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Abstract

A conceptual design for a new holography system for the Green Bank Telescope is
proposed which will allow use of astronomical sources to illuminate the primary reflector
and measure large scale (∼ D/15) deformations over time scales of approximately 10
minutes. Whereas the current system is limited by its correlator bandwidth to using a
small number of goestationary satellites with narrowband beacons as sources, the new
system would be able to perform surface deformation measurements at essentially any
antenna elevation within the limits of the GBT. And with sufficient sensitivity, it may
also measure dynamic wind- or thermally-induced deformations, potentially opening
up the daytime to high frequency observing.

Obtaining this sensitivity will require leveraging modern digital samplers to expand
the correlator bandwidth to 1 GHz or more, increasing the reference antenna collecting
area by a factor of 20 or more, and using a cryogenic front end. This memo will
focus in particular on the practical challenges of meeting the specifications for the
reference antenna and front end electronics, while a more detailed discussion of the
digital correlator will be given in a future memo. Some discussion will also be devoted
to several systematic measurement errors which are either unique or more acute in
the new holography system and its area of application, with practical strategies being
given to limit their effects.

1 Introduction

The current holography1 system for the Green Bank Telescope was first installed in 2008, and
following an initial period of testing and commissioning, it has been used successfully since
then to measure deformations of the GBT’s primary reflector surface to within ∼100 µm,
ultimately leading to a substantial reduction in r.m.s. surface error from 390 µm to ∼240µm
and a corresponding increase in antenna aperture efficiency by ∼ 10% or more (Hunter
et al., 2011). However, certain components of the system were in fact initially designed
and built a decade or more previous to this, and as a result the capabilities of the current
holography system are severely limited by the technology that was available at the time.
Most importantly, the ADCs for the digital correlator backend have sufficient sample rate to

1Unless specified otherwise, we discuss traditional, or with-phase holography in this memo, which is to
be distinguished from out-of-focus (OOF) holography
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process a bandwidth of at most 100 kHz (White, 1993), and this in turn limits the available
sources that can be used in a holography measurement to geostationary satellites with strong,
narrowband satellite beacons included in Ku-band downlinks (e.g. Intelsat’s Galaxy 18 and
Galaxy 28).

This is disadvantageous for three main reasons. Firstly, suitable geostationary satellites
are sparsely distributed in the sky, and so even if the measured surface deformations were
accurately corrected by the GBT’s active surface, there will typically be a long slew time
between the source used for the holography measurement and a follow-up scientific obser-
vation. In the intervening interval, which could last up to about 10 minutes and include a
slew in both azimuth and elevation, mechanical loading to the GBT structure from wind and
gravity and thermal loading from the sun may have changed dramatically, thus negating the
improvements from the previous surface correction.

A second, related problem is that the orbital parameters of these satellites are such that
they appear at only a handful of elevations up to about the geographical colatitude of the
GBT, or 51.567◦. Thus, while there is sparse sky coverage below this elevation, there are
no suitable satellite beacons whatsoever above this elevation, at least among geostationary
satellites. The third disadvantage has to do with the fact that the geostationary satellites
are owned, operated, and maintained by outside organizations, and there is no guarantee
that the downlink beacons used for holography measurements will remain active or usable
in the long term.

Virtually every one of the issues could be solved or mitigated if a sufficient number of
astronomical sources could also be used. For the current holography system, its bandwidth
is far too narrow to obtain sufficient sensitivity from these sources, which typically have
a broadband emission spectrum approaching that of a blackbody and produce a radiant
flux several orders of magnitude lower than that produced by satellites. However, with the
somewhat recent advent of GSps ADCs, the possibility now exists that these astronomical
sources could be used in holography measurements which leverage the radiometric sensitivity
advantage of a wider system bandwidth, thus reducing the slew time to the follow-up scientific
observations and potentially allowing for high frequency observing during the daytime.

This is the main driver behind recent efforts to design a new holography system for use
on the GBT, and in this memo we will present a conceptual design for the new system.
In particular, we will outline the primary system requirements and goals, the hardware
and software changes that will be needed for the system to meet those requirements, and an
overview of the conceptual design at the component level. A few technical challenges relating
to the reference antenna and the use of cryogenic front ends are given special attention, as
well as several potentially important systematic measurement errors which may seriously
affect system performance and accuracy. The memo concludes with a basic cost estimate
and development timeline. In general, the focus here will be to specify the key hardware
requirements related to the front end electronics and optics, whereas the core features of the
digital correlator backend will be discussed in mostly general terms, with a more detailed
analysis being saved for a future memo.
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2 System requirements

The typical use case for the current holography system has been to measure the GBT’s
primary reflector surface at sufficiently high resolution (sub-meter scales) to locate highly
localized deformations caused by faulty actuators. This requires measuring the GBT beam
out to 50 or more sidelobes over a period of a few hours. This is not suitable for measuring
and correcting for dynamic deformations that occur on much shorter time scales, but the new
holography system must still retain the capability of performing these types of measurements.

The additional requirements for the new system relate to a use case in which the source
is generally much weaker and the total duration of the surface measurement must be much
shorter. System specifications were therefore determined based on the following nominal use
case:

• Source power flux density: 1-2 Jy minimum

• Total measurement time: ∼10 minutes

• Surface measurement uncertainty: 100µm

• Spatial resolution: D/15 = 6.67 m

The lower limit to the source power flux density ensures that the system’s required radiomet-
ric sensitivity remains reasonably achievable while still greatly expanding the list of suitable
sources. As shown in Figure 1, at Ku-band, there are approximately 70 sources in the GBT
calibrator catalog with the required minimum power flux density, and these have an average
separation of about 24◦, or about a 1 minute full-rate slew time. The total measurement
time has been set in order to reduce the dynamic wind and thermal effects mentioned earlier.
The time scale at which these effects become significant has so far not been sufficiently estab-
lished, and so the upper limit to the measurement duration is approximate. The 1-σ surface
measurement uncertainty corresponds to the required surface accuracy λmin/16 =200µm at
the nominal minimum operating wavelength λmin = 3 mm for the GBT (Maddalena, 1991).

The spatial resolution has been set based on the observation that the current empirical
gravity model for the GBT surface, which is based on Out-of-Focus (OOF) holography
measurements, has the largest statistical dispersion for the low order Zernike terms used to
parameterize the surface (Maddalena, 2014). This implies that the deformations produced
by wind and thermal loading are of predominantly large scale. The spatial resolution ∆x =
D/15 = 6.67 m corresponds to the requirement that the lowest 15 Zernike polynomials be
measurable (D = 100 m is the GBT projected aperture diameter).

The final requirement for the new system is that it be available for use at all times, but
without taking up a turret slot at the GBT Gregorian focus, which is the location for the test
receiver. The current holography test receiver takes up its own turret slot and is installed
only for a few weeks at a time before and after a high frequency observing season to identify
faulty actuators. With the holography system available at all times, this allows for surface
measurement and correction to take place once per observation rather than a few times per
observing season.
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Figure 1: Map of Ku-band calibrators for the GBT, segregated according to power flux
density (Credit: Anika Schmiedeke)

3 Hardware specifications

Fulfilling the system requirements given above is driven largely by the required radiometric
sensitivity implied by the use case for the astronomical sources. An in-depth discussion of the
sensitivity analysis is given in Appendix A, but will be summarized here. The analysis covers
two scenarios of differing weather conditions: Scenario 1 represents “good” weather, where
the receiver system temperature and atmospheric opacity are at the first quartile level, as
determined from Green Bank weather statistics. Scenario 2 represents “bad” weather, where
the system temperature and atmospheric opacity are at the third quartile level.

