, NRAO-CV, cloned from jmCalcTrajectory.c
1999-09-04: velocity/acceleration before/after corrections added.
1999-12-14: Posicast for accelerated-targets works now
1999-12-17: jmFastest and nAzes>l work now
*/

[GNU General Public License copyright notice omitted;see http://www.gnu.org/copyleft/gpl.htmiy

#include "jmlnclude.h"
12Otto J. M. Smith has a personal Web page, which mentions his invention of the Posicast technique, but which is more

concerned with promoting his technique of operating three-phase motors on single-phase power:
http://www.wenet.net/"ottojms/indexd.htmlthistory

GBT Memo 203 Jerk-Minimizing Trajectory Generator in C Page 29

enum jmErrorCodes jmPosicastTrajectory(

enum jmCalc mode

/* returns enum code on error */

/* jmFastest,jmSpecifyTime... */

/* jmTylerA,jmTylerB,.. */

/* time step, e.g. 0.1 s */

/* num axes for pOC] ,a_maxn ,etc */

/* initial position */

/* initial velocity */

/* final position */

/* fined velocity */

/* final acceleration (jmTylerC) */

/* time for pf+vf+af target traj */

/* +/- limit for velocity */

/* +/- limit for acceleration */

/* period of resonant mode */
/* damping ratio of resonant mode */
/* ptr to total trajectory time */

struct jmPS **pTS) /* return ptr to private struct */

enum

double

int

double

double

double

double

double

double

double

double

double

double

jmFunct funct

dt
nAxes

pOD
vOC]
pfD
vf[]
afD

tf
v_maxG
a_maxQ

PD
zeta []

double *timelnterval

int status, i, j, k, k_trial, k_first, k_total, i_save;
double T, t, p, t_start, p_start, p_half, v, a, T_save, dtp, td,

Tq, pe[MAXNAXES], ve[MAXNAXES], ae[MAXNAXES], t.impulse,
t_before, t_after, delta_time[2], impulse[2],
p0q[l], v0q[l], pfp[l], vfp[l], pfpq[l], vfpq[l];

const double eps = le-8;
struct jmPS *q, qTrial;

if (mode != jmTrial) i
if ((0>=nAxes)I I(nAxes>MAXNAXES)) return(jmpNAxesError);

if (dt <* 0.)

if (v_max[0] <= 0.)

if (a_max[0] <= 0.)

if (fabs(v0[03) > v_max[0])

if (fabs(vf[0]) > v_max[0])

if (fabs(af[0]) > a_max[0])

if (P[0] < 0.)

if (zeta[0] < 0.)

return(jmpNegDtError);

return(jmpNegVmaxError);

return(jmpNegAmaxError);

return(jmpVOBigError);

return(jmpVfBigError);

return(jmpAfBigError);

return(jmpNegPOError);

return(jmpNegZetaError);

E21

E22

E23

E24

E25

E26

E27

E28

Step 21 One axis, or more than one?

Tyler's three-region algorithm and Smith's Posicast algorithm are for a mechanical motion
in one variable, or "axis". If the problem has more than one axis our technique will be to
first determine, by calls to this function for each axis in the jmFastestTime mode, which
axis is going to be take the longest time, and then to call this function for each axis in the
jmSpecifyTime mode (see Step 29 [p.33]).

if (nAxes == 1) {

Step 22 Is period argument nonzero?

If period P [0] is zero, Posicast algorithm does not apply, and we can simply execute function
jmCalcTrajectoryO with mode and return whatever status it returns.

if (P[0] ==0.) return(jmCalcTrajectory(mode, funct, dt, nAxes,
pO, vO, pf, vf, al, tf, v_inax, a_inax,
timelnterval, pTS));

30 Page Jerk-Minimizing Trajectory Generator in C GBT Memo 203

What is the value of argument mode? The actual computation of a trajectory occurs only for the case
where mode is jmSpecifyTime. For the jmFastest and jmFastestTime modes we search for the fastest
feasible trajectory; code for these modes appears later in this C function, at Step 27 [p.32].

switch(mode) {

case(jmSpecifyTime):

Mode jmSpecifyTime will malloc 0 and initialize an instance of the private data object struct jmPS
and return a pointer to it. It will then calculate the trajectory and return it in this struct.

if ((status = jmAlocTrajectory(pTS, jmAlocAndlnit))
!= jmNoError) return(status);

case(jmTrial): /* private mode used by jmFastestTime ft jmFastest */
case(jmNoAloc): /* private mode used by nAxes>l */

T * *timelnterval;
(*pTS)->n_T = floor((T / dt) + eps);
/* T must be a positive integral multiple of dt: */

if ((T <= 0.) II

((fabs(T-(dt*((*pTS)->n_T)))/dt)>eps)) return(jmpBadTError); E30

Step 23 Prepare timing and impulse parameters

The Posicast method uses two impulses of nearly equal amplitude separated by half the period:
the amplitude of the trajectory is divided into two parts and the second part is delayed by half
a cycle of the resonance. The relative weights of the two parts depend on the damping [Smi58,
p.332-3]. If u(t) is the input trajectory, the output is computed as Au(t) + Bu(t — P/2) with
A+B = 1 and ^ = e~,r'*. This implementation uses 0±P/4 for the times of the two impulses;
it does this by setting delta_time [] to the time offsets of two impulses in units of the period
P[0], i.e. to (-0.25,-1-0.25). The weights of the two impulses (A, B) will be in impulse [].
Variables t_before and t-after are to be set to the lead and lag times of the convolution
(they are multiples of dt). The total time specified for the trajectory will be adjusted by
the sum of these times, and jmCalcTrajectoryO will be called to produce the trajectory for
forming the weighted sum.

/* convention is that plus time is ahead in the trajectory: */
delta.time[0] = +0.25;
delta_time[l] = -0.25;
impulse[0] = 1. / (1. + exp(-PI*zeta[0]));
impulse[1] =1.0- impulse[0];
t.before = ceil((+delta_time[0]*P[0])/dt)*dt;
t.after = ceil((-delta.time[l]*P[0])/dt)*dt;

Step 24 Compute the basic (shorter duration) trajectory

We will compute trajectory with dtp, which is dt divided by an integer. Tq is the duration of
the trajectory we will compute; note that Tq will be multiple of dt and also multiple of dtp.

dtp = dt / 4.;
Tq = (T - t_before - t_after);
if (jmTrial ftft (Tq <= 0.)) return(jmFailed);
/* Adjust starting position for t_before: */
p0q[03 = p0[0] + v0[0]*t .before;
v0q[0] = v0[0];
/* Get final position: */

if (tf == 0.0) {
pfp[0] = pf[0];
vfp[0] = vf[0];

} else { /* tf!=0 is the target-trajectory case: */

GBT Memo 203 Jerk-Minimizing Trajectory Generator in C Page 31

td = (T - tf);
pfp[0] = pf[0] + vf[0]*td + 0.5*af[0]*(td*td);
vfp[0] = vf [0] + af [0]*td;

}
/* Adjust ending position for t.after: */
td = -t.after;
pfpq[0] = pfp[0] + vfp[0]*td + 0.5*af [0]*(td*td);
vfpq[0] = vfp[0] + af [0]*td;

Special adjustment: The Posicast algorithm with o/ ^ 0 (accelerated target, using jmTylerC function)
produces a position shift in the output trajectory due to forming a weighted sum, approximately a
bisector, which does not lie on the accelerated target trajectory. This can be compensated (at least for
the case of damping £ = 0) by adjusting the commanded final position pfp[0] by the amount of the
systematic error, using13

Ofinal P
Pfinal -> Pfinal TTZ :

pfpq[0] -= (af[0] * P[0]*P[0]) / 32.;

Compute trajectory with duration Tq and spacing dtp.

q = ftqTrial;

status = jmAlocTrajectory(ftq, jmlnitOnly); /* initialize struct qTrial */

if ((status = jmCalcTrajectory(mode, funct, dtp, nAxes,

pOq, vOq, pfpq, vfpq, af, 0.,

v_max, a_max,

ftTq, ftq)) != jmNoError) return(status);

if (mode — jmTrial) return(status); /* private success return */

q->t.first = t.before; /* starting time of trajectory qTrial is not zero */

Step 25 Allocate space for arrays of PVA results

/* malloc space for pva arrays: */

if (((*pTS)->pP[0] = (double *)

calloc((*pTS)->n_T, sizeof(double)))==NULL) return(jmpPAlocError);

if (((*pTS)->pV[0] = (double *)

calloc((*pTS)->n_T, sizeof(double)))«NULL) return(jmpVAlocError);

if (((*pTS)->pA[0] = (double *)

calloc((*pTS)->n_T, sizeof(double)))==NULL) return(jmpAAlocError);
(*pTS)->nAxes = 1;

(*pTS)->t.first =0.;

(*pTS)->dt = dt;

(*pTS)->v0[0] = v0[0];

(*pTS)->pf[0] =pfp[0];

(*pTS)->vf[0] = vfp[0];

(*pTS)->af [0] = af[0];

(*pTS)->x[0] =q->x[0];

(*pTS)->y[0] =q->y[0];

(*pTS)->tl = q->tl;

(*pTS)->t2 = q->t2;

(*pTS)->t3 ■ q->t3;
(*pTS)->al[0] = q->al[0];

E31

E32

E33

13The following Mathematica code computed the formula above:
y[t_] := p + v t + (a t"-2)/2
z[t_] := b + v t + (a t"2)/2
p[t_] := (z[t-P/4] + z[t+P/4])/2
TeXForm[Simplify [Solve [p[t] == y[t] , b]]]
This derivation does not account for the differing impulse amplitudes when C 7^ 0; development of this refinement is deferred
until we have operational experience with the current implementation.

32 Page Jerk-Minimizing IVajectory Generator in C GBT Memo 203

(*pTS)->v2[0] = q->v2[0];
(*pTS)->a3[0] =q->a3[0];

Step 26 Compute output trajectory as a convolution with the two impulses

The output trajectory will begin with the t = 0 point of the trajectory computed above
(which has t_first = t.before. It will have the same trajectory added to it with a half-
period shift. The output trajectory will extend by ^P beyond the computed trajectory so
that the shifted trajectory will osculate to the specified final trajectory. The computation
proceeds by half-steps (AT/2):

for (i - 0, j ■ 0; i < (2 * ((*pTS)->n.T) + 1); i++) {
t = (*pTS)->t_first + i*(dt/2.);
/* Form the sum of the trajectory shifted by the

delta_time[] values and weighted by the impulse□ values: */
for (k = 0, p = 0.; k < 2; k++) {

t.impulse = t + delta.time[k] * P[0];
if ((status = jmEvalTrajectory(q, t.impulse, pe, ve, ae)) != jmNoError) {

return(status);
>
p += impulse[k] * pe[0];

}

The piecewise-parabolic approximation to the trajectory is computed by evaluating the trajectory at half-
steps and setting the PVA such that in each interval dt the PVA parabola passes through the starting
value, the half-step value and the final value.

if ((i */, 2) == 0) { /* at whole ticks: */
if (i > 0) {

v = (-3.*p_start +4.*p_half -l.*p) / dt;
a = (4.*p_start -8.*p_half +4.*p) / (dt*dt);
((*pTS)->pP[03)[j]
((*pTS)->pV[0])[j]
((*pTS)->pA[0])[j]

}

= p.start;
= v;
= a;

t.start = t;

*/

}
return(0); /* exit from the nAxes=l/jmSpecifyTime case */
/* (also exit here from jmNoAloc private mode) */

Step 27 Find the minimum possible time for a single axis (begin jmFastestTime section)

The binary search algorithm which follows should be an exact clone of the algorithm at
Step 11 [p.13] of function jmCalcTrajectoryO. See the comments there for the details of
this algorithm. Mode jmFastest returns not only the minimum time but also the actual
trajectory, whereas jmFastestTime determines only the minimum feasible value for T and
returns it in argument *timelnterval (with NULL returned for the trajectory pointer).

case(jmFastestTime):
case(jmFastest):
q = ftqTrial;
status = jmAlocTrajectory(ftq, jmlnitOnly);

GBT Memo 203 JerJc-Minimizing IVajectory Generator in C Page 33

E34

k_trial - Ij

k.first = 1;

k.total = 0;

k = 0;
while (k.trial > 0) { /* loop halts when division by two yields zero. */

T = (k + k.trial) * dt;

status = jmPosicastTrajectory(jmTrial, funct, dt, nAxes,

pO, vO, pf, vf, af, tf, v_max, a_max,

P, zeta, ftT, ftq);

if ((status != jmNoError) ftft

(status != jmFailed))

return(status); /* Unexpected nonzero status; return it */

k_total++;

if (k.total > 30) return(jmpBigKtotalError);

if (status — jmFailed) {

if (k_first) i
k.trial *= 2; /* First pass: keep doubling until succeed */

if (k.trial >= 1073741824) return(jmpKbigFailure); /* 2~30 */

} else {

k = k + k.trial;

k.trial /= 2;

}
} else {. /* trial time succeeded: */

T.save = T;

if (k_first) {

k = k + k.triaJ. / 2; /* First pass: set up binary search */

k.trial /= 4;

k.first = 0;

> else {

k.trial /= 2;

}

}

E35

♦timelnterval = T.save; /* return optimum time */
if (mode == jmFastestTime) {

♦pTS = NULL;
return(jmNoError); /* exit from the nAxes=l/jmFastestTime case */

}

Step 28 Optimum T is known, can compute trajectory

status = jmPosicastTrajectory(jmSpecifyTime, funct, dt, nAxes,

pO, vO, pf, vf, af, tf, v_max, a.max,

P, zeta, timelnterval, pTS);

return(status); /* exit from the nAxes=l/jmFastest case */

default: /* unrecognized jmMode value; return error code */

E36 return(jmpUnrecModelError);
} /* end of nAxes=l/jmMode switch-statement */

Step 29 Generate trajectories for nAxes>l situations

In the multiple trajectory case, if we are in jmFastest mode, we loop over the axes with
jmFastestTime mode to find which axis will take the longest time, and then we loop again in
jmSpecifyTime mode to calculate the actual trajectories. (If we are in jmFastestTime mode,
we return the time without computing the trajectories.) If we are called with jmSpecifyTime
mode we can skip the first loop.

34 Page Jerlc-Minimizing IVajectory Generator in C GBT Memo 203

y else {
switch(mode) {
case(jmFastest):
case(jmFastestTime):

T.save = 0.;
i.save = 0;
q = ftqTrial;
for (1=0; i < nAxes; i++) {

if ((status - jmPosicastTrajectory(jmFastestTime, funct, dt, 1,
&p0[i], &v0[i], ftpf[i], ftvf[i],
ftaf[i], tf, ftv_max[i], fta_max[i],
ftP[i], &zeta[i],
ftT, ftq)) != jmNoError) return(status);

if (T > T.save) {
T.save = T;
i.save = i;

>
}
♦timelnterval = T.save;

Mode jmFastestTime will return here; jmFastest continues as though mode were jmSpecifyTime:

if (mode == jmFastestTime) {

♦pTS = NULL;
return(jmNoError);

}

Create instance of private struct, do jmSpecifyTime:

case(jmSpecifyTime):

if (mode == jmSpecifyTime) i.save = 0;

if ((status = jmAlocTrajectory(pTS, jmAlocAndlnit))!=jmNoError) return(status);

q = ftqTrial;

status = jmAlocTrajectory(ftq, jmlnitOnly);

for (i - 0; i < nAxes; i++) {

if ((status = jmPosicastTrajectory(jmNoAloc, funct, dt, 1,
&p0[i], ftv0[i], &pf[i], ftvf[i],
ftaf[i], tf, &v_max[i], fta_max[i],
ftP[i], ftzeta[i], timelnterval,
ftq)) != jmNoError) return(status);

if (i == i.save) {
(♦pTS)->slowest[i] = (mode == jmSpecifyTime) ? 0 : 1;
(♦pTS)->nAxes = nAxes;
(♦pTS)->n_T = q->n_T;
(♦pTS)->t_first = q->t_first;
(♦pTS)->dt = q->dt;
(♦pTS)->tl = q->tlj
(♦pTS)->t2 = q->t2;
(♦pTS)->t3 = q->t3;

} else {
(♦pTS)->slowest[i] = 0;

}
(♦pTS)->v0[i] = q->v0[0];
(♦pTS)->pf[i] = q->pf[0];
(♦pTS)->vf[i] = q->vf[0];
(*pTS)->af[i] = (funct *= jmTylerC) ? q->af[0] : 0.;

Move pointers to PVA vectors for axis i from the internal private structure qTrial to the ♦pTS struct:

GBT Memo 203 Jerlc-Mmimizmg IVajectory Generator in C Page 35

(*pTS)->pP[i]
(♦pTS)->pV[i]
(♦pTS)->pA[i]

}
return(jmNoError);

Unrecognized mode:

q->pP[0]
q->pV[0]
q->pA[0]

default:

return(jmpUnrecMode2Error);

} /♦ end of nAxes>l/jmMode switch statement ♦/
E37

36 Page JerJc-Mimmizmg IVajectory Generator in C GBT Memo 203

1.2

-0.2

-0.4

-0.6

1 i

jmTylerA fastest undamped 4.9 s
10x

jmTylerA+Posicast undamped 5.4 s
100x

jmTylerA cancellation for 6.0 s
100x

10

t[s]

Figure 12: Jerk-cancellation with fast jmTylerA+Posicast undamped trajectory

3.2 Numerical simulations of Posicast jerk-cancelling trajectories

Figure 12 shows a fast Posicast trajectory compared with the fastest possible trajectory and with the six-cycle
cancelling trajectory. We see that, like the six-cycle case, the final vibration level for the Posicast trajectory
is effectively zero. We also see that the Posicast trajectory displays no vibration even during its acceleration
and deceleration phases. The duration of the Posicast trajectory is only one-half cycle longer than the
fastest possible trajectory; in this case it is a half second faster than the six-cycle cancelling trajectory. It is
fascinating to note that the differences between the shape of the Posicast trajectory and the shapes of the
other trajectories are nearly imperceptible, and that it has no peculiar characteristic identifiable by eye.

GBT Memo 203 Jerk-Minimizing Trajectory Generator in C Page 37

Figure 13: Three flyback-trajectories - jerk-cancellation can be faster than jerk-minimization

Figure 13 is another example of a Posicast trajectory. In this case we suppose that we are doing a raster
scan with the telescope, and that we want to move from the end of one row to the beginning of the next row
(like the "flyback" of a television monitor). Initially the telescope is at the end of a row and is moving with
a small positive velocity (0.05°/s). It must perform a negative acceleration, reach a high negative velocity,
perform a positive deceleration and arrive at the beginning of the row (0.6° length) again moving at the small
positive velocity. We see that the jmTylerB("CPP-B") trajectory does this with a residual vibration level
of about ±5 arcsec (0.13 deg x 3600arcsec/deg x 0.01 = 4.7arcsec). The jmSvHS (sin31) function improves
on this, with only about half as much vibration, but the jmTylerA+Posicast trajectory is perfect, and it
is the fastest trajectory shown! The figure shows two different Posicast trajectories: the solid curve is the

38 Page Jerk-Minimizing IVajectory Generator in C GBT Memo 203

P [deg]

-0.6
10

Figure 14: Jerk-cancellation while matching accelerated target trajectory (jmTylerC-l-Posicast)

trajectory as it is commanded, and the dashed curve is the response of the system; the difference between
the two curves is plotted with 100 x enlargement as a dashed-line curve below.

Figure 14 demonstrates an application of the jmTylerC function. The initial and final positions and velocities
are somewhat similar to those in Figure 13, but the important difference is that we have specified a final
acceleration o/ = 0.015 deg/s2 and have set argument tf ^ 0 to activate the target trajectory mode. The
constant offset in the trajectory error is simply due to constant acceleration applying force to the spring
constant (the pure jmTylerC vibrating trace with magnification lOx is offset by exactly the same amount).14

For non-equatorial-mount radio antennas, whether acquiring fast-moving spacecraft or slewing to sidereal
velocity astronomical sources, almost all targets have accelerating target trajectories, so this simulation
illustrates the usual mode of operation of this jerk-minimization trajectory generator software.

14Note that if an accelerated version of jmTylerA were implemented in jmCalcTrajectory, the Posicast algorithm could
osculate to the target trajectory even more quickly than does the jmTylerB profile used in this simulation.

GBT Memo 203 Jerk-Minimizing Trajectory Generator in C Page 39

A jmStrError — descriptions of jm-package error codes

void jmStrError(enum jmErrorCodes error, /* input error code from jm package */
char msgBuf[]) /* array into which msg is written */

void jmPerror (enum jmErrorCodes code, /* input error code from jm package */
char userMsg[]) /* short id string supplied by user */

/* jmStrError.c strerrorO and perrorO style error decoding for
Jerk-minimizing trajectory generator algorithm.
1999-11-??: original by J.Brandt, NRAO-GB
1999-12-08: adopted and extended by D.Veils, NRAO-CV

*/

[GNU General Public License copyright notice omitted/see http://www.gnu.org/copyleft/gpl.html7

#include "jmlnclude.h"
#include <stdio.h>

void jmStrError(enum jmErrorCodes error, /* input error code from jm package */
chair msgBuf D) /* array into which msg is written */

{
switch(error)

Step 41 The normal-return status codes

The jmcFailed code is returned by jmCalcTrajectoryO in the jmFastest mode when the
user specifies a total trajectory time T which is too short for the combination of position,
velocity and acceleration parameters which are supplied. This code can be returned by
calls to jmPosicastTrajectoryO, because that function calls jmCalcTrajectoryO. (Code
jmcFailed is also heavily used internally when jmCalcTrajectoryO is trying values of T in
the binary search to find the fastest possible trajectory.)

CASF(jmNoError, "Normal successful return");
CASE(jmFailed, "Specified trajectory is not feasible"); see Ell on p.8

Step 42 Codes for input argument errors

Function jmCalcTrajectoryO has many numerical input arguments which must conform to a
set of obvious conditions. Function jmPosicastTrajectoryO contains a set of input argument
tests and codes which are identical to those used in jmCalcTrajectoryO. Note: prefixes
jmc and jmp indicate codes returned by jmCalcTrajectoryO and jmPosicastTrajectoryO
respectively.

CASE(jmcNAxesError, "Number of axes incorrect"); see El on p.6
CASE(jmcNegDtError, "dt is less than zero"); see E2 on p.6
CASE(jmcBadTError, "Time is not an integral multiple of dt"); see E9 on p.7
CASE(jmcNegVmaxError, "Vmax is less than zero"); see E3 on p.6
CASE(jmcVOBigError, "Initial velocity is greater than Vmax"); see E5 on p.6
CASE(jmcVfBigError, "Final velocity is greater than Vmax"); see E6 on p.6
CASE (jmcNegAmaxError, "Amax is less than zero"); see E4 on p.6
CASE(jmcAfBigError, "Final acceleration is greater than Amax"); see E7 on p.6

CASE(jmpNAxesError, "Number of axes incorrect"); see E21 on p.29
CASE(jmpNegDtError, "dt is less than zero"); see E22 on p.29
CASE (jmpBadTError, "Time is not an integral multiple of dt"); see E30 on p.30

40 Page Jerk-Minimizing Trajectory Generator in C GBT Memo 203

CASE(jmpNegVmaxError,
CASE(jmpVOBigError,
CASE(jmpVfBigError,
CASE(jmpNegAmaxError,
CASE(jmpAfBigError,

CASE(jmpNegPOError,
CASE(jmpNegZetaError,

"Vmax is less than zero");
"Initial velocity is greater than Vmax");
"Final velocity is greater than Vmax");
"Amax is less than zero");
"Final acceleration is greater than Amax");

"Period is less than zero");
"Damping factor is less than zero");

see E23 on p.29
see E25 on p.29
see E26 on p.29
see E24 on p.29
see E27 on p.29

see E28 on p.29
see E29 on p.29

Step 43 Malloc errors

Errors of this type should not normally occur in the jerk-minimizing trajectory package; if
they do occur it indicates something drastically wrong in the operating environment.

CASF(jmaPSAlocError, "malloc error allocating A array");

CASE(jmcAAlocError,
CASE(jmcPAlocError,
CASE(jmcVAlocError,

CASE(jmpAAlocError,
CASE(jmpPAlocError,
CASE(jmpVAlocError,

"jmAlocTrajectory failed");
"malloc error allocating P array");
"malloc error allocating V array");

"jmAlocTrajectory failed");
"malloc error allocating P array");
"malloc error allocating V array");

see E15 on p.9
see E13 on p.9
see E14 on p.9

see E33 on p.31
see E31 on p.31
see E32 on p.31

Step 44 'Impossible' errors

The following codes should never occur, or at least that is the theory! The author should be
informed at dwells<8nrao. edu if these errors are seen.

CASE(jmcKbigFailure,
CASE(jmcBigKtotalError,
CASE (jmdmpossError,
CASF(jmePNullError,
CASF(jmeTSNullError,
CASF(jmfNAxesError,
CASF(jmfTSNullError,
CASF(jmhTSNullError,
CASF(jmaUnrecModeError,

"k.trial reached 2**30");
"k.total reached 30");
"Phase-space mapping error");
"Null trajectory");
"Null trajectory Object");
"unreasonable nAxes in private struct");
"private struct is NULL");
"private struct is NULL");
"Unrecognized mode value (e.g. not jmlnitOnly)");

see E18 on p.14
see E17 on p.14

see E12 on p.9

Step 45 Enum errors

The following codes should never occur because user code should include jmlnclude.h
which defines enum jmErrorCodes, and it should not be possible to compile code which calls
jmStrError with a code which is not in the list.

CASE(jmcFunctEnumError, "Unrecognized function (e.g. not
CASE(jmcUnrecFunctError,"Unrecognized function (e.g. not
CASE(jmcUnrecModelError,"Unrecognized jmMode value (e.g.
CASE(jmcUnrecMode2Error,"Unrecognized jmMode value (e.g.
CASE(jmpUnrecModelError,"Unrecognized jmMode value (e.g.
CASE(jmpUnrecMode2Error,"Unrecognized jmMode value (e.g.

default:
sprintf(msgBuf, "unrecognized error number %d", error);
break;

};

jmTylerB)");

jmTylerB)");

not jmFastest)")

not jmFastest)")

not jmFastest)")
not jmFastest)")

see E10 on p.7

see E16 on p.12

see E19 on p.14

see E20 on p. 16

see E36 on p.33
see E37 on p.35

GBT Memo 203 Jerk-Minimizing Trajectory Generator in C Page 41

/* A perrorO style message decoding scheme.

*/
void jmPerror(enum jmErrorCodes code, /* input error code from jm package */

char userMsg □) /* short id string supplied by user */
{

char errstring[JM_MAX_ERROR_MSG_LENGTH];

jmStrError(code, errstring);

fprintf(stderr, "%s : %s\n", userMsg, errstring);

}

B The include, enum and struct sections of jmlnclude.h

#include "math.h"
#include "stdio.h"

#include "stdlib.h"

#define PI 3.1415926535897932
#define JM_MAX_ERROR_MSG_LENGTH 80

enum jmFunct ijmTylerA, jmTylerB, jmTylerC, jmSvHS, jmSvH4};

enum jmCalc {jmFastest, jmFastestTime, jmSpecifyTime, /* <—public modes */

jmTrial, jmNoAloc, jmAlocAndlnit, jmlnitOnly}; /* <—private modes */

enum jmErrorCodes -(jmNoError = 0, jmFailed, jmaPSAlocError, jmcAAlocError,

jmcAfBigError, jmcBadTError,

jmcFunctF.nutnF.rror, jmdmpossError, jmcNAxesError,

j mcNegAmaxError, j mcNegDtError, j mcNegVmaxError,
jmcPAlocError, jmcTSAlocError, jmcUnrecFunctError,

jmcUnrecModelError, jmcUnrecMode2Error,

jmcVOBigError, jmcVAlocError, jmcVfBigError,
jmePNullError, jmeTSNullError, jmfNAxesError,

jmfTSNullError, jmhTSNullError, jmpAAlocError,

jmpAfBigError, jmpBadTError, jmpEvalError,
jmpNAxesError, jmpNegAmaxError, jmpNegDtError,

j mpNegPOError, j mpNegVmaxError, j mpNegZetaError,

jmpPAlocError, jmpTSAlocError, jmpUnrecModelError,

jmpUnrecMode2Error, jmpUnrecShapeError,

jmpVOBigError, jmpVAlocError, jmpVfBigError,

jmcKbigFailure, jmcAfNonzeroError, jmcBigKtotalError,

jmpKbigFailure, jmpBigKtotalError, jmaUnrecModeError};

/* Private data structure for the 'jm' package: */
#define MAXNAXES 6

struct jmPS {

int nAxes, n_T, slowest [MAXNAXES];

double t.first, dt, vO[MAXNAXES], pf[MAXNAXES], vf[MAXNAXES], af[MAXNAXES],

*pP[MAXNAXES], *pV[MAXNAXES], *pA[MAXNAXES];

double tl, t2, t3, x[MAXNAXES] , y[MAXNAXES] , /* <—debug variables */
al [MAXNAXES] , v2 [MAXNAXES] , a3 [MAXNAXES] ; /* <—debug variables */

};

42 Page

References

Jerk-Minimizing IVajectory Generator in C GBT Memo 203

[And98] Torben Andersen. A first study of MMA antenna offset performance. MMA Memo 231, NRAO,
September 1998. Abstract: "..must., offset.. MMA.. pointing by 1.5 degrees within 1.5 seconds..
To avoid structural oscillations ('ringing') after the offset, specially shaped input trajectories
must be applied.." Section 6 (Suppression of ringing) gives a simulated example of telescope
response when we '..[subdivide] a step into two. The first step excites the vibration and the second
one cancels it..' Concludes that '..a combination of shaped inputs with feedforward techniques
has a high potential and should be studied further'.

[GP95J Wodek Gawronski and Ben Parvin. Simulations of the GBT antenna with the Command
Preprocesor. GBT Memo 134, National Radio Astronomy Observatory, June 1995. '..we
present here the simulation results of the slewing of the GBT antenna with the new command
preprocessor (CPP).. developed by S. Tyler [Tyl94] at JPL.. jerk is smooth, and vibrations
are not excited., [in version B (CPP-B)] the acceleration., is of sinusoidal pattern., a =
iflmazCl — cos27ra;).. to avoid., abrupt changes in acceleration, which cause oscillations of the
antenna..'.

[Hil48] F. B. Hildebrand. Advanced Calculus for Engineers. Prentice-Hall, New York, 1948. The concept
of impulse cancellation appears on p. 78; the figure, text and derivation are effectively identical
to the version in Hildebrand's later book [Hil62]. LOC=QA303.H55.

[Hil62] Francis B. Hildebrand. Advanced Calculus for Applications. Prentice-Hall, New York, 1962. This
was an undergraduate textbook used by D.Wells circa 1963. The concept of impulse cancellation
appears on p.71, in the midst of a discussion of the application of Laplace Transforms to the
solution of linear differential equations. This book is a revised version of an earlier book [Hil48].

[LW93] R. Lacasse and T. Weadon. GBT dynamics. GBT Memo 104, NRAO, April 1993. This report
reviews beam-settling-time (jerk-induced-vibration) results from simulations of raster-scanning
observing modes performed by the GBT contractor [PCD93].

[Mel93] Jeff Mellstrom. Comments on R. Lacasse memorandum. JPL interoffice memorandum 3324-93-
040, in response to [LW93]: "..fine tuning [of a servo system] for a specific experiment is [not]
worthwhile because values that work well for one experiment under a given set of operating
conditions may cause problems if those conditions change, or for another experiment.. JPL has
developed a new concept., trajectory preprocessor modifies the antenna commanded position such
that the servo system always operates in a linear regime. Since the system is linear, global stability
is assured, and performance is easily quantifiable., suggest.. NRAO.. use a similar algorithm",
April 1993.

[PCD93] PCD. Final analysis report for the Green Bank Telescope control system. Technical Report
for contract AUI-1059, Precision Controls Division of Radiation Systems, Inc. [now COMSAT],
Richardson, Texas and Sterling, Virginia, February 1993. Section 6.3 [p.75] summarizes numerical
simulations of the time required to scan a 10 x 10 raster. It is shown that vibrations excited by
the steps can be reduced by reducing deceleration (with the amount of the reduction "tuned"
for the step size), but this will increase the total time required.

[PFTV88] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling.
Numerical Recipes in C. Cambridge University Press, 1988. LOC=QA76.73.C15N865(1988),
http://cfata2.harvard.edu/numerical-recipes/.

[Sch91] Johann Schraml. Smooth tracking commands for periodic position updates. Memo [limited
distribution], National Radio Astronomy Observatory, September 1991. Discusses acceleration
profiles for optimum motion commands.

GBT Memo 203 Jerk-Minimizing Trajectory Generator in C Page 43

[Set94] Raja V. Sethupathi. Improvement of transient response of vibrating secondary mirror of infrared
astronomy telescope (IRAT). In Larry M. Stepp, editor, Advanced Technology Optical Telescopes
V (Meeting held 1994-03-13 Kailua,HI,USA), volume SPIE Proceedings 2199, pages 1034-1045.
SPIE (The International Society for Optical Engineering), 1994. "..the problem of improving
the transient response., with square input is considered., another scheme, called Posicast control,
which involves only modification of the input signal, is designed and implemented. The transient
response is found to improve drastically..". LOC=QB88.I56(1994).

[Smi57] Otto J. M. Smith. Posicast control of damped oscillatory systems. Proceedings of the IRE, pages
1249-1255, September 1957. The journal is now Proceedings of the IEEE, LOC=TK5700.I6.

[Smi58] Otto J. M. Smith. Feedback Control Systems. McGraw-Hill Book Company, N.Y., 1958. The
"Posicast" input for a step function motion is described in pp.331-346: "Posicast control of an
oscillatory system divides the input into two parts., one-half cycle.."; LOC=TJ216.S5.

[Tyl94] S. R. Tyler. A trajectory preprocessor for antenna pointing. [JPL] Telecommunications and
Data Acquisition Progress Report 42-118, April-June:139-159, August 1994. Abstract: "A
trajectory-preprocessing algorithm has been devised which matches antenna angular position,
velocity, and acceleration to those of a target. This eliminates vibrations of the antenna structure
caused by discontinuities in velocity and acceleration commands, and improves antenna-pointing
performance by constraining antenna motion to a linear regime..".

[vH95] Sebastian von Hoerner. Fast pointing change and small oscillation. GBT Memo 132, National
Radio Astronomy Observatory, June 1995. Numerical simulations demonstrate vibration
cancelling for step trajectories with durations of an even number of vibration cycles.

[vH96] Sebastian von Hoerner. Preventing oscillations of large radio telescopes after a fast stop.
GBT Memo 152, National Radio Astronomy Observatory, May 1996. '..it is shown that these
oscillations can be prevented if the acceleration driving the telescope has the form A{t) = sinn t,
and for a duration measured in multiples of the oscillation wavelength..'.

[Woo95] David Woody. Fast position switching of resonant structures. In an Email message sent
on 1995-07-07 to P. Napier, J. Cheng, J. Payne and <lugtenQtoby.berkeley.edu>, Woody
<dpwQmm. ovro. caltech. edu> said, '..the trajectory I have come up with has a gaussian velocity

profile, v{t) = T~/^^
t0 , where to is the characteristic gaussian width and S is the distance

from A to B. The position vs. time is the integral of the velocity., the Error Function., position
/jt\l-45

asymtotically approaches the final position with a deviation given by Ap(t) « 10 wo; . This
gives excellent settling characteristics..', July 1995.

