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The large diameter of the GBT and the telescope’s low elevation limit conspire with high-
frequency observations and the Earth’s atmosphere to produce refraction that is not constant 
across the telescope’s aperture, which in turn produces an effective optical aberration that is 
similar to astigmatism. I provide arguments for the existence and magnitude of the effect and 
some potential consequences. For example, the atmosphere-induced aberration (AIA) will 
elongate in elevation the images of point sources by ~4.3" when observing at an elevation of 
10° under median refraction conditions, and a few times this on not-too-rare occasions and at 
lower elevations. The range in magnitude of the effects of AIA is largest when conditions are 
suitable for high frequency observing. Metrology systems that measure the surface directly, 
like photogrammetry, should not set the surface to a perfect paraboloid at low elevations as 
that would be detrimental to performance. I provide models on how to adjust the surface to 
counter AIA as well as the expected gain loss and change in beam shape if the surface is not 
adjusted. For example, when observing below 20°, the surface needs to deviate from a 
paraboloid by over 1 mm 75% of the time. The current gravitational Zernike model, 
determined from observations through the atmosphere of astronomical sources, probably 
removes much of the effects of AIA but only for typical refraction conditions. Since the 
magnitude of AIA is weather dependent, but the current gravitational Zernike terms are not, 
we may want to develop a weather-dependent active surface to improve performance at high 
frequencies and low elevations.

Introduction

Consider a telescope that is transmitting when pointing at
a low elevation as in this exaggerated sketch. A perfect
paraboloid produces rays which leave the dish parallel to
each other. The rays leaving the bottom of the dish travel
through more atmosphere than the rays leaving the top.
Since the atmosphere’s index of refraction is dependent
upon air density, which falls with height, rays leaving the
bottom of the dish go through layers of air with the
highest refraction. The lower rays are thus typically bent
more than the upper rays. Thus, rays which leave the dish
parallel to each other exit the atmosphere no longer
parallel, diverging by the angle R.



Consider the principle of reciprocity: rays from distant, point-like objects are parallel to each other 
when they hit the Earth’s atmosphere. Yet, due to the different distances and refraction the rays 
experience, rays will no longer be parallel when they hit the dish. This is equivalent to an elevation-
dependent phase gradient across the aperture plane, similar to that for an astigmatic surface, that will 
elongate a point source in the elevation direction.

To correct for this phase gradient, the telescope’s surface could be altered from that of a perfect 
paraboloid. In essence, the GBT’s active surface needs to make the dish astigmatic, in the reverse sense
of what the atmosphere introduces, in order to produce a point-like image from a point source. Since 
refraction is greatest at low elevations, the magnitude of the required surface adjustments is highest for 
low elevation observing. And, since the change in index of refraction across the aperture is dependent 
upon the gradient of dry air and water-vapor density near the Earth’s surface, the magnitude of the 
surface adjustments is also weather dependent.

Approximate Magnitude of AIA

To estimate the magnitude of AIA, I will use Liebe and Hopponen (1977) formula for the index of 
refraction, n0:

(n0−1)=10−6⋅
103.49⋅Pdry

T
+

86.26⋅Pw

T
+

4.958 x 105⋅Pw

T 2 . (1)

T is the air temperature in K, Pw is the partial pressure of water vapor (in mmHg), and Pdry is the total 
barometric pressure minus the partial pressure of water. A typical value is n0-1 ~ 3∙10-4. 

At low elevations, one cannot use the plane-parallel approximation for the atmosphere to derive the 
total refraction. Instead, I use the model in Maddalena (1994) and refined in Maddalena et al (2002).