Fixed system and measurement parameters were chosen based on the system requirements
in Section 2 or approximate estimates of technical constraints, and are shown in Table 5 of
Section A.5. For convenience, we include a few of these here:

• Source power flux density: 2 Jy

• Reference antenna diameter: 2 m

• Aperture plane resolution: 6.67 m

• Number of points per map row/column: 20

• Instantaneous bandwidth: 1 GHz

• Integration time per point: 0.333 s

The number of points per row and column is chosen to avoid aliasing (see Section F.3), while
the integration time was chosen according to a 10 minute total mapping time with a slew
rate of one GBT beam FWHM per 4.5 integration times, which would limit beam smearing
to 1% for an on-the-fly map (Mangum et al., 2007). Other system assumptions include a
cryogenic front end, a Cassegrain reference antenna, and single polarization feeds. Freely
varied parameters included test antenna edge taper, telescope elevation, and frequency.
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In terms of optimum frequency, the sensitivity analysis demonstrated that the measure-
ment uncertainty is a balance between interferometric sensitivity (number of wavelengths per
unit surface displacement) and atmospheric opacity. In this case, the optimum frequency
range turned out to be Ku-band, which is fortuitous since it is consistent with the require-
ment that the system have backwards compatibility with the Ku-band satellite downlinks.
For Scenario 1, the minimum measurement uncertainty was 120 µm at 14 GHz and for Sce-
nario 2 it was 140µm at 12 GHz (both evaluated at zenith). While neither of these meet
the required 100 µm measurement uncertainty requirement, we can expect a nominal factor
of

√
2 decrease in uncertainty if both the test and reference feeds were made dual polarized

(assuming an unpolarized source). For this case, the uncertainty drops to 80µm and 100 µm
for scenarios 1 and 2, respectively. From this we arrive at the following system specifications:

• Operating frequency: Ku-band

• Instantaneous system bandwidth: 1 GHz minimum

• Test antenna edge taper: 8 dB

• Reference antenna diameter: 2 m minimum

• Reference antenna configuration: Cassegrain

• Front end cryogenically cooled

• Test and reference antennas dual polarized

The final requirement that the system be available at all times and without taking up
its own turret slot is complicated by the need to cryogenically cool the front end. It appears
that a suitable solution would be to have the holography test receiver share a dewar and
refrigerator with the KFPA receiver. As described in further detail in Section 5.2, this would
require fairly minimal modifications to the KFPA dewar and turret hole cover as well as
upgrading its refrigerator to a CTI model 1020, which would be beneficial to the KFPA
receiver anyway. The holography reference receiver, would be permanently installed at the
location of the current one, just above the subreflector. The details of supplying cryogenic
cooling to its front end electronics are also given in Section 5.2.

4 Overview of the new holography system

4.1 Analog front end

A block diagram of the proposed holography system is shown in Figure 2. As mentioned
above, both the test and reference receiver include dual-polarized feeds, and here the polar-
izations are represented as being linear. This choice was made on the basis that, as shown,
all receiver components from the feed to the second stage amplifiers are cryogenically cooled,
and given that the design requires the test receiver to share a dewar with the KFPA, the
excess bulk taken up by waveguide components to convert between circular and linear po-
larizations would be disadvantageous. It is possible that circularly polarized feeds would
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Figure 2: Block diagram of proposed holography system. OMT=orthomode transducer, BPF=bandpass filter, LPF=lowpass
filter, NBF1=10 kHz wide narrowband filter, NBF2=100 kHz wide narrowband filter, WBF=wideband filter. XPOL and YPOL
refer to the dual linear polarizations for both the test and reference receivers. LO refers to a local oscillator signal provided by
either of two available frequency synthesizers at the GBT (LO1A or LO1B). 1 PPS (pulse-per-second) and 10 MHz are reference
signals phase-locked to the site maser and are used as a synchronization trigger and timing reference, respectively. TEST and
REF denote the cooled feed horns for the corresponding receivers, which illuminate either the GBT or the Cassegrain reference
antenna.
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Figure 3: Calculated axial positions of E- and H-plane and average phase centers for the test
feed of the current holography system

mitigate misalignment-induced decorrelation of the test and reference signals, but this has
not been thoroughly explored.

While a new feed horn for the reference receiver will likely have to be re-designed according
to the chosen reference antenna shape and geometry, it is possible that the feed horn for
the test receiver may be re-used from the current system. It has a 4 dB edge taper in order
to provide adequate sensitivity over the majority of the GBT primary reflector (Hunter
et al., 2011), and this is reasonably close to the optimal 8 dB edge taper determined in the
sensitivity analysis in Section A.5.

Whether or not it gets re-used, however, one drawback to having a shallow edge taper is
that the E- and H-plane phase centers tend to have a wider separation along the feed axis,
which in turn introduces an astigmatic phase distribution over the projected aperture plane
even for the case where there are no deformations of the reflector surface. Another drawback
is that the frequency dependence of the phase centers also tends to increase (Balanis, 2005).
From the simulation results shown in Figure 3 for the current test receiver feed, both of these
features can be observed. In principle this can be accounted for using lab measurements of
the feed beam pattern, but if the feeds are dual polarized and there is reasonable symmetry
between orthogonal polarizations, the feed-induced astigmatism measured in one polarization
should match that in the other after a rotation by 90◦, which would allow these effect to be
determined in-situ and calibrated out.

The orthomode transducers (OMTs) following the feeds have been left unspecified, al-
though their performance is expected not to be critical given that the targeted fractional
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bandwidth is limited to about 0.1:1 by the backend. The isolators following the OMTs are
similarly unspecified, although we require that they be waveguide isolators to reduce their
noise temperature contribution.

The first stage low noise amplifiers (LNAs) on the other hand will be critical in determin-
ing the overall system sensitivity. In the analysis carried out in Appendix A, it was assumed
the test and reference receiver temperatures were in the range of 3-4 K, which corresponds
to the noise temperature of modern cryogenic LNAs operating at Ku-band. All waveguide
components including the feeds are also cooled to mitigate additional contributions to the
noise temperature.

After the first stage LNAs all components are presumed to be at ambient temperature.
The first of these are a set of bandpass filters (BPF), which are primarily meant to attenuate
any unwanted RFI. The design of these filters will be challenging, since they also must let
through the small range of frequencies occupied by geostationary satellite beacons (nominally
11.7 GHz). Choosing a high order filter with a large slope at its upper band edge would be
desirable from this standpoint. However this must also be weighed against the associated
increase in sensitivity of the filter phase response with temperature (D’Addario, 2003). For
now the filter characteristics are left unspecified, since determining them will likely require
some experimentation and study of the RFI environment.

The next elements along the signal chain are digital attenuators paired with power de-
tectors. Given the likely presence of strong RFI, the purpose of the attenuators will be to
protect downstream amplifiers from saturation given a certain threshold power reading from
the detectors. This may be implemented either manually or through an automatic level con-
trol loop, and in the case of the latter the attenuator setting must be monitored by backend
system to ensure proper scaling and calibration of the data. Control and monitoring of the
digital attenuators and detectors can be accomplished via the backend’s general purpose
input/output (GPIO) bus. The cryogenic LNAs will of course remain unprotected, but this
is a necessary trade-off to maintain overall system sensitivity.

After a second stage of ambient temperature amplifiers, all signal channels are mixed
with an LO signal derived from a single LO frequency synthesizer (either LO1A or LO1B).
This is accomplished by a central two-way power divider to distribute the LO to the test
and reference receivers followed by two additional power dividers located at each receiver to
distribute the LO to the separate polarization channels. This is done in order to mitigate
phase noise which would result from having two or more frequency synthesizers or phase-
locked oscillators driving each of the separate mixers.

For astronomical sources with a broadband, nominally blackbody emission spectrum, the
LO will be tuned such that the nominal 1 GHz bandwidth falls within the upper sideband
of the LO and gets downconverted to a nominal IF center frequency of 750 MHz. The low
pass filters (LPF) following the mixers are meant to eliminate the other sideband and any
additional unwanted harmonics. Here, it is assumed that the ADCs in the backend have
a sample rate of 3 GSps, and in this case a 750 MHz IF center frequency allows adequate
frequency buffer at both the lower and upper end of the first Nyquist zone to prevent aliasing
of a 1 GHz signal bandwidth.

At this IF center frequency, the required limit of differential timing jitter for the digital
backend would be about 30 ps (i.e. the jitter in clock skew between test and reference signals;
see Section A.4), but this could be relaxed somewhat by biasing the IF center frequency lower.
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However, biasing the IF center frequency too low would degrade image rejection, and so we
will assume the optimum value is nominally 750 MHz. A wideband bandpass filter (WBF)
will provide additional filtering and further define the IF bandpass, and a final amplifier
stage will provide any additional gain required to drive the ADCs in the backend.

Using the backend GPIO interface, each of the WBFs may be toggled to one of two
alternate narrowband bandpass filters (NBF1 or NBF2), which are meant to define the IF
bandpass for those cases where a narrowband signal such as that from a satellite beacon is
used for the holography measurement. The nominal bandwidths of these filters will be 10 and
100 kHz, corresponding to the two available bandwidth settings for the current holography
system. The larger of these two bandwidths will allow for the use of satellite downlinks which
also include sidebands in addition to a central tone. For both cases, it will be advantageous
to tune the LO such that the IF center frequency is half the nominal bandwidth (either 5 or
50 kHz), since the image rejection considerations should not be at play for a tone-like signal
and the temperature sensitivity of the NBF phase response would decrease as a result of its
lower Q-factor.

4.2 Special design considerations for the analog front end

Assuming proper steps are taken to reduce loss in the earliest stages of the front end elec-
tronics and waveguide components, meeting the sensitivity requirements should be more or
less straightforward. However, there are other considerations at play for the front end. As
explained in D’Addario (1982), measuring the phase of the GBT’s antenna aperture field to
high precision corresponds to a high degree of required dynamic range in the measurement
of its farfield pattern. As mentioned in Hunter et al. (2011), the required dynamic range for
a 100 µm measurement uncertainty is about 70 dB, and since we require similar or better
uncertainty for the new system, we must ensure that the new front end electronics achieve
this specification as well. The programmable attenuators mentioned above will be important
in this regard, but careful selection of amplifiers and double- or triple-balanced mixers will
still be necessary in any case.

Another important consideration is the need to match the instrumental responses be-
tween channels corresponding to the same polarization but different antenna. In the ideal
case, which is what has been assumed in the sensitivity analysis carried out in Appendix A,
the net amplitude and phase response due to all components preceding the correlator are
identical (up to a time delay), whereas any mismatch in component responses will result in a
loss of coherence and a corresponding reduction in signal-to-noise ratio in the measurement.
Constraints on these deviations have been given for the cases of 1% and 0.2% maximum re-
duction in signal-to-noise ratio (or gain) in Table 1 of D’Addario (2003), which we reproduce
here in Table 1:

As in Section A.4, a 1% limit to loss of coherence has generally been applied to individual
sources of error in this conceptual design, and so the corresponding guidelines given in the
table will likely be followed. However, if it is found that more stringent specifications on
mismatch errors must be followed, this will likely add to the overall cost of the front end
system, as a larger sample of components will need to be tested in order to select the ones
that meet the matching specifications.

One caveat with this is that there is at least one pair of the components in the system
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Type of mismatch 1% maximum gain error 0.2% maximum gain error
Amplitude slope (edge to edge) 2.7 dB 1.2 dB
Sinusoidal ripple (peak to peak) 1.5 dB 0.75 dB
Center frequency displacement 0.007 B 0.001 B
Phase variation (random, rms) 9.1◦ 4.0◦

Table 1: Limits to bandpass mismatch errors between pairs of signals to be correlated
(D’Addario, 2003). Here, B is the signal bandwidth.

which likely cannot be matched, and these are the feeds. Because they will have differ-
ent illumination patterns, one matched to the GBT subreflector and the other matched to
the subreflector of the Cassegrain reference antenna, their phase and amplitude response
across the signal bandwidth may exceed the specifications given in Table 1. However, for a
small fractional bandwidth it may be possible to approximate these effects as an effective
propagation delay, which can be easily compensated for by suitably sizing the lengths of
interconnecting cables. The use of analog or digital equalization filters may be used in the
event that this approximation is invalid.

Finally, one must also consider the effects of temperature instability, particularly for
those cases where the required integration time is on the order of a few seconds or more.
This has already been discussed above with respect to the selection of filters, which may be
among some of the more susceptible components when the number of poles becomes large.
Temperature-induced gain instability in the amplifiers will be another concern. Selecting
components according to low temperature sensitivity will be one way to mitigate errors, but
active or passive temperature stabilization of the electronics and the surrounding chassis may
be required as well. This will be particularly important for the reference receiver, which is
more exposed to the elements. In the current holography system, temperature stabilization
of the reference receiver is already implemented using a custom-built temperature controller,
and it may be possible to re-use some of this existing equipment and infrastructure.

Temperature stabilization of the cables leading to the reference antenna will be important
as well, particularly for the new system in which the LO is distributed to each of the receivers
at or near Ku-band. As mentioned above, a low-side LO injection scheme is proposed for
the mixing stage, and this is to reduce the required LO frequency and corresponding phase
instability. In the current holography system, passive temperature stabilization of cables
leading to the reference receiver is implemented by running them through conduit, and this
too will be re-used in the new system for the same reason.

4.3 Digital backend and correlator

In this section we will specifically discuss the digital backend to the proposed holography
system. Its primary function is to cross-correlate the signals in both polarization channels of
the test receiver with the corresponding channels in the reference receiver, average the result,
and transmit it to a remote host, although it is also capable of interacting with other parts
of the system through its GPIO interface (e.g. the digital attenuators mentioned above).
The core DSP functions will be implemented on an FPGA. For the present purposes, only a
general overview of these DSP functions and other auxiliary features will be given here, but
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a more detailed discussion concerning specific hardware implementations and specifications
will be saved for a future memo.

The backend shown in Figure 2 is shown in greater detail in Figure 4, including all of
the relevant DSP blocks. The four analog signals discussed in the previous section–i.e. two
polarization channels for both the test and reference receiver–are each sampled and digitized
by four ADC units. The ADC sample rate is to be nominally 3 GSps in order to fully
accommodate a 1 GHz bandwidth plus some additional margin to prevent aliasing. The 10
MHz and 1 PPS (pulse-per-second) signals are timing references that are phase locked to
the site hydrogen maser, and these are used by the clock generator to generate clock and
synchronization pulses for the ADCs and other functions on the FPGA.

The essential DSP functions to be implemented on the FPGA are the following:

• Hilbert transform

• Variable time delay

• Finite impulse response (FIR) filter bank

• Multiplication

• Accumulation/integration

• Packetization

The function of the Hilbert transform is to generate complex samples of the test receiver
output with in-phase and quadrature components, which is required to measure the complex
beam pattern of the test antenna and in turn compute the aperture field phase. FIR filter
implementations of the Hilbert transform have been used previously in digital correlator
designs (Savci & Erdoğan, 2019), and in fact some FPGA manufacturers include these within
their standard DSP firmware libraries. Alternatively, IQ samplers could be used at the inputs
to the backend, allowing this operation to be offloaded from the FPGA.

The variable time delay is meant to compensate for the geometric time delay, which is
the propagation time between a given source and the test receiver relative to the propagation
time from the same source to the reference receiver. As discussed in Appendix B, this depends
both upon the relative separation of the test and reference antennas (i.e. their baseline), as
well as their orientation with respect to the line of sight towards the source. Whether the
reference antenna is located at ground level or on the GBT structure, the required delay
will therefore have a static component as well as a dynamic component as the GBT slews to
various offset angles from the source. For the reference antenna’s current position, the static
component is about 500 ns while the dynamic component varies by about 3 ns per degree
elevation offset from the source.

As shown in Section A.1, due to the finite coherence time ∆ν−1 of a finite bandwidth
signal, a static error in delay compensation of as little as 80 ps will result in a 1% loss
signal-to-noise ratio at the correlator output for a 1 GHz signal bandwidth. Similarly, in
Section A.4 it was shown that an r.m.s. fluctuation in delay compensation of as little as 30
ps will have the same effect. Ideally, the correct delay compensation can be applied given
precise surveying of the reference antenna position and real time feedback to the backend of
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Figure 4: Block diagram for the backend of the proposed holography system. Analog input signals include those shown in
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the telescope’s orientation with respect to the source, although there are other confounding
factors relating to the gravitational deformations of the GBT feed arm which complicate
matters (see Section 7.1.1).

Another difficulty relating to the time delay is the fact that the required precision is
appreciably smaller than the assumed sample spacing, which for a 3 GSps ADC is 333 ps.
Whereas a delay of an integral number of samples can be realized straightforwardly using
shift registers, fractional delays are more challenging to implement. An approximate frac-
tional delay can be implemented using an FIR filter (Johansson & Eghbali, 2014), where
the accuracy of the approximation and the filter bandwidth generally increase at the cost
of increased filter complexity. The fractional delay can also be varied in real-time without
introducing transients, as required for accurate delay tracking. Furthermore, such an imple-
mentation can also be supplemented with a real-time adjustable phase shift, which can be
used to cancel the phase shift resulting from the delayed LO (see the first term in Equation
(29) of Section A.1).

The next DSP block is an FIR filter bank. The purpose of this is to subdivide the full
signal bandwidth into multiple adjacent, and minimally overlapping sub-bands such that,
in the following multiplication block, cross-correlation is performed only between signals
that have passed through the same FIR filter. This may partly alleviate the timing re-
quirements described above, for which the maximum delay compensation error scales as the
inverse bandwidth of the cross-correlated signals. But its other purpose is to mitigate the
“bandwidth-smearing” effect of the measured antenna aperture field, which is summarized
in Section 7.1.2 and discussed at greater length in Appendix E.

The multiplication block then is responsible for computing the products just described.
To be explicit, with index p denoting polarization, index j denoting one of the N filter bank
channels, I and Q denoting the in-phase and quadrature components of the test receiver
signals, and finally primes denoting reference receiver signals, the multiplication block forms
the 4N products:

vx,p,j = vI,p,jv
′
I,p,j (1)

vy,p,j = vQ,p,jv
′
I,p,j (2)

where vx,p,j is the real part of the cross-correlation and vy,p,j is the corresponding imaginary
part (here, x and y should not be confused with the polarization, which is indexed by
p). In other words, cross-correlation between signals of opposite polarization and different
frequency channels are not computed, this being on the basis that they are uncorrelated.

In the current holography system, products such as

P = vIvQ (3)

P ′ = v′Iv
′
Q (4)

are formed, which are equivalent to the total power from the test and reference receiver,
respectively. These are useful diagnostic measures to have at hand, and so it is likely these,
too, would be implemented in some form in the new system. However, for simplicity, we
have presented only the bare essential components to the correlator for discussion.

The final two DSP blocks shown in Figure 4 are the accumulate block, which is responsi-
ble for synchronously averaging each of the cross-correlation products given above. and the
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packetizer, which is responsible for packaging the averaged data into an appropriate network
protocol format for transmission to a remote host for further data processing. Similarly,
configuration information such as integration time and required delay values must also be
parsed out from incoming packets. It is conceivable that, before transmission of integrated
data, at least some of the computations required to regrid and Fourier transform the corre-
lator data into the required aperture field and surface deformation data will be performed
either on the same FPGA or a separate processing unit. However, this possibility will not
be explored here.

4.4 Advanced backend development

There are a few DSP functions not included in the working concept shown in Figure 4 that
would be potentially useful in the final production version. We mention two of these here
only as avenues for future development rather than critical components of the conceptual
design. The first of these is the equalization filter, which was mentioned above in relation
to compensating for phase and amplitude mismatch between the test and receiver feeds.
In general, though, this may potentially be used to equalize the response between test and
reference receivers due to any arbitrary component mismatches, which would considerably
reduce the difficulty of the initial build and sourcing spares. In principle, this is straightfor-
ward to implement if the mismatches are known and stable with time and/or temperature.
If not, however, there isn’t presently a clear path towards implementation, though little has
been done so far to explore this possibility.

In addition to this, digital RFI detection and mitigation would likely prove invaluable
given that the new system is designed to operate at or near the satellite downlink bands.
Both online, pre-correlation RFI mitigation algorithms such as spectral kurtosis and spectral
flatness as well as offline, post-correlator algorithms such as sum threshold have previously
been developed for digital correlators for radio astronomy applications (Thompson, 2014;
Perez-Portero et al., 2022), although there would undoubtedly be some effort required to
incorporate these into the present application.

5 Challenges for hardware development and implemen-

tation

In Section 3, the basic hardware specifications for the proposed holography system were laid
out. Two of these present particular challenges towards development and implementation:
the construction of a minimum 2 meter diameter reference antenna and the cryogenic cooling
of both the test and reference receivers. We discuss both of these below.

5.1 The reference antenna

The reference antenna for the proposed holography system is a symmetric paraboloidal re-
flector with a Cassegrain configuration and a diameter of at least 2 meters, which is a factor
of 4.7 larger than the currugated horn currently being used as the reference antenna. This de-
sign is principally meant to increase system sensitivity: the large diameter increases the gain
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Figure 5: Anemometer for weather station #3, located above the subreflector and nearby
to the current holography reference antenna, which is shown in the foreground (Credit: Bob
Simon)

and radiant flux collected from the source, and, compared to a prime focus configuration, the
Cassegrain configuration reduces the amount of spillover noise coupled into the feed from the
ground. There is also the additional benefit that the receiver is easier to access and service,
and the mechanical loading to the primary reflector is reduced. The latter is particularly
important in light of the fact that the receiver will be equipped with cryogenic components.
However, the increased diameter brings along with it some additional complications.

The first of these is the practical matter of ensuring the antenna does not obstruct access
or other nearby structures and systems. Aside from a light fixture, the nearest of these is
the anemometer for weather station #3. It is located a little over 1 meter away towards
the direction of the upper elevator (see Figure 5). This is marginally far enough away for
a 2 meter diameter antenna. However, it is also clamped to a gimbal mount to allow it to
stay vertical as the GBT tips, and so care must be taken to ensure its counterweights do not
come into contact with the reference antenna when tipped. On the other hand, it must also
be verified that the reference antenna will not compromise the accuracy of the anemometer
either. The next nearest point of concern is the air traffic warning light just above the
subreflector and approximately 2 meters away from the current reference antenna location.
While this is farther away than the anemometer, it must be ensured that the antenna does
not violate FAA guidelines by presenting too great a visual obstacle to nearby aircraft 2.

2https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_70_7460-1L_.pdf
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While the above considerations do not appear insurmountable, the situation would be-
come increasingly difficult to manage should it turn out that a reference antenna much larger
than 2 meters is required. Other options for mounting it to the structure may be available,
but it is possible the only alternative would be to locate it at ground level. This would
considerably simplify installation, access, and maintenance, but this is not without its draw-
backs. Ensuring that the GBT does not shadow the reference antenna requires locating
the reference antenna at some considerable distance, relinquishing certain parts of the sky
for holography measurements, or constructing a pair of reference antennas that could be
alternately used given the desired source. The first of these options would likely degrade
the overall performance of the holography system, since phase instability due to atmospheric
turbulence and differential expansion in cables generally increases with increasing antenna
separation. Based on the currently observed phase instability, which may largely be due to
atmospheric turbulence, limiting the antenna spacing to about 140 m should limit the loss
of signal-to-noise ratio to about 1% (see Section A.4).

The final implication of the increased antenna diameter is that the beamwidth will be
reduced by the same factor. And since the source must remain on-axis with the main beam
of the reference antenna for the duration of a holography measurement, it may no longer be
adequate to have the reference antenna fixed in position as it is currently. But this depends
on a couple of factors. For one thing, it will depend on the maximum offset angle from
the source for which the GBT farfield pattern is measured, which in turn depends on the
required spatial resolution in the aperture plane. For the low resolution use case described in
Section 2, the spatial resolution is ∆x = D/15 = 6.67 m, and the corresponding maximum
angular offset from the source is about 0.1◦ at Ku-band. This is about 0.06 beamwidths for
the current reference antenna and 0.3 beamwidths for the new reference antenna, assuming
a 2 meter diameter. However, in those cases where high spatial resolution is required (such
as when locating faulty actuators), the maximum angular offset will typically be about 1◦.
This is 0.3 beamwidths for the current reference antenna and 1.4 beamwidths for the new
reference antenna. On this basis, it is therefore not adequate to have the reference antenna
fixed, at least for those cases where the required spatial resolution is less than a few meters.

An additional factor one must consider is the effect of feed arm flexure. For the most
part, this was not relevant to the current holography system since good alignment of the
reference antenna needed to be ensured only for a few telescope elevations corresponding to
geostationary satellites. But for astronomical sources distributed throughout the sky, the
orientation of the reference antenna with respect to the axis of the GBT and the source
direction may change substantially for objects located near the horizon versus those located
at zenith. In Section D.5 the GBT finite element model was used to predict the location and
orientation of the reference antenna as a function of telescope elevation. In Table 7 it is shown
that, between horizon and zenith, the reference antenna’s tilt in the elevation direction will
change by as much as 0.28◦, which is about 0.4 beamwidths for the new reference antenna.
This is a significant contribution, and it assumes no additional flexure occurs in the reference
antenna structure itself.

These results indicate that if the new holography system must adequately perform for all
telescope elevations and at the highest required spatial resolutions, it must also be equipped
with motorized control with sufficient pointing accuracy, or about 0.1λ/D ∼ 0.07◦. This will
add to the antenna’s size, weight, and overall complexity. Additional development will also
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need to occur to mitigate the RFI emissions from the motor, develop a pointing model to
maintain the required pointing accuracy, and create software resources for interacting with
the motor driver. However, it may be sufficient in the early prototyping stage to do without
the motor control, since for low resolution holography measurements a fixed mounting scheme
appears to be adequate.

5.2 Cryogenics

As discussed in Section 3 and Appendix A, cryogenic front ends for the test and reference
receivers are required to ensure adequate system sensitivity. Actually implementing this,
however, will be challenging for both receivers. In the case of the reference receiver, the chief
obstacle is the limited available helium flow capacity from the prime focus helium lines. For
the test receiver, the chief obstacle is the additional requirement to permanently install it at
or near the GBT’s Gregorian focus. We will address the situation with the reference receiver
first.

5.2.1 Reference receiver cryogenics

Currently, no helium lines have been plumbed in for cryogenics at the current reference
antenna location, and the nearest place a set of new lines could be added is a manifold
near the prime focus boom. About 30’ of hard piping would be required for the supply and
return lines together, and there may be some spare piping available from the original GBT
construction. However, there are few, if any shutoff valves in the helium lines leading to
the GBT compressors, so adding a pair of tees for a new set of lines would require venting
the entire length of the lines and later pumping and purging with helium. Altogether, this
would amount to several days to a few weeks of work.

Assuming this can be managed, there still remains the issue of sourcing enough helium
from the compressor connected to those lines. Table 2 shows the mass flow capacity and
horsepower for each of the six helium scroll compressors installed at the GBT in addition
to the demand from each of the receivers. At prime focus there are currently two receivers
in active use, the prime focus (PF) receiver and the Ultra-Wideband (UWB) receiver. A
third proposed receiver, the Advanced L-band Phased Array Camera (ALPACA) would
also be installed at prime focus. Assuming the holography receivers could be cooled with
a CTI model 350 Gifford-McMahon (GM) refrigerator, which has an estimated mass flow
requirement of about 15 scfm, mass flow would be adequate if the PF receiver were installed,
marginal for the UWB receiver, and insufficient for the ALPACA receiver.

Nevertheless, this would not make cooling the reference receiver unviable. One alternative
option would be to plumb in about 60’ of extra length to tap into the helium lines supplying
the Gregorian receivers. In particular, compressor 6 typically will supply helium to either
the C- or S-band receivers, but rarely both. Tapping into the lines for this compressor would
ensure that, under most circumstances, a minimum of about 25 scfm of mass flow would be
available, which is sufficient for a model 350 refrigerator. Another alternative would be to
cool the reference receiver with a Stirling cryocooler, which requires no external compressor.
The primary trade-offs with these refrigerators is that they generally have higher minimum
temperature (∼35 K instead of ∼15 K) and increased levels of vibration relative to the
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Compressor HP MF capacity Receiver Refrigerator Total MF requirement
1 7.5 90 PF 1020 35

UWB 1020 (x2) 70
ALPACA 1020 (x3) 105

2 5 50 W 350 15
ARGUS 1020 35
Ku 350 15

3 6 60 MUSTANG 2 PT N/A
4 6 60 L 1020 35

X 350 15
5 6 60 KFPA 350 15

Ka 1020 35
Q 1020 35

6 6 60 C 350 15
S 1020 35

Table 2: Estimated mass flow (MF) capacity and horsepower (HP) versus demand for each
of the six GBT helium compressors. Refrigerators are given as CTI model numbers, except
for the Mustang 2 receiver, which uses a Cryomech pulse tube (PT) cryocooler (mass flow
requirements unknown). Compressor 1 currently may only supply helium to one receiver at
a time while the remainder can supply helium to at most two. Units for mass flow are scfm.

GM refrigerators more commonly used on the GBT. One particular Stirling cryocooler from
Sunpower, Inc. has already been evaluated by NRAO staff (Norrod, 2008). However, some
experimentation would likely still need to be done for this application, and so it would be
preferable to still use a GM refrigerator and source helium from one of the Gregorian receiver
compressors.

5.2.2 Test receiver cryogenics

The logistics of cooling the test receiver depend largely on where it is to be located, so
we turn to this question first. As stated in Section 2, the scientific system requirements
for the new holography system specify that the test receiver must be permanently installed
at or near the Gregorian focus without taking up its own turret slot. In order to reduce
systematic measurement errors as much as possible, it is necessary that the test receiver
should be located with its phase center somewhere along the 110” diameter circle where it
could be rotated into the Gregorian focus with minimal offset. Since this circle is coplanar
with the top of the turret, this would require creating a new turret hole if such a location
would lie between the existing Gregorian feeds.

However, very little space is available between the feeds. The largest interval unob-
structed by a feed turret plate is to either side of the L-band feed, and it is about 16” wide.
But at this location the L-band feed would partly obstruct the test receiver’s view of the
subreflector. Furthermore, there is structural ribbing and mounted equipment on the un-
derside of the turret and directly below these locations, and so these items would have to
be removed and relocated if a new turret hole were made (see Figure 6). Therefore, having
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Figure 6: View of GBT turret from underneath (Credit: Bob Simon)
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Figure 7: Working concept for incorporating the new holography test receiver into the KFPA
dewar. The seven KFPA feeds are shown to the right, while the test receiver feed is on the
left, and the surrounding turret hole cover is shown in beige. The feed is surrounded by a
metal tube which expands the vacuum space upward and around the feed so that it can be
cryogenically cooled. A foam window is shown clear on top for visualization purposes.

the test receiver share a turret slot with another receiver that is infrequently removed is the
most viable option. Both the ARGUS receiver and the KFPA satisfy this criterion while
also offering fairly little in the way of obstructions to the test feed, and between these two
it turns out that the KFPA is more readily modified to incorporate an additional receiver
inside its dewar. We show a working concept of the modification in Figures 7 and 8.

In this working concept, we use the exact model for the current test feed with the expecta-
tion that it may be re-used for the new holography system or the new feed will be of a similar
size. A hole is added to the receiver’s turret hole cover to allow the feed to pass through
from the vacuum space below and be located at the plane coinciding with the Gregorian
focus. In order that the feed may be cooled, it is attached to the top plate via a low thermal
conductivity G10 tube, and a metal cap with a foam window is placed over the hole and
the feed to seal the vacuum space. The waveguide components attached to the feed occupy
the vacuum space below the turret plate, and are thermally linked to nearby cold plates via
copper straps. The minimum required modifications in this design are the additional cap, a
new turret hole cover, a new upper dewar cylinder, and additional feedthroughs for RF and
biasing signals at the bottom section of the dewar. In this arrangement, a ∼ 7.9◦ rotation of
the turret would be required to put the test receiver into focus from the KFPA. This would
require an additional hole to be made for the turret stow pin as well as any required software
modifications to allow for an additional angular stow position for the turret.

With a working proof-of-concept that the test receiver can at least fit inside the modified
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Figure 8: Same as Figure 7 but showing a cutaway view of how the test receiver is supported
and the construction of the dewar extension. The green cylinder is a low thermal conductiv-
ity, G10 mechanical support for the feed, and the components hanging below the feed are a
mock-up of the OMT, isolators, and LNAs depicted schematically in Figure 2

KFPA dewar, the only other issue to contend with is ensuring adequate cooling capacity
from the shared refrigerator. The KFPA is currently cooled with a CTI model 350 GM
refrigerator, and in fact there is only marginal cooling capacity for the KFPA front end
alone. It would therefore be beneficial to both receivers if the KFPA refrigerator could be
upgraded to a model 1020, assuming that mechanical supports and shielding for the test
receiver are carefully designed and do not introduce any excessive heat loading.

6 Software requirements

The added complexity and instrumentation for the new holography system will require a
comparable increase in complexity for the associated software. We divide the required new
software features into four categories: fixed configuration changes related to permanent
alterations to the instrumentation and configuration of the holography system and GBT,
tasks associated with the setup and configuration of the holography system immediately
preceding a measurement, “online” tasks which occur during a holography measurement,
and “offline” tasks associated with post-processing of the holography measurement data.
The list is meant only to be a first pass at defining the software requirements, and is not
meant to be exhaustive.
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6.1 Fixed configuration changes

As may be deduced from the block diagram shown in Figure 2, the new holography system
will differ from the current one in terms of its basic signal routing topology. For one thing,
because both the test and reference feeds will be dual-polarized, the number of signal channels
being routed to the backend doubles from 2 to 4. Secondly, the new system includes only
a single downconversion mixing stage fed from a single LO synthesizer, which, depending
on the LO router configuration, may be either LO1A or LO1B. All of these changes must
be reflected in the IF Manager and standard.cabling configuration files, including routing
information, signal frequency ranges, and sideband types for mixing stages.

Monitor and control functions for the test and reference receiver will also expand some-
what. As with the current system, each signal channel will include a digital attenuator and
corresponding power detector with independent monitor and control capabilities. In addi-
tion, each channel will require two control bits for toggling between either the wideband
filter (WBF) or one of the two narrowband filters (NBF1 or NBF2) shown in Figure 2. Since
the front end electronics for both the test and reference receiver will be cryogenically cooled,
an expanded suite of sensors will be included with both in order to monitor temperatures at
various points in the cold stage (at least two for the first and second stage of the refrigerator)
as well as pressure inside the dewar. In the case of the test receiver, some of these readings
will be associated with existing sensors for the KFPA receiver. Ambient temperature outside
the test and reference receiver dewars will also be monitored.

In the later stages of development for the holography system, the reference antenna will
be equipped with a positioner for accurate source tracking. This will likely have its own
suite of sensors and control parameters, and so a new manager will need to be developed to
interact with these features. Since the pointing of the antenna needs to be accurate to about
0.1◦ while being mounted to the GBT feed arm (see Section 5.1), a pointing model must
be developed which accurately accounts for feed arm flexure and other dynamic structural
changes to the GBT. Similar to the GBT pointing model, this may take the form of a set of
empirical parameters stored in a database that is readily accessible by the reference antenna
manager. Further details on this behavior during a holography measurement are discussed
below.

Certain positional information for the test and reference receivers will also need to be
stored for use in delay tracking and focusing of the test receiver. Similar to the reference
antenna pointing model, a delay tracking model providing required reference signal time
delays to the correlator backend as a function of telescope elevation, ambient temperature,
etc. will need to be prepared in some form for ready access by the holography backend
manager either just prior to or during a measurement sequence (see Section D.5). Regarding
the focusing of the test receiver, it will be used at Gregorian focus, but since it will be
located at a ∼ 7.9◦ offset position from the center of the KFPA turret slot, the turret must
be rotated this additional amount and stowed in order to put it into focus. A new stow
position would then have to be added in software.
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6.2 Measurement setup

Just prior to a holography measurement, several new configuration steps need to be taken.
First of all, it is presumed the user has somehow specified whether the receiver is to operate
in wideband or narrowband mode, which will inform the selection between either the WBFs
or NBFs. While the GBT is initially tracking the source, a balance routine might also be
included to automatically set the adjustable attenuators according to the measured signal
level. The FPGA core for the correlator backend will likely have a few modes of operation
defined by the parameters of the filter bank DSP block and integration time, and one of
these will be selected at this stage. Finally, any initialization operations associated with
the reference antenna will be performed, e.g. enabling drive motors for the positioner, and
an analogous AutoPeak scan to determine local pointing corrections just for the reference
antenna.

6.3 Measurement procedures

As with the current holography system, the measurement will likely be conducted as on-the-
fly raster scans of the source (either RALongMap or DecLatMap), and the triggering of data
accumulation and integration should occur in the same way it does currently. Throughout
the measurement, the reference antenna must continually track the source with sufficient
accuracy, and to do this the reference antenna manager must be supplied with real-time
pointing corrections or the necessary information for computing these from the reference
antenna pointing model. At minimum, this information would include the real-time, ac-
tual (not commanded) GBT azimuth and elevation, but it may also include data from the
GBT’s structural temperature sensors. Similarly, the correlator backend must be supplied
with real-time delays from the delay tracking model or the GBT positioning and tempera-
ture information necessary to compute the delay at each point in the map. Local pointing
corrections for the reference antenna and delays for each point in the map should also be
stored in the FITS file for the scan for later use during post-processing.

The relaying of data from the correlator backend to the user and other data processing
units will function similarly to the way it does currently, but there will be more concur-
rent data streams. At minimum, this number will double from having both the test and
reference receivers be dual polarization, but there may also be an additional factor of a few
increase due to the inclusion of a filter bank among the DSP operations performed by the
correlator, which will produce several parallel streams of frequency channels. The number
of frequency channels will likely be adjustable to within a few operating modes, and so the
downstream data acquisition, processing, and user display must be able to handle each of
these accordingly.

6.4 Post-processing

In order for the data from the correlator backend to be useful for surface corrections, they
must at minimum be regridded to regularly spaced rows and columns and Fourier trans-
formed into a map of the GBT aperture field phase, which in turn must be unwrapped
through 2π and scaled appropriately to obtain the surface deformation. Currently, these
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steps are initiated by the user through a combination of Python and Mathematica scripts.
But since, for most use cases of the new holography system, rapid turnaround time is re-
quired between measuring the surface and performing a surface correction, a more automated
process is necessary. The likely outcome is that these tasks will be handled by a dedicated
FPGA- or GPU-based processing unit downstream of the correlator backend, in which case
surface deformation data could be supplied directly to the active surface manager for imme-
diate followup corrections, bypassing the intermediate step of writing to FITS files. In this
case, FITS files would still be written to and stored for later use, but they may be modified
to include the computed surface deformation information in addition to the raw correlator
data. At this stage, however, the actual implementation for this post-correlator processing
unit is still to be determined.

7 Systematic errors

The typical use case for the current holography system has largely been to measure the GBT
primary reflector surface with sufficient resolution to adequately locate faulty actuators for
eventual replacement. In this case, the amplitude information of a given deformation (size
along the parent paraboloid axis) is secondary to where the deformation is located within
the aperture plane. Furthermore, much of the low spatial frequency deformation information
in the measurement is not used or is even thrown out in the data processing.

The new use case described in Section 2 for the new holography system therefore repre-
sents a strong departure from the current one, since not only is the low spatial frequency
information to be retained, it must be measured accurately in order to properly set the
active surface after the holography measurement. For this reason, it is critically important
that systematic measurement errors affecting the measurement accuracy be identified and
mitigated. In this section, we identify several potential sources of systematic measurement
error, estimate their level of significance, and wherever possible give guidelines on how to
mitigate their effect on the measurement accuracy. In general, we will evaluate these based
on their corresponding effective surface error defined in Equations (81) and (85) in Section
A.3, but since some of these are difficult to quantify with certainty, they will introduce some
measure of risk to the success of the new system.

7.1 Errors due to increased bandwidth

Increasing the bandwidth of the holography system is central to achieving the radiometric
sensitivity required to measure the GBT surface with weak sources over short time scales.
However, this introduces or exacerbates two sources of measurement error: delay tracking
errors and bandwidth smearing. The former has been discussed in Section D.5 and the latter
in Appendix E. We will summarize these here and also introduce a strategy to mitigate their
effects by dividing the system bandwidth into several sub-bands.

7.1.1 Delay tracking errors

Delay tracking relates to the adjustable instrumental delay td described in the sensitivity
analysis of Section A.1, which in turn corresponds to the variable delay in the digital backend
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that was described in Section 4.3. Its purpose is to exactly compensate for the geometric
delay tg, which is the difference in the propagation time from the source to the test antenna
relative to the propagation time from the source to the reference antenna. From the optical
constants of the GBT and the approximate current location of the reference antenna, it may
be determined from Equation (122) that the geometric delay includes both a ∼ 500 ns static
component as well as a dynamic component that varies by about 3 ns per degree elevation
offset from the source.

In Schwab (2008), this was referred to as the geometric phase correction, since for the
narrow bandwidth of the current holography system, the geometric delay tg corresponds to
a unique phase delay θg = 2πν0tg. Currently, the geometric phase correction is implemented
in post-processing using survey results of the reference antenna position to determine the
length and orientation of the baseline with respect to the source direction for all points
in the holography map. But this is not possible when the correlated signals have some
non-negligible bandwidth ∆ν, since in this case any uncompensated delay comparable to or
larger than the coherence time ∆ν−1 will result in the signals from the test and reference
antennas becoming uncorrelated (see Figure 11). Instead, delay compensation must happen
in real time before the test and reference signals are correlated, and from Sections A.1 and
A.4, it must be accurate to within 80 ps and stable to within about 30 ps for ∆ν = 1 GHz
(depending on the IF frequency).

For the dynamic component of the geometric delay mentioned above, this is challenging
but not insurmountable. The real difficulty is in accounting for the dynamic flexure of the
GBT structure, which causes the antenna baseline vector b⃗ to vary in a nontrivial way. In
Section D.5, the GBT finite element model and focus tracking model were used together to
estimate the deviation of the geometric delay from its ideal value as a function of elevation,
and there it was shown that this was of the order of a few nanoseconds or more.

In principal, these deviations may be directly measured ahead of time by having both the
test and reference antenna track a source over a range of elevations while continuously vary-
ing the instrumental delay to maximize the correlator output amplitude (i.e. a delay scan
analogous to an AutoPeakFocus scan). However, depending on how frequently these cali-
brations occur, this may add significant average overhead to the holography measurements.
Furthermore, it assumes these deviations are repeatable. If wind and thermal loading intro-
duce significant, non-repeatable errors to the delay tracking model, some sort of real-time
feedback of the structure must be used, such as data from the GBT quadrant detector.
In Section A.4 it was shown, for example, that a 1% reduction in correlated signal ampli-
tude would result from random pointing errors of size ∼ 33”, which is of the same order of
magnitude as typical wind-induced pointing errors (Ries, 2009).

7.1.2 Bandwidth smearing

For a finite fractional bandwidth δ = ∆ν/ν0, the measured test antenna farfield pattern will
be a superposition of a continuum of farfield patterns corresponding to different frequencies,
and when the result is Fourier transformed to obtain the test antenna aperture field distri-
bution, the result is a radially smeared image of the actual aperture field distribution. As
described in Appendix E, this will primarily affect the Zernike decomposition of the measured
surface at high radial indices n. Under optimistic condition, i.e. small surface deformations
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(∆z ≪ λ) consisting of Zernike terms with n < 5, the effective measurement error will be
below the measurement uncertainty for δ < 0.2, which for ν0 = 12 GHz corresponds to 2.4
GHz. However, it is recommended that some safety factor, say 2, be applied to the maximum
instantaneous bandwidth in order to deal with less benign surface deformations. A 1 GHz
bandwidth would provide adequate safety maring in this case, but some experimentation
may be necessary to determine this factor.

7.1.3 Bandwidth subdivision and phase unwrapping

Both of the systematic errors described above can be at least partly mitigated by subdividing
the total system bandwidth into smaller windows using a filter bank and performing cross-
correlation only between signals originating from the same sub-band (see Section 4.3). This
would then result in a unique aperture field phase distribution for each sub-band, which from
(78) could be used to determine the surface deformation using the center wavelength appro-
priate to each sub-band. The loss of radiometric sensitivity from restricting the bandwidth
of each sub-band would then be recovered by averaging the resulting surface deformation
measurements from all sub-bands together.

The main issue with this approach is that, in order to compute the surface deformation
from the aperture field phase, one must first unwrap the phase through 2π relative to some
chosen location in the aperture plane. This is non-trivial to do in two dimensions, though
several algorithms do exist and are put into practice with the current holography system
(Goldstein et al., 1988; Ghiglia & Pritt, 1998). However, any phase unwrapping algorithm
will fail to determine the corresponding deformation given sufficient ambiguity in the aperture
field phase map, which fundamentally is related to the r.m.s. phase noise and aliasing due
to large aperture plane sample spacing (Spagnolini, 1995).

Sub-dividing the total system bandwidth should therefore proceed only to the extent
that the phase noise level in each sub-band will not be degraded to the point that phase
unwrapping fails. This threshold will likely take some experimentation to determine. Al-
ternatively, multi-spectral phase unwrapping methods have already been developed in other
fields (Burton & Lalor, 1994), and may allow this restriction to be circumvented. However,
this has so far not been investigated, and would likely take some effort to implement.

In any case, phase unwrapping errors will still be problematic if the sample spacing in
the aperture plane becomes too large or the surface deformation gradients become too great.
An example of this can be seen for a one-dimensional uniform phase gradient shown in
Figure 9. In Appendix F.2, the typical r.m.s. surface gradients were estimated to be in
the range ∼160µm·m−1 irrespective of telescope elevation. At a system operating frequency
ν0 = 12 GHz, this would correspond to aperture field phase gradients of 0.013 · 2π rad ·m−1

or 0.085 · 2π per ∆x for an aperture plane resolution of ∆x = D/15 = 6.67 m. We therefore
expect, at least under typical scenarios, phase unwrapping errors will be few, assuming there
is sufficient signal-to-noise ratio.

7.2 Dynamic deformations

As discussed in greater length in Appendix D, the GBT beam pattern will undergo small
changes over the course of the holography measurement, particularly if it must track a non-
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Figure 9: Example of both success and failure to unwrap phase for a uniform phase gradient.
Unwrapping the finely spaced samples succeeds because samples are spaced at least twice the
spatial frequency of the discontinuities in the wrapped phase, and it fails for coarse sampling
because samples are spaced at less than this threshold. The unwrap function from the numpy
Python library was used for unwrapping.
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geostationary source. In this case, the Fourier transform relationship between the measured
farfield pattern and the aperture field distribution begins to break down. In Appendix D, the
effects of dynamic gravitational loading on the primary reflector and feed arm were studied
in combination with the associated corrections from the GBT finite element model, Zernike
gravity model, and focus tracking model. There it was determined that the dominant surface
measurement errors were associated with dynamic deflections of the feed arm, the corrective
action of the focus tracking model, and the associated changes in the primary reflector phase
distribution. In the worst case (90◦ telescope elevation), this led to about 15 µm of effective
surface measurement error, which is smaller than the required 100µm surface measurement
uncertainty but still approaching a level of significance.

Given that this result neglects pointing corrections and depends strongly on the accuracy
of the current GBT finite element model and focus tracking model to predict the actual
positions of the GBT optics, some further study will likely be required to ensure these
effects can in fact be neglected. Furthermore, dynamic changes to the GBT structure due
to wind and thermal loading will also be at play. These are much less repeatable, but some
study should be devoted to estimating the magnitude of their effect.

7.3 Aliasing and Gibbs phenomenon

The holography measurement technique relies on the Fourier transform relationship between
the antenna’s aperture field distribution and its farfield pattern. But since the farfield
pattern can only be sampled over a finite angular interval, the aperture field distribution is
approximated by the discrete Fourier transform, which will in general introduce errors due
to both aliasing and the Gibbs phenomenon. Both of these errors become more acute as the
spatial resolution becomes lower, since this corresponds to the farfield pattern being sampled
over a smaller domain.

These errors were analyzed in some detail in Appendix F using simple models for the
aperture field. There it was determined that for a resolution of ∆x = D/15 = 6.67 m and
an operating frequency ν0 = 12 GHz, surface measurement errors due to aliasing could be
maintained below about half the 100 µm required surface measurement uncertainty if the
oversampling ratio L/D is set to ∼1.2 or larger (L is the size of the aperture field map). The
error due to the Gibbs phenomenon also depends strongly on the gradients of the surface
deformation (particularly at or near the edge of the aperture). Based on the estimated
∼160 µm·m−1 residual surface gradients for the GBT primary reflector, the associated error
was also estimated to be about half the required surface measurement uncertainty for the
same measurement conditions given above.

8 Cost estimate

The new holography system will replace all or most of the components from the current sys-
tem, but it will also roughly double its size and complexity due to the additional polarization
channel for both the test and reference receiver. In Table 3 we provide cost estimates associ-
ated with several key components or services. The costing studies on which these estimates
are based are preliminary and subject to change as other alternatives are found for certain
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components, but they are representative of the key hardware specifications summarized in
Section 3. Wherever spare components are deemed necessary and are not already on hand,
these are included in the quantity.

Component/service Unit cost Qty. Extended cost
Cryogenic LNAs 6k 4 24k
FPGA backend (with ADC module) 21k3 1 21k
Reference antenna (with positioner) 15k 1 15k
Warm RF electronics (1 channel) 1k 12 12k
Cryogenic isolators 2k 4 8k
Rx. support electronics 2k 2 4k
Cryogenic temperature sensors 500 4 2k
OMT 500 2 1k
Reference rx. dewar fabrication 1k 1 1k
KFPA rx. dewar modifications 1k 1 1k
Structural supports, enclosures, etc. 1k 1 1k
Total 90k

Table 3: Cost estimates for various components of the new holography system

9 Development timeline

Development of the new holography system will be divided into several phases. The first
phase of development will attempt to verify the feasibility of delay tracking at the required
level of precision described in Section 7.1.1. The reason it is prioritized to Phase 1 is because
(a) this capability is critical to the performance of the new system, (b) the analysis of Section
D.5 demonstrated that dynamic deformations of the GBT structure, which are currently not
well understood, may have a significant impact, and (c) feasibility can be assessed using the
current system. The procedure for doing this would consist of performing several tracking
scans of a strong non-geostationary source (e.g. Venus) over several elevations, measuring
any deviations of the geometric delay/phase from what is expected in absence of dynamic
structural deformations, and repeating measurements over several different wind and thermal
loading conditions to assess repeatability. Assuming these results bode well, development
would proceed to Phase 2.

Phase 2 consists generally of more detailed system design; component selection, sourcing,
and fabrication; and unit testing in the lab. Proