
GBT Memo 308

Errors and Uncertainties in the Project Ranking Scores
Generated by the Dynamical Scheduling System

Ronald J. Maddalena, David T. Frayer, Pedro Salas, 
Anika Schmiedeke, and Ellie White

October 18, 2022

The algorithms for the Dynamic Scheduling System (DSS), as given in DSS Project Note 5.6 (Condon & 
Balser, 2015; hereafter DSPN5), require values for performance parameters and weather factors, like 
night-time pointing errors and wind speeds. Other parameters in the DSS have values that were selected 
by the authors of DSPN5 out of many possibilities in the hope the chosen values would optimize 
scientific productivity. Calculated ranking scores, R, are then used to rate which observing projects would 
be the most profitably scheduled. Up to now no memo provides estimates for the accuracy of R due to 
errors or uncertainties in parameters and weather factors. Here we will provide equations for estimating 
the resulting changes, errors, and uncertainties in R from changes, errors, or uncertainties in parameters 
and weather factors. We then provide a limited number of illustrative, realistic examples on how to use 
the given equations to explore their effects on R. For example, we show how project rankings would 
change with an improved atmospheric model that corrects for a 30% error in low-frequency zenith optical
depths used by the DSS, includes a better model for clouds, and no longer ignores the effects of rain.

I: Introduction
The memos for the Dynamic Scheduling System (DSS) provide no estimate of the errors or uncertainties in calculated 
ranking scores, R. There are a number of advantages if projects had such estimates. For example, projects with similar 
scores could have very different uncertainties in R, which could suggest that the projects with the higher uncertainty have 
a higher scheduling risk and, thus, may have a higher likelihood of being taken in inappropriate conditions, thereby 
reducing the scientific productivity of the GBT. If we knew how changes in values of performance parameters altered R 
we could better aim our limited resources at modifying those aspects of telescope performance that would most benefit 
scheduling and productivity. We could determine how altering the value of open parameters alters scheduling. Error 
estimates set the accuracy with which we need to know aspects of weather forecasts, like wind speeds or optical depth.

The aim of §II is to provide a set of equations by which one can estimate the uncertainties and errors in R due to errors 
and uncertainties in the various parameters used by the DSS. We assume the reader is familiar with DSPN5, in particular 
the definitions of the terms in equation 1 of the memo. We will be dealing with the algorithms and values discussed in 
§3.1, §3.4.1, and 3.4.4 of DSPN5 – atmospheric (ηatm), tracking (ηtr), and surface (ηsur) efficiencies; and observing (leff) and 
tracking (ltr) efficiency limits. We will not cover the remaining DSS algorithms for the following reasons:

• The discussions in DSPN5 §3.2 (stringency), 3.3 (pressure factors), and 3.6 (temporal constraints) do net lend 
themselves to an error analysis.

• Ranking factors (fx) in DSPN5 §3.5 (e.g., observer on site, thesis project) are single numbers whose values are 
based on the opinions of the staff. Since R is proportional to the product of ranking factors (see equation 1 of 
DSPN5), then Δ R /R=Δ f x/ f x. We assume the reader can calculate these simple ratios.



• Most of the coefficients used in determining performance limits (lx) in DSPN5 §3.4 are based on the judgment 
in DSPN5 of what constitutes an unproductive project. Except for leff the performance limits are Boolean. We 
also include the effects of the algorithm for ltr  as it sets an important frequency-dependent lower limit on ηtr 

below which R is set to zero. Thus, changing parameters in the remaining lx algorithms will either reduce or 
increase the number of projects with a non-zero value of R, but they do not change an acceptable project’s R.

We will give in §III illustrative examples of how to use the equations of §II. We do not provide a complete survey of the 
consequences of the equations in §II as there are just too many possible situations. We hope our examples illuminate the 
relative importance of the factors going into the DSS.

II: Dynamic Scheduling System Equations and Error Estimates
We will use as much as is practical the notation of DSPN5. We will sometimes combine various equations from DSPN5 
into one in order to provide a succinct equation that might help the reader understand how the pieces of the DSS are used 
as a whole. For better understanding we will occasionally separate a DSS equation into equivalent, new equations.

The terms from equation 1 of DSPN5 that we will be dealing with are:

R ∝η atmη surη tr leff ltr (1)

where η are values for the atmospheric, surface, and track efficiencies and leff and ltr are the efficiency and tracking limits.

II.a: Atmospheric Observing Efficiency, ηatm

The algorithms for atmospheric efficiency, ηatm, is the square of the ratio of the best possible value for the effective system 
temperature to the forecasted value for the effective system temperature. Equation 1 combines the various terms and sub-
equations that go into ηatm. Here we have separated the Tsys term in DSPN5 into Tsys=TΣ+TS.
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• TΣ= the sum of the receiver temperature, elevation-dependent spillover, and the atmospheric-attenuated value of 
the cosmic microwave background (CMB).

• TS<= the atmosphere’s contribution to the system temperature under the best conditions for the project’s elevation. 
The total system temperature under the best conditions is TΣ+TS<.

• TS= the atmosphere’s contribution to the system temperature for the project’s elevation and for the weather 
conditions that is being scheduled. The total system temperature for the project is TΣ+TS.

• Tk<= the opacity-weighted mean kinetic temperature of the atmosphere under the best weather.
• Tk= the opacity-weighted mean kinetic temperature for the weather conditions that is being scheduled.

We believe the most intuitive way to present an error analysis is to derive uncertainties or errors in the fractional change in
R and ηatm since ΔR/R=Δηatm/ηatm. For each parameter we provide two versions of an error analysis, one in which the 
uncertainty or error is small in comparison to the value of the parameter and another that is correct no matter the 
magnitude of the error or uncertainty. The first version may prove useful for getting a sense of how an error in a parameter
affects a project’s rating, while the exact version is typically what should be used.