Δ E=Eobs−ETrue=C⋅(no−1)⋅g (ETrue) . (2)

C ~ 2.35∙105" and g is equation 4 from Maddalena et al (2002). For typical weather conditions ΔE ~ 
550” for E=5°and ΔE ~ 320” for E=10°, with 15% variations due to weather. To determine a rough, 
theoretical approximation for R, the difference in angle between rays hitting the bottom and top edges 
of the aperture, I will assume the impossible case for Green Bank of Pw=0. Substitute equation 1 into 
equation 2, and take the derivative to derive:

R=ΔE⋅(Δ Pdry/Pdry−ΔT /T ) . (3)

ΔPdry and ΔT are the difference in P and T between the bottom and top of the GBT when it is tilted to an
observing elevation of E. As an example, for E=10°, the change in height from the lower to upper edge 
of the GBT aperture is 0.1 km∙cos(E) = 0.098 km. Using the ground-level pressure lapse rate (90 
mmHg/km) and temperature lapse rates (6.5 K/km) for the ‘standard’ model of the atmosphere, ΔPdry ≈ 
9 mmHg and ΔT ≈ 0.65 K. I will use for Pdry and T the average ground-level values (660 mmHg and 
285 K, respectively) for Green Bank. Thus, R ~ 0.011∙ΔE. Since ΔE ~ 320 for E=10°, rays at the lower 
edge of the dish will arrive roughly R≈3.5” higher in elevation than those arriving at the vertex. 
Repeating this estimate for E=5° gives R≈6.1”. If the GBT were a perfect paraboloid, at low elevations,
point sources would be noticeably elongated in elevation when observing at high frequencies.



Variations Of AIA Due To Refraction Conditions

So far I have ignored water vapor and 
weather variations. The CLEO forecast 
application I developed and its associated 
web pages have provided information for R 
for about two decades (Maddalena, 2008 and
2022). The National Weather Service 
provides Pdry, T, and Pw in ~70 layers above 
the observatory, with about three layers 
spanning the 100 m height of the GBT. 
CLEO derives an estimate of the derivative 
of n0-1 with height from the lowest layers 
using the high-accuracy equation of Froome 
and Essen (1969). The application then ray 
traces through a non-plane-parallel 
atmosphere using equations 19 and 20 from 
chapter 3 of Smart (1977). The CLEO 
application can generate tables of the 
forecasted value of R for any elevation over 
any range of dates from April 2004 (which is
when I started the forecast archive) to a few 
days into the future.

The top panel of Figure 1 shows the results 
from CLEO for a 100 m aperture and for 
E=10° for the full year of 2020. The bottom 
panel is the same as the upper but with the y-
axis expanded around 5". Figure 1 shows 
that there are times when weather conditions 
produce very large and even sometimes 
negative values for R. The extreme values of 
R are at times when the temperature and 
water density lapse rate near the ground is 
much steeper, much shallower, or even 
inverted from that of a standard atmosphere. 
(If we think of the GBT as a transmitter, R<0
indicate that the rays leaving the bottom of 
the dish will eventually cross the rays 
leaving the top of the dish.)

Figure 1: Values of R between the vertex and lowest 
panel of the GBT at an elevation of 10° for the year 
2020. Lower panel is an expanded version of the upper.

Figure 2 shows the statistics for R for the year 2020 and E=10°. The dry-air estimate from the previous 
section, 3.5", lies just below the median value. Note that very few instances have R ≈ 0, which is the 
only times when the GBT should be a perfect paraboloid.

Figure 2: Statistics for R between the vertex and lowest
panel of the GBT for E=10° for 2020.



The scatter diagrams in Figure 3
(for 2020 and E=10°) illustrate
that large variations in R occur
mostly in weather conditions that
are relevant for high-frequency
observing. High-frequency
observing is best performed when
winds are low, when there is little
probability of precipitation, under
low cloud cover, and when the
precipitable water is low. Figure 3
show that |R| tend to be highest
when there are low winds and low
probability of precipitation. R does
not seem to be related to the
presence or absence of clouds. The
extreme positive values for R is
the same regardless of the value of
precipitable water.

Magnitude of the Surface Corrections Needed to Compensate for AIA

If a panel is adjusted in the z direction in the
sketch to the right, the angle of incidence
(α=θ1+θ2) changes. Since the angle of reflection
equals the angle of incidence, shifting a panel in
the z direction changes the direction of the exiting
ray. To correct for AIA, we would need to change
the direction of the exiting ray by the appropriate
angle for the observing elevation, weather
conditions, and panel location on the dish. Thus,
we need the relationship between a change in the
setting in the z direction of any panel with a
change in α. The equation for a parabola is:

z= x2

4 F

F is the telescope’s focal length (60m). Since we
want to alter only the elevation profile of the
surface, leaving the cross-elevation profile a perfect paraboloid, x is the distance from the vertex 
projected onto the axis of symmetry of the dish. It is not the linear distance of a panel from the vertex. 
The slope of the above equation and trigonometry give the angles in the sketch:

Figure 3: Relationship between R at E=10° for 2020 versus 
weather parameters that are typically used to determine 
whether high-frequency observing should be scheduled. The 
range of values for R is largest when conditions are suitable for
high frequency observing.
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Taking the derivative of α with respect to z gives, after some work:

Δ z=−x (1+ x2

4 F2 )Δα

The output of the CLEO forecast application, r, is in units of arcsec per meter of aperture, projected 
vertically. So, Δα=x⋅R /D=x⋅r⋅cos (ETrue) and in units of meters for x and F and mm for Δz:

Δ z(mm)=−x (m)2( 103

206265)(1+ x2

4 F2)⋅cos (E)⋅r("/m)

ϵ (mm)=−x (m)2( 103

206265)⋅cos (E)⋅r("/m)

. (4)

Here Δz is an offset in the surface in the axial direction while ϵ=Δ z /(1+ x2/(4 F2)) is the offset in the 
aperture plane that, for example, one uses in the modeling of beam profiles (equation 12a, Ruze, 1966).

As an alternative to using forecasts, two high-accuracy weather stations (Maddalena 1994), one 
mounted at the vertex, the other at the lower edge of the dish, could determine accurately the difference
in index of refraction between the vertex and lower edge. Then, Δα=x⋅C⋅g(ETrue)⋅(n0−nv)/ D and:

Δ z(mm)=− x2

D ( 103

206265)(1+ x 2

4 F2)⋅C⋅g(ETrue)⋅(n0−nv)

ϵ (mm)=− x2

D ( 103

206265 )⋅C⋅g(ETrue)⋅(n0−nv)

. (5)

With sufficient accuracy, one can use the constant C and function g from Maddalena et al (2002) and 
either equation 10 or 11 from Maddalena (1994) to derive from weather station data the indices of 
refraction at the lower edge (n0) and vertex (nv).

I can now estimate the range of surface adjustments for different observing elevations and weather 
conditions. The CLEO application provided for all of the year 2020 values of r at various elevations. 
From these I determined the median r values as well as values for 10%, 25%, 75%, and 90% percentile 
refraction conditions. I then converted these to ε for x=100 (i.e., the lower edge of the dish) using 
equation 4 to produce Table 1. For example, to remove the effects of AIA below 20° and under almost 
all weather conditions, the aperture plane will need to be adjusted from a paraboloid by over 1 mm. The
numbers in parenthesis for E=15° are for instances when weather conditions were suitable for high-
frequency observing (precipitable water < 15 mm, winds < 5 MPH, cloud cover and precipitation 
probability < 20%) and indicate that the required range of surface adjustments will be larger for high-
frequency observations than for low frequencies. The last column, the hourly change in ε, might be 
useful for determining the rate for altering the surface to maintain a desired surface accuracy. One can 
also use the table to estimate the derivative dε/dE to determine if the surface needs to be adjusted 
during scans as sources rise or set or when making large on-the-fly maps.



Table 1: ε in mm for lower edge of the GBT. Multiply by 1.694=1+1002 /(4⋅602) to derive Δz. The values 
in parenthesis are for conditions suitable for high-frequency observing.

E(°)
Percentile Refraction Conditions dε/dt

(mm/hr)10% 25% Median 75% 90%
5 -2.30 -3.00 -3.84 -5.30 -7.79 0.20
10 -1.25 -1.63 -2.09 -2.88 -4.24 0.11

15
-0.83

(-0.83)
-1.14

(-1.13)
-1.39

(-1.78)
-2.31

(-3.08)
-3.39

(-6.30)
0.07

20 -0.60 -0.78 -1.00 -1.38 -2.02 0.05
30 -0.35 -0.45 -0.58 -0.80 -1.19 0.03
45 -0.17 -0.21 -0.28 -0.38 -0.55 0.01

The historical goal of metrology systems (e.g., photogrammetry and laser-ranging systems) is to set the 
surface to a perfect paraboloid at all elevation. Table 1 illustrates the weather- and elevation-dependent 
range of adjustments by which metrology systems need to set the aperture plane different from perfect 
to produce a surface plus atmosphere that gives the best performance. Even at the rigging angle, the 
GBT surface should deviate from a perfect paraboloid by ~0.2 mm.

The large values in Table 1 suggest that AIA is severely reducing the gain of the GBT for many weather
conditions and at moderately low elevations. However, there are two reasons why this is not the case. 

First, as described in Maddalena et al (2014), we used AutoOOFs taken over a wide range of elevations
and weather conditions to derive the gravity terms to the surface model. Since the measurements 
included the effects of AIA, the resulting Zernike coefficient for terms with a shape similar to 
elevation-oriented astigmatism are compensating for AIA under ‘typical’ weather conditions. If enough 
weather conditions were included, then one should use Table 2, which gives the difference between the 
individual columns in Table 1 and the column for median values.

Table 2: Approximate ε in mm for the lower edge of the dish, assuming the current gravity Zernike 
model has altered the aperture for ‘median’ weather conditions. The values in parenthesis are for 
conditions suitable for high-frequency observing.

E(°)
Percentile Refraction Conditions

10% 25% Median 75% 90%
5 1.54 0.84 -- -1.45 -3.94
10 0.84 0.46 -- -0.79 -2.15

15
0.56

(0.95)
0.25

(0.65)
--

-0.92
(-1.30)

-2.01
(-4.52)

20 0.41 0.22 -- -0.37 -1.02
30 0.24 0.13 -- -0.22 -0.60
45 0.11 0.06 -- -0.10 -0.28

Second, AIA introduces an effective large-scale shape to the aperture plane, which renders the Ruze 
equation unsuitable for determining the loss in gain. Instead, one must create theoretical beam profiles. 
The standard equations for modeling the normalized, inner beam profile, P, and bore-sight gain, G/G0, 
when there are small errors in the aperture plane, are:



P(ΔxE,ΔE)=|∫
0

2 π

∫
0

1

Ea (ρ , Θ) e2π i [ϵ +ρ D(Δ xE⋅cos Θ+ ΔE⋅sinΘ)]/λ ρ dρ dΘ|
2

÷|∫
0

2π

∫
0

1

Ea(ρ ,Θ) ρ dρ dΘ|
2

G /G0=|∫
0

2π

∫
0

1

Ea(ρ ,Θ) e2 π i ϵ/ λ ρ dρ d Θ|
2

÷|∫
0

2π

∫
0

1

Ea(ρ ,Θ) ρ dρ d Θ|
2 (6)

λ is the observing wavelength, ΔxE and E are the sky coordinates in the cross elevation and elevation 
directions, ε is from either equations 4 or 5, Ea is the square root of the feed illumination pattern (zero 
beyond the edge of the aperture), and Θ is the azimuthal coordinate and ρ is radial coordinate 
(normalized to 1) across the aperture plane from its center. Since the results are weakly dependent on 
the feed illumination pattern, and the range of illumination for the current suite of receivers is limited, I
assume the common value for Gaussian edge taper of -13 db. Figure 4 gives P, G/G0, and the 
elongation of the beam in elevation for a range of values of |εLowerEdge|/λ models.

Consider observations at λ=2.6 mm and E=15º (e.g., the Galactic Center), and with an AutoOOF source
at a high-enough elevation that its results were not appreciably influenced by AIA. If the observations 
can tolerate no more than a 5% gain loss, then Figure 4 and equation 4 give maximum allowable values
of |εLowerEdge|/λ<0.7, |εLowerEdge|< 1.8 mm, and |R|<3.7". Assuming the Zernike gravity model compensates 

Figure 4: Top row are theoretical beam maps for |εLowerEdge|/λ=0.5, 1.0, 1.5, and 2.0. The axes are in 
units of λ/D radians and the range in the color scale is -30 to 0 dB, relative to the bore sight gain of a 
perfect aperture. The lower graphs show the loss in gain and broadening of the beam profile at the 
half-power points in the elevation direction. If a metrology system sets a surface to be a perfect 
paraboloid and does not take into consideration AIA, then the definition of εLowerEdge is that of Table 1. 
Or, if the gravity Zernike model alters the surface for median refraction conditions, but not the 
weather-dependent changes in ε, then the definition of εLowerEdge is that of Table 2.



for the median refraction conditions, the statistics that went into Table 2 for E=15º indicate that one 
would have an unacceptably high loss in gain ~35% of the times when conditions were otherwise 
suitable for high-frequency observing. 

Discussion and Summary

The aim of metrology systems like photogrammetry are to set the surface to a perfect paraboloid at all 
elevations and all conditions. However, to remove AIA requires the elevation profile of the surface to 
become less parabolic as the telescope observes close to the horizon while maintaining the cross-
elevation profile. As Table 1 shows, the deviation from a paraboloid is weather dependent and is many 
mm at low elevations.

We might consider adding a term to the gravity model that matches exactly the way in which the 
aperture plane needs to be adjusted. If we instead want to use Zernike terms, then a multi-regression 
least-squares fit for the 18 terms in the Zernike gravity model shows that  equation 4 is fit perfectly 
when the coefficient for vertical astigmatism equals 0.05103·εLowerEdge and the coefficient for focus 
equals -0.03608·εLowerEdge .

We could increase the time and productivity of high-frequency, low-elevation observations if we were 
to develop a way to use the measured or forecasted value of εLowerEdge to adjust the surface. Instead, we 
could use εLowerEdge as a criteria for when to safely schedule such observations. However, the statistics of 
Figure 3 suggest that using εLowerEdge  as a scheduling criteria might reduce significantly the number of 
hours these kinds of projects could otherwise be scheduled. 

There are a number of observable consequences of AIA:

• Beam profiles will appear to be elongated in the elevation direction, with the elongation 
increasing with decreasing elevation and increasing |R|.

• Some of the current changes in aperture efficiency with elevation may be due to AIA. Since the 
magnitude of AIA is also weather-dependent, low-elevation efficiencies will also be weather 
dependent beyond what opacity produces.

• Since the aberration produces a phase gradient across the aperture, at low-elevation the 
telescope’s pointing might be weather dependent beyond how refraction changes pointing.

• If someone were to AutoOOF at a low elevation under weather conditions far from typical, 
AutoOOF would correct the surface for AIA for that elevation. However, point sources at high 
elevations would elongate and high-elevation aperture efficiencies would decrease. The 
opposite is also true – a high elevation AutoOOF, which will render the surface close to a 
perfect paraboloid as AIA is then small, should not be used for low-elevation observations.

There are a few reasons why observers may never have noticed the effects of AIA. In other telescopes, 
the dish diameter is typically not as large, the elevation limit not as low, and the observing frequency 
not as high as that of the GBT. Observer’s seldom take data at very low elevations at high frequencies 
and, if they do, they may not have noticed that the E widths from AutoPeaks tend to be larger than the 
xE widths. Few observers measure aperture or beam efficiencies at low elevations, and, when they do, 
the loss of efficiency may be falsely attributed to an atmospheric opacity that is higher than expected.



More importantly, I believe that something close to the median value of Figures 1 and 2, and its 
elevation dependence (Table 1), are already incorporated into the GBT control system. Since the 
measurements that went into the current gravity model (see Maddalena et al, 2014) included the effects 
of AIA for different weather conditions, the resulting Zernike coefficients for terms with a shape 
similar to elevation-oriented astigmatism may be compensating for AIA under something close to 
median refraction conditions. However, the current gravity surface model does not take into 
consideration the significant weather-related changes in AIA, and Maddalena et al (2014) probably may
not have included enough weather conditions that averaged out to median refraction conditions. I 
recommend continuing the practices of Maddalena et al (2014) when updating the Zernike gravity 
model to use the results of AutoOOFs taken under a wide range of conditions.
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