Table 1: Equations for ΔR /R as a function of errors and uncertainties in parameters for ηatm when dealing with TS.
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In some situations working with atmospheric attenuation will fit a problem better:

ηatm=[(T Σ+T k <(1−A<
−m)
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• m = air mass of the scheduled observation. Approximately equal to sec(z) for zenith distance z.
• A<= zenith attenuation for the best possible weather conditions. A<

−m=exp(−mτ Z <)=[1−T s< /T k<], where τZ< is the

zenith optical depth under the best conditions.
• A= zenith attenuation for the weather conditions that is being scheduled. A−m=exp(−mτ Z)=[1−T s/Tk ],where τZ 

is the zenith optical depth under those conditions.

The equations in Table 1 now become:

Table 2: Equations for ΔR /R as a function of errors and uncertainties in parameters for ηatm when dealing with zenith 
atmospheric attenuation
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II.b: Surface Observing Efficiency
By the definitions in DSPN5 the nighttime (n) surface observing efficiency, ηsur,n, is always equal to one. Equation 9 of 
DSPN5 gives the daytime (d) values:

η sur,d=exp[−32 π2(ϵ d
2 − ϵn

2)(ν ∕ c)2] . (4)



where ν is a project’s observing frequency. Only two parameters are involved:
• εd = estimated value for the daytime rms of the surface.
• εn = estimated value for the best nighttime rms of the surface.

Following the same method as above:

Table 3: ΔR /R as a function of errors and uncertainties in parameters for ηsur.

Approximate ΔR /R Exact ΔR /R

εd −64 ϵd π 2(ν ∕ c)2 Δϵ d exp(−32 π2( ν ∕ c )2 (2ϵd Δϵ d+ Δϵ d
2))−1

εn 64 ϵn π2(ν ∕ c)2 Δϵ n exp(−32 π2( ν ∕ c )2 (2ϵn Δϵn+ Δϵ n
2))−1

II.c: Tracking Observing Efficiency
For tracking efficiency, ηtr, we have combined equations 11 through 14 of DSPN5. The algorithms are different for 
nighttime (n) and daytime (d) observing:
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• σ0d and σ0n are the daytime and nighttime tracking plus pointing errors in arcsec under zero wind speeds,
• V = wind speed,
• “a” = the estimated wind speed that will produce a 1 arcsec pointing fluctuation.

For filled-array receivers substitute in equation 5 ε0, the two-dimensional tracking error, for both σ0d and σ0n. Since the 
substitution is trivial, and since there are currently no filled-array receiver, we will not present separate equations for 
filled-array receivers. DSPN5 assumes feeds on all receivers and at all frequencies have a taper, Te, of 13 dB. Since this is 
clearly not the case (e.g., Mustang2, L-band, UWBR), we have created F as a way to include the effects of different 
tapers. Combining the equations for beam width from Maddalena (2010a) with the equations in DSPN5 gives:

F=
4ln (2)ν 2

[630+8.3T e]
2 . (6)

Thus, there are four parameters to examine for nighttime tracking efficiencies (V, Te, “a”, and σ0n) and five parameters for 
daytime (V, Te, “a”, σ0d, and σ0n).

Table 4: ΔR /R as a function of errors and uncertainties in parameters for nighttime ηtr.

Approximate ΔR /R Exact ΔR /R
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Table 5: ΔR /R as a function of errors and uncertainties in parameters for daytime ηtr.

Approximate ΔR /R Exact ΔR /R
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II.d: Observing Efficiency Limit
The intent of the algorithm in §3.4.1 of DSPN5 is to penalize further any project whose product of observing efficiencies 
(η=ηatm ηsur ηtr) is below a frequency-dependent cutoff value:

leff×η=η  when η≥K1 ⟨η ⟩+K2

leff ×η=η exp{−[K1 ⟨η ⟩+K2−η]2

2σ eff
2 } when η < K1 ⟨η ⟩+K2

(7)

K1, K2, and σeff are discretionary constants chosen by the authors of DSPN5. Below 50 GHz η was derived by simulations
that incorporate as a function of frequency the availability of good weather, receiver performance, scientific demand, etc.. 

Above 68 GHz η = 0.5, a value  chosen by the authors of DSPN5. There are five parameters:



Table 6: ΔR/R as a function of errors and uncertainties in parameters for leffη when η < K1 ⟨η ⟩+K2.

Approximate ΔR /R Exact ΔR /R
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II.e: Combining Error Estimates
The above equations can be used in a few ways:

1. to study the impact of a change the staff makes for a parameter with discretionary values (e.g., K1, K2)
2. to study the impact of an anticipated or measured change in a performance parameter (e.g., “a”, εd, σ0d)
3. determine the resulting uncertainty in R by an estimated uncertainty in a quantity like a forecasted wind speed, TS,

receiver temperature, zenith attenuation, etc.
In these cases, apply the equation for the particular parameter in question. 

If instead one wants to determine the consequences of changes or uncertainties in multiple parameters, then one needs to 
be careful in how to combine the values returned by the above equations, especially if the changes in value are large.

• For cases 1 and 2 and for small changes in values, ΔR/R can be approximated as the sum of the results from the 
applicable subset of the above equations.

• For case 3, for small uncertainties, and if the uncertainties have a Gaussian-like distribution, ΔR/R can be 
approximated as the root sum of squares of the appropriate subset of equations. Care must be taken when 
combining uncertainties that have non-Gaussian distributions (e.g., wind speeds when winds are low).

Some factors have partially correlated uncertainties or errors (e.g., TS and TS<, Tk and Tk<, TS and Tk, εd and εn, σ0d and σ0n), 
which will require some understanding of the correlation before combining values returned by the above equations.

III: Illustrative Examples
In this section we will provide examples of how to use the above equations in determining uncertainties and changes in 
project rankings from uncertainties and changes in input values. We are not trying to show all possible ways in which one 
can make use of §II, just those we think might be illuminating to the reader. 

All examples use the exact equation in Tables 1-6 or Equations 1-7. Unless noted, we use equation 22 and 22a of DSPN5 

for η and the following recommended values in DSPN5 and Maddalena & Frayer (2014):

Performance
Parameters

εd=0.30 mm εn=0.25 mm σ0d=2.19” σ0n=1.32” a =3.50 m/s ε0=0.96”

Parameters with
Discretionary Values

Te=13 dB σeff=0.02 K1=1.1 K2 = -0.12 flow=0.20 fhigh=0.22



Before proceeding, we need to address how the atmospheric modeling the DSS uses, developed in 2002, is now outdated. 
The DSS modeling does not include attenuation by rain, has a very simple model for cloud cover, and underestimates by 
30% the zenith optical depth at low frequencies. The statistical weather data in the appendix, derived from NAM vertical 
forecasts (Maddalena 2008) for the year 2019, uses a better atmospheric model that includes the approximate effects of 
rain, a better model for clouds, and accurate dry-air attenuation. Other than the examples in §III.c and III.h, the improved 
modeling does not change any aspect of this memo. We will explicitly state when we are using the 2002 or the improved 
modeling in the examples.

III.a: TΣ

The DSS uses TΣ=Trcvr+5.7 K where Trcvr , the frequency-dependent receiver noise temperature, is assumed to be known to 
infinite accuracy. The 5.7 K is the estimate the DSS uses for the sum of the contributions to the system temperature from 
the 2.7 K CMB and an elevation-independent spillover (3 K). Thus, the accuracy of project rankings suffer from (1) 
inaccuracies and uncertainties in the DSS-chosen values for receiver noise temperature; (2) the lack of a model in the DSS
for elevation-dependent spillover; and (3) the DSS not accounting for the elevation- and weather-dependent absorption of 
the CMB by the atmosphere.

We will ignore (3) as it is only relevant when observing at high frequencies and low elevations. From Maddalena & 
Mattox (2011), spillover is not constant with elevation but varies by ~3 K for all Gregorian receivers, with the highest 
spillover occurring at high elevations. Receiver noise temperatures probably are known to about 0.5 K at low frequencies 
but may be uncertain by at least 5 K above 68 GHz. We know that the receiver noise temperatures used by the DSS for 
Mustang2 are larger than their actual value. As an illustrative example, Figure 1 shows the magnitude of the fractional 
errors and uncertainties in R for an expected systematic error of 1.5 K (for spillover) and an uncertainty of 10% in receiver
noise temperature. The |ΔR/R| decreases under better weather conditions but does not vary much with elevation.

III.b: Tk< and Tk

As we will show in a future memo, forecasted values of Tk and Tk< the opacity-weighted mean kinetic temperature of the 
atmosphere, are known to about 2 K (1 sigma). In figure 2 we elected to show fractional uncertainties in R due to a 5 K 
uncertainties in the forecasted values of Tk< and Tk..

Figure 1: Magnitude of the fractional error or uncertainty in R due to errors or uncertainties in TΣ. Black is for an offset 
of 1.5 K, red is for an uncertainty of 10% in receiver noise temperature. Blue is for a combination of a 1.5-K offset and a 
10% uncertainty in the case the combination of uncertainties maximizes the magnitude of ΔR/R. Panel A is for 0.90 
percentile opacity conditions and m (air mass) = 5; panel B is for 0.25 percentile opacity conditions and m=3; and panel 
C is for 0.10 percentile opacity conditions and m=3.



III.c: Ts< and Ts 
If the DSS memos specified a desired accuracy for ηatm, one can invert the equations in Table 1 to derive the accuracy by 
which we need to know quantities like TS. Let us say we wanted an accuracy of ΔR/R=Δηatm/ηatm<0.10 at 45 GHz for 0.25 
percentile opacity conditions and m=2. Tables 7, 8, and 9 give τZ,25%=0.2013, Tk= 266.2 K, and 16.6 K for receiver noise 
temperature. So, TΣ=22.3 K (=16.6 K+2.7 K for the CMB+3 K for spillover) and  T S=T k[1−exp(−m⋅τ z,25 %)]=49.3 K ). 

Inverting the equation for ΔTS in Table 1 gives ~2.6 K as the allowable uncertainty for ΔTS , or ~5% for ΔTS/TS. One would 
then repeat these steps for all frequencies, weather conditions, and elevations.

Figure 3, which uses the equations of Table 1, shows how a 4% fractional uncertainty in ΔTS and ΔTS< produces significant
uncertainty in R for some observing frequencies. Furthermore, when one considers how the DSS is used to schedule the 
GBT a 4% fractional uncertainty in TS is probably an underestimate for most frequencies. Since forecasts are updated 
every 6 hours, and the GBT is traditionally scheduled up to 48 to 60 hours ahead of time, the TS used for scheduling will 
be different than the TS for when the observations are run. One can use the CLEO forecast software to compare values 
from the latest forecasts, which can be considered a proxy for the actual conditions at the time of the observations, with 
those generated when the observations were scheduled. Figure 4 shows for 2019 the fractional change in TS between 
forecasts that were 48 hours old and the best available when projects were executed. For better estimates of ΔR /R that 
consider how the DSS is used one would combine for more conditions than we could show in Figures 3 and 4 the 
uncertainty in the current forecasts with the changes in forecasts between when projects are scheduled and executed.

Figure 2: Magnitude of ΔR/R due to 5 K uncertainties in Tk< (black) and Tk (red). Panel A is for 0.90 percentile opacity 
conditions, m = 5 (solid line) and m =1 (dashed line); panel B is for 0.25 percentile opacity conditions, m=3 (solid) and 
m=1 (dashed); and panel C is for 0.10 percentile opacity conditions, m=3 (solid) and m=1 (dashed).

Figure 3: Magnitude of ΔR/R due to a 4% uncertainty in TS< (black) and TS (red). Panel A is for 0.90 percentile opacity 
conditions, m = 5 (solid line) and m=1 (dashed line); panel B is for 0.25 percentile opacity conditions, m=3 (solid) and 
m=1 (dashed); and panel C is for0.10 percentile opacity conditions, m=3 (solid) and m=1 (dashed). At most frequencies a
4% uncertainty is a significant underestimate (see Figure 4) when one considers how the DSS schedules projects. 



(Observers will be pleased to know that uncertainties in
calibration when using forecasted optical depths are
typically less than a few percent. For most observations 

mτZ is less than one, and if ΔTS/TS is a few percent for
the forecast closest to the time of an observation (i.e.,
not what is shown in Figure 4 but as demonstrated in
Maddalena (2010b)), then the fractional uncertainty in

calibration, mτZΔTS/TS, will typically be rather low.)

Figure 5 illustrates how to use the equations of §II to
understand the consequences of a change in modeling.
Panel A shows for a selected sample of observing
situations the difference in exp(-τ) between the improved
and the 2002 models. Panels B and C show respectively 
ηatm for the 2002 models used by the DSS and the
improved models. The placement of the ηatm curves in
panel C, relative to the efficiency-limit curve derived

from η, suggests that using the new model without
updating equation 22 of DSPN5 will severely reduce the
hours scheduled for 3-10 GHz observations.

III.d: εd< and εn

The algorithms used for surface errors in DSPN5 assume that Out-Of-Focus Holography (OOF) is performed as often as 
is needed during the day and night. In practice most observers do not use OOF during the night below about 40 GHz and 
do not use OOF during the day below about 30 GHz.

According to DSPN5, all nighttime projects are scheduled using ηsurf =1 (i.e., the surface is the best possible) at all 
frequencies. For daytime projects the DSS assumes at all frequencies that the surface has an rms of εd, the best that is 
possible when using OOF during the day. Thus, projects that traditionally select to not use OOF are observing with a 
poorer surface than what the DSS assumes, and, thus currently are being scheduled with a better value of ηsurf than they 
actually deserve. For projects that traditionally elect not to use OOF, the value the DSS should use for the surface rms is 
that for a completely uncorrected surface, which should be larger than 0.35 mm. In figure 6 we use illustrative rms values 
of 0.4 and 0.5 mm for the frequency range where observers tend to not follow the assumptions of the DSS.

Figure 5: Panel A gives the difference in zenith absorption for different weather conditions between the improved model 
and the 2002 model used by the DSS. Panel B gives the values of ηatm derived from the 2002 model used by the DSS for the
indicated weather conditions and air mass, m. Panel C is the same as B except it uses the weather model used by this 
memo. The orange curve in B and C is, a soft cutoff below which project efficiencies are deemed too poor to be scheduled.

Figure 4: The median of |ΔTs/Ts| for the indicated air mass 
from a comparison of the forecasted Ts when a schedule is 
generated 48 hours ahead of time with the forecasted Ts at the 
time of the observation. We derived the curves for only those 
instances in 2019 with forecasted clear skies.



III.e: V
With the adoption of Maddalena & Frayer (2014), the definition
for wind used by the DSS is now the same as that used in
weather forecasting: 2 minute averages at the top of the hour at
a height of 10 m. Forecasted winds rarely get above 8 m/s and
are never less than ~0.2 m/s, the latter being a quirk of all
weather modeling (Figure 7). 

If someone specifies a desired accuracy for ηtr, then inverting
the equations of Tables 4 and 5 will give the accuracy by which
we need to know quantities like wind speed. If we adopt 
ΔR/R=Δηtr/ηtr<0.10 for V=3.5 m/s at 100 GHz at night, then the 
ΔV equation from Table 4 gives ΔV< 1 m/s. Then, repeat these
steps for all frequencies, wind speeds, and feed tapers.

An uncertainty of 1 m/s, which we use in the following
examples, is also about what we expect considering how the
DSS uses forecasted winds. Since forecasts are updated every 6 hours, and the GBT is traditionally scheduled up to 48 to 
60 hours ahead of time, one can compare winds from the latest forecasts, which can be considered a proxy for the actual 
conditions at the time of the observations, with the winds in the forecasts generated many hours previously and which 
were used for scheduling. The change in winds between forecasts that were 48 hours old and the best available when 
projects were executed was 0.97 m/s for 2019.

In order to use the equations in Tables 4 and 5, we need to adopt estimates of the wind speeds under which the DSS 
typically schedules projects. Since projects tend to be scheduled in conditions somewhat below the worse allowable, a 
reasonable estimate for V might be 0.75 times Vmax, the limit on winds above which rankings are zero. 

When combining DSPN5 §3.1.3 and DSPN5 §3.4 Vmax exceeds the telescope’s wind limit for frequencies below 10 GHz. 
For higher frequencies Vmax is given by Equation 8, which combines DSPN5 §3.4.4 and equation 5. We also supply the 
fractional uncertainties or changes in Vmax due to uncertainties or changes in various parameters.

Figure 7: Wind statistics for 2019, presented as a histogram (left) and cumulative distribution (right).

Figure 6: Fractional change in R, assuming the 
indicated surface rms, when an observer selects not to
use OOF. This applies for both daytime and nighttime 
observations.
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Vmax depends upon the time of day since σ0 is either σ0n or σ0d. For single-pixel or non-filled-array receivers, DSPN5 
specifies an arbitrary value of flow=0.2 below 50 GHz while Maddalena and Frayer (2014) give weak justification for 
fhigh=0.22 for high frequencies. (For filled-array receivers, DSPN5 gives ffill=0.4 and σ0=ε0, which gives Vmax=6.5 m/s at 86 
GHz, which is 0.99 percentile wind conditions.) Figure 8 shows the current frequency-dependent values for Vmax as well as
how Vmax changes with values for Te and f. Readers can explore how a change in “a”, σ0n, or σ0d alters Vmax.

Figure 9 displays  ΔR/R due to a 1 m/s uncertainty in the forecasted wind speed when the wind speed is 0.75 Vmax. Since an
uncertainty of 1 m/s is often a substantial fraction of 0.75 Vmax,  ΔR/R is not symmetrical around zero.

III.f: Te, “a”, σ0d and σ0n 
DSPN5 assumes a feed taper of 13 dB, but tapers might differ from this assumption by a few dB. Figure 10 gives the 
magnitude of the fractional change in R for tapers of 10 and 16 dB. Maddalena & Frayer (2014) state that the formal least-
squares fitting error for “a” is 0.05 m/s, but we have doubled that in creating Figure 10. 

There are no on-sky measurements of σ0d and σ0n after the major servo upgrade in 2013 from, for example, half-power 
tracking of astronomical sources. The value for σ0n in Maddalena & Frayer (2014) was inferred from astronomical 
measurements made years before the upgrade and a rough estimate of how the upgrade might have improved tracking. 
Maddalena & Frayer’s value for σ0d is even less established. In particular, from engineering considerations, it is possible 
that σ0d = σ0n. For illustration purposes in figure 10 we have used 0.2" as the uncertainty in σ0d and σ0n.

Figure 8: Vmax for day (solid lines) and night (dashed lines) for non-filled or single-pixel receivers. The left panel uses flow 
and fhigh from Maddalena & Frayer (2014); the thick lines are for Te=13 dB and the thin lines are for 10 and 16 dB (below
and above the thick line, respectively). The right panel uses Te=13 and fHigh=0.25 (alien green) and 0.33  (alien magenta).



Figure 10: The left panel is the magnitude of the fractional uncertainty in R due to 0.1 m/s uncertainty in “a” (dashed 
lines) and a systematic error of 3 dB in feed tapers (solid lines). The right panel shows the magnitude of the fractional 
uncertainty in R due to 0.2 arcsec uncertainties in σ0d (dashed line) and σ0n (solid lines). The black and blue lines in both 
panels are the errors or uncertainties for nighttime and daytime, respectively.

Figure 9: Fractional uncertainty in R for ΔV=±1 m/s and V=0.75 Vmax. Nighttime projects are in
black, daytime in blue. The solid and dashed lines are for ΔV=+1 and -1 m/s, respectively.



III.g: K1, K2, σeff, η and η  
The algorithm for leff is the transformation function given in equation 7 and illustrated as the black line in the sketch at 
right. In the sketch four projects have the observing efficiencies indicated by the dots. The magenta project would retain 
its ranking, the red project would not have its ranking downgraded
significantly, the green project would have its ranking approximately
cut in half, and the project represented by the black dot would have its
ranking seriously degraded. The critical point in the transformation 

equals K1η+K2 where K1 and K2 have arbitrarily-picked values in

DSPN5. The DSS uses values for η that were either arbitrary chosen
for frequencies above 68 GHz or came from simulations that are now
outdated. Small changes in K1 and K2 shift the critical point left or right
and, thus, could change rankings significantly. Because of the small
width of the Gaussian taper, σeff=0.02, any small changes in a project’s
observing efficiency, η, can also change project rankings significantly.

As the analysis in previous subsections suggests, the expected
uncertainty and errors in η is rarely smaller than a few percent and is
often over 10% in not-too-uncommon situations. In each panel in the
following figure, the red dot is illustrative of the value the DSS might
derive for η for a project at a frequency above 68 GHz, and the black
dots indicate the 1-sigma range in the uncertainty of η due to such factors as an uncertainty in Ts or wind speeds. The 
project in panel A would have some probability of being scheduled, yet, due to the large uncertainty in η there is some 
likelihood that doing so would be an ineffective use of the telescope’s time. Panel C illustrates a project that the DSS 
probably would deem unprofitable, yet there is some likelihood that it actually would be a productive use of the 
telescope’s time. The project in panel B falls somewhere in between.

To numerically illustrate the significant consequences to R of small changes to the parameters of equation 7, consider a 

project at 12 GHz where η=0.80. Since η  was derived from simulations, it must have some uncertainty which we 
arbitrarily assign a value of 0.05. The example will use a project that has a reasonable total observing efficiency η=0.74 
with an uncertainty of ±0.04, substantially smaller than what §III.a through §III.f implies for 12 GHz. We give the 
nominal values for K1, K2, and σeff arbitrarily small uncertainties. The following table shows how a small uncertainty in the

value of only one parameter in equation 7 produces a large range in possible values for ηleff. The range in output values 
would be larger if we let two or more parameters simultaneously have uncertainties.



Value and Range in Value Range in η leff 

K1=1.1 ± 0.04 0.03 to 0.74

K2= -0.12 ± 0.02 0.10 to 0.74

σeff=0.02 ± 0.005 0.30 to 0.54

η=0.74±0.04 0.01 to 0.78

η=0.80±0.05 0.004 to 0.74

III.h: A Typical Scheduling Scenario
For our final example we will consider how uncertainties in two input
parameters can schedule the wrong project. Consider three projects that are in
competition for the same date and time and differ only in their observing
frequencies, 22, 90, and 110 GHz. All are at night for an elevation of 30º and in
winds of 3 m/s. We picked a date and time when weather parameters, given in
the table to the right, matched those for 10 percentile opacity conditions as
determined from the 2002 model used by the DSS. The actual weather
conditions give 90 GHz a better ranking than 110 GHz and significantly better
ranking than 22 GHz (red lines in Figure 11). In a Monte Carlo simulation of
10,000 trials, we let TS vary with a 1-sigma deviation of 4% (probably a significant underestimate) and let winds vary with
a 1-sigma deviation of 1 m/s. All other parameters had the values given in DPSN5. The simulation calculated three 

quantities: η=ηatmηsurηtr, leffη, and ltrleffη. The histograms in Figure 11 depict the range in possible values the DSS would 
report for R. Note how the DSS will improperly schedule a 22 GHz project over superior 90 and 110 GHz projects about 
19% and 55% of the time, respectively. Over 10% of the time the DSS will report 22 GHz rankings substantially below 
the actual ranking. And, there is about a 25% chance the DSS will improperly pick a 110 GHz project over a higher-
ranking 90 GHz project.

Conclusion
The purpose of the memo is to provide a set of tools and examples that use those tools for answering questions about how 
uncertainties, errors, and changes in values used by the DSS affect a project’s R. We hope that the examples are 
sufficiently varied that one can apply the same methodologies to questions we have not included.

The aim of the memo is certainly not to propose future development of the DSS. Instead, the examples may suggest how 
to better interpret the output values from the DSS. The following list of suggestions is certainly not complete:

• As Figures 3 and 9 illustrate, the accuracy of ηatm and ηtr is compromised by small uncertainties in forecasted 
values for optical depth and winds, often giving uncertainties in η that can exceed 10%. Thus, when multiple 
projects have η within 10% of each other, the differences in η often will have no statistical significance. Instead of
letting η take on a continuum of values, maybe mentally round values of η into five wide bins. Essentially 
downplay the importance of the relative values of η and increase the significance of the DSS pressure factors Pα

β  

and Pμ
γ  and ranking factors foos, fcom, fsg, and ftp.

• One can consider downplaying the ranking of projects between 20 and 40 GHz as they are getting inappropriately 
high rankings since standard observing tactics do not follow the DSS assumption about the use of OOF (Figure 6).

• Daytime observing at high frequencies is very sensitive to small changes to the values of fhigh and σ0d (Figure 8), 
both of which have values that do not have strong justification. We should consider ways to determine whether the
current value for fhigh is appropriate and to schedule ways to test the value of σ0d.

Frequency τZ< τZ Tk< and  Tk

22 GHz 0.0213 0.0407 250 K

90 GHz 0.0500 0.0684 253 K

110 GHz 0.0973 0.1231 251 K



• Due to the large uncertainties in ηtr at high frequencies, the ltr algorithm will often set R to zero when the project 
has a respectable value for η (e.g., Figure 11). We might consider ways in which to circumvent the ltr algorithm 
(e.g., setting the discretionary value of f to a large value), a recommendation staff have made over the years.

• When η for a project has a value above η but uncertainties in forecasts place the DSS-calculated value for η just 

below η, the project might not get scheduled due to the sensitivity of R from the discretionary values in the leff 
algorithm. As with the ltr algorithm we might consider staff recommendation to circumvent completely the leff 
algorithm (e.g., setting the discretionary value of K1 and K2 to zero). Circumventing the  leff algorithm would also 

mean there is then no reason to use resources running simulations to revise η.
• ηatm has significant systematic errors from using an outdated weather model that mostly affects low-frequency 

projects. One might consider that all projects at low frequencies have values for R that are inappropriately high 
(Figure 5) and instead pick a high-frequency project with a respectable R. 

• Converting the DSS to the improved weather model would require revising the equation for η, but only if the leff 
algorithm is retained. This and some of the our other suggestions will require calculating new values for 
stringencies whose values we believe will then be more reasonable than what are currently being applied.

Figure 11: Results of Monte Carlo simulations at 22, 90, and 110 GHz for the typical observing conditions described in 
the text when applying the 2002 weather model used by the DSS. The vertical lines indicate the actual values for the given
weather conditions and the histograms show the range of values the DSS would report when there is a 1 m/s (1-sigma) 
uncertainty in winds and a 4% (1-sigma) uncertainty in TS. The right two columns show how the algorithms for efficiency 
and tracking limits alter observing efficiency and, thus, project rankings.
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Appendix

Table 7: Zenith optical depth from 2019 NAM forecasts (Maddalena 2008). A=exp(-τ) and T S=T k(1− A−m). Best and Worse 
columns are the lowest and highest τZ, the other columns are 0.10 percentile, 1st, 2nd, 3rd quartile and 0.90 percentile opacities.

Frequency (GHz)
Percentile

Best 0.10 0.25 0.50 0.75 0.90 Worse
2 0.0099 0.0102 0.0104 0.0108 0.0112 0.0116 0.0222
3 0.0104 0.0107 0.0109 0.0113 0.0118 0.0131 0.0364
4 0.0107 0.0111 0.0113 0.0117 0.0125 0.0151 0.0567
5 0.0109 0.0114 0.0117 0.0122 0.0135 0.0178 0.0828
6 0.0112 0.0118 0.0122 0.0128 0.0148 0.0211 0.1146
7 0.0114 0.0122 0.0126 0.0136 0.0164 0.0251 0.1523
8 0.0117 0.0126 0.0132 0.0145 0.0184 0.0304 0.1960
9 0.0120 0.0130 0.0138 0.0156 0.0207 0.0362 0.2455
10 0.0124 0.0135 0.0146 0.0170 0.0234 0.0430 0.3010
11 0.0129 0.0140 0.0154 0.0186 0.0265 0.0508 0.3623
12 0.0133 0.0147 0.0165 0.0205 0.0301 0.0598 0.4291
13 0.0138 0.0154 0.0179 0.0228 0.0343 0.0700 0.5015
14 0.0143 0.0163 0.0194 0.0255 0.0392 0.0810 0.5802
15 0.0149 0.0176 0.0212 0.0290 0.0451 0.0931 0.6663
16 0.0156 0.0191 0.0237 0.0337 0.0522 0.1071 0.7554
17 0.0166 0.0211 0.0271 0.0400 0.0617 0.1241 0.8507
18 0.0179 0.0240 0.0318 0.0493 0.0754 0.1462 0.9587
19 0.0197 0.0284 0.0392 0.0643 0.0976 0.1757 1.0821
20 0.0219 0.0355 0.0507 0.0888 0.1341 0.2216 1.2320
21 0.0255 0.0471 0.0692 0.1265 0.1943 0.2902 1.4242
22 0.0396 0.0714 0.1023 0.1833 0.2772 0.3892 1.6639
23 0.0315 0.0611 0.0917 0.1685 0.2606 0.3792 1.7350
24 0.0282 0.0519 0.0767 0.1408 0.2158 0.3402 1.7597
25 0.0276 0.0455 0.0664 0.1168 0.1794 0.3124 1.8091
26 0.0278 0.0420 0.0600 0.1011 0.1588 0.3027 1.8859
27 0.0280 0.0402 0.0565 0.0922 0.1493 0.3037 1.9805
28 0.0288 0.0396 0.0550 0.0880 0.1458 0.3117 2.0867
29 0.0298 0.0399 0.0547 0.0859 0.1463 0.3223 2.2009
30 0.0313 0.0408 0.0553 0.0857 0.1498 0.3365 2.3207
31 0.0330 0.0422 0.0570 0.0870 0.1546 0.3538 2.4441
32 0.0350 0.0440 0.0590 0.0893 0.1609 0.3716 2.5705
33 0.0373 0.0463 0.0616 0.0924 0.1677 0.3913 2.7001
34 0.0400 0.0489 0.0645 0.0962 0.1754 0.4116 2.8319



Frequency (GHz)
Percentile

Best 0.10 0.25 0.50 0.75 0.90 Worse
35 0.0430 0.0520 0.0681 0.1007 0.1840 0.4332 2.9662
36 0.0464 0.0556 0.0722 0.1060 0.1937 0.4562
37 0.0503 0.0598 0.0770 0.1117 0.2040 0.4797
38 0.0549 0.0645 0.0823 0.1184 0.2152 0.5047
39 0.0602 0.0701 0.0885 0.1259 0.2275 0.5314
40 0.0662 0.0767 0.0954 0.1343 0.2409 0.5595
41 0.0735 0.0843 0.1035 0.1442 0.2557 0.5886
42 0.0821 0.0933 0.1131 0.1553 0.2718 0.6190
43 0.0923 0.1040 0.1243 0.1682 0.2898 0.6516
44 0.1049 0.1171 0.1378 0.1833 0.3099 0.6860
45 0.1204 0.1332 0.1543 0.2015 0.3331 0.7240
46 0.1398 0.1534 0.1749 0.2233 0.3605 0.7661
47 0.1650 0.1794 0.2010 0.2510 0.3932 0.8142
48 0.1974 0.2136 0.2353 0.2866 0.4339 0.8701
49 0.2419 0.2607 0.2822 0.3348 0.4876 0.9398
50 0.3083 0.3305 0.3514 0.4048 0.5628 1.0303
68 0.5628 0.6064 0.6407 0.7338 0.9929 1.7350
70 0.3172 0.3496 0.3910 0.4915 0.7623 1.5311
72 0.2175 0.2478 0.2948 0.4033 0.6836 1.4802
74 0.1628 0.1930 0.2445 0.3598 0.6512 1.4723
76 0.1292 0.1604 0.2152 0.3379 0.6394 1.4841
78 0.1073 0.1397 0.1974 0.3268 0.6402 1.5114
80 0.0923 0.1259 0.1869 0.3224 0.6461 1.5465
82 0.0816 0.1166 0.1804 0.3225 0.6574 1.5828
84 0.0741 0.1106 0.1771 0.3268 0.6714 1.6215
86 0.0686 0.1068 0.1755 0.3318 0.6870 1.6628
88 0.0646 0.1044 0.1758 0.3383 0.7050 1.7054
90 0.0620 0.1033 0.1775 0.3470 0.7234 1.7510
92 0.0603 0.1033 0.1807 0.3567 0.7436 1.7940
94 0.0594 0.1043 0.1843 0.3676 0.7651 1.8439
96 0.0595 0.1059 0.1892 0.3794 0.7877 1.8859
98 0.0604 0.1086 0.1950 0.3916 0.8106 1.9324
100 0.0622 0.1123 0.2020 0.4056 0.8363 1.9791
102 0.0653 0.1173 0.2096 0.4201 0.8623 2.0280
104 0.0701 0.1241 0.2189 0.4363 0.8904 2.0723
106 0.0775 0.1336 0.2313 0.4557 0.9213 2.1219
108 0.0895 0.1478 0.2483 0.4800 0.9553 2.1751
110 0.1104 0.1709 0.2738 0.5127 0.9991 2.2405
112 0.1512 0.2141 0.3188 0.5644 1.0602 2.3207
114 0.2487 0.3150 0.4192 0.6696 1.1741 2.4569
116 0.5872 0.6636 0.7561 1.0032 1.5169 2.8235

Table 8: Opacity-weighted mean kinetic temperature, Tk, in K corresponding to the conditions for the ranked opacities in Table 7.

Frequency (GHz)
Percentile, Ranked by Opacities

Best 0.10 0.25 0.50 0.75 0.90 Worse
2 270.3 268.5 269.4 261.2 253.4 265.6 244.7
3 269.5 269.6 266.9 257.2 253.1 265.0 263.0
4 269.8 268.4 265.7 270.3 258.1 262.8 262.7
5 265.5 269.5 255.8 271.3 268.5 272.7 262.8
6 265.6 269.0 271.6 269.1 250.6 266.4 263.1
7 265.8 258.0 267.0 268.2 256.2 271.5 263.5
8 265.9 259.5 248.8 265.7 275.2 271.1 264.1
9 266.0 257.2 270.4 273.3 278.0 272.3 264.8
10 266.2 263.7 255.3 272.8 272.4 272.3 265.4
11 266.4 256.8 266.5 274.6 277.9 271.9 266.0
12 259.9 253.3 264.6 262.6 278.9 272.0 266.5
13 259.7 264.6 268.5 274.2 279.3 269.7 267.0
14 259.8 249.0 271.8 277.0 267.1 269.3 282.1
15 259.9 255.1 258.9 277.7 269.9 271.2 282.3



Frequency (GHz)
Percentile, Ranked by Opacities

Best 0.10 0.25 0.50 0.75 0.90 Worse
16 260.0 267.6 264.6 278.6 268.2 276.6 282.5
17 260.2 258.7 260.1 283.1 280.9 280.4 269.0
18 260.3 270.2 275.5 278.7 280.1 271.8 269.7
19 260.7 257.6 273.9 283.2 285.7 276.2 270.4
20 244.9 255.8 263.1 269.2 282.3 276.3 271.3
21 244.1 254.2 264.0 284.7 284.6 279.3 272.3
22 240.7 244.1 266.2 265.3 273.6 281.0 272.0
23 245.0 256.6 274.5 265.0 281.7 274.2 273.4
24 244.7 249.2 276.9 285.0 282.3 277.2 273.4
25 245.0 255.0 265.1 271.7 284.6 279.5 273.1
26 260.9 259.1 267.0 280.8 284.2 276.1 273.0
27 260.6 261.6 265.1 274.6 281.7 284.9 273.0
28 260.3 263.6 260.4 281.4 283.6 277.0 273.1
29 260.3 261.1 273.0 283.3 283.5 277.5 273.3
30 260.2 261.0 261.3 284.3 273.8 271.7 273.5
31 260.1 267.6 252.7 266.9 280.2 277.0 273.7
32 260.0 265.2 269.6 275.4 274.3 270.8 274.0
33 260.0 260.1 260.4 267.9 270.9 273.4 274.3
34 259.9 261.6 271.9 281.4 270.7 264.2 274.5
35 259.9 260.0 271.2 279.7 264.7 274.9 274.8
36 259.9 261.4 256.9 283.6 264.6 270.8
37 259.9 259.1 270.4 279.3 271.4 273.0
38 259.9 265.7 269.3 275.9 267.4 272.6
39 259.9 250.7 274.1 277.1 271.3 273.1
40 259.9 268.2 254.0 280.2 271.2 272.5
41 259.9 258.7 268.6 261.7 270.6 270.8
42 260.0 258.6 268.3 279.5 270.2 270.7
43 260.0 257.2 247.9 267.6 283.3 270.6
44 260.1 258.5 267.0 278.3 269.9 270.7
45 260.4 254.7 268.6 278.7 270.3 270.6
46 260.6 247.9 272.5 270.3 278.6 273.8
47 260.8 258.7 256.2 277.8 278.0 270.5
48 267.5 258.1 273.3 275.1 278.0 278.3
49 267.7 259.5 250.5 275.6 272.4 270.3
50 268.2 250.1 255.9 264.3 267.0 277.8
68 270.0 259.9 264.8 278.0 281.6 275.6
70 268.6 259.9 270.9 270.4 283.7 271.5
72 261.4 257.6 251.6 269.0 284.2 271.7
74 261.3 262.6 262.8 272.6 278.9 262.7
76 261.3 261.2 270.9 260.0 264.5 280.6
78 261.4 257.5 271.8 282.7 283.3 278.7
80 261.5 269.6 262.2 282.8 286.0 277.9
82 261.7 260.7 264.0 285.2 287.6 274.0
84 261.8 267.7 276.8 283.3 282.4 285.5
86 262.0 262.9 260.0 264.5 286.6 284.5
88 262.1 267.9 273.6 280.9 274.1 274.2
90 262.2 264.4 277.5 269.1 285.4 274.3
92 262.3 269.1 262.8 285.2 267.6 282.3
94 262.3 263.2 280.3 287.0 285.8 281.1
96 262.3 268.1 277.9 267.8 283.8 282.5
98 262.3 265.3 273.9 280.8 286.0 282.6
100 262.2 265.9 283.0 272.1 280.4 290.8
102 262.0 265.2 278.7 285.6 280.4 272.7
104 261.8 262.8 275.5 287.5 283.7 289.5
106 261.5 266.2 270.2 286.1 273.5 286.7
108 261.1 265.7 266.1 282.5 281.6 291.1
110 260.6 266.6 277.9 284.4 262.3 286.8
112 260.1 260.5 267.7 285.0 269.1 286.7
114 259.6 266.3 263.4 269.2 267.2 277.7
116 259.9 262.8 273.2 273.1 282.1 278.2



Table 9: Adopted values for receiver noise temperatures.

Frequency (GHz)
Receiver Noise

Temperature (K)
Frequency (GHz)

Receiver Noise
Temperature (K)

Frequency (GHz)
Receiver Noise

Temperature (K)
2 6.0 27 16.6 68 40.0
3 6.0 28 18.8 70 40.0
4 9.0 29 12.7 72 40.0
5 7.4 30 11.0 74 40.0
6 8.6 31 10.1 76 40.0
7 12.0 32 16.6 78 40.0
8 21.6 33 19.4 80 45.0
9 12.8 34 12.5 82 50.0
10 10.9 35 25.7 84 60.0
11 15.2 36 24.1 86 65.0
12 21.7 37 34.9 88 75.0
13 12.5 38 35.1 90 75.0
14 10.3 39 31.1 92 70.0
15 8.9 40 46.6 94 65.0
16 12.0 41 38.2 96 60.0
17 12.0 42 33.0 98 55.0
18 41.7 43 36.3 100 50.0
19 19.7 44 37.4 102 50.0
20 17.5 45 43.0 104 50.0
21 16.2 46 39.1 106 50.0
22 16.6 47 47.2 108 50.0
23 20.9 48 48.8 110 50.0
24 20.0 49 64.8 112 50.0
25 24.3 50 113.3 114 50.0
26 25.3 116 50.0
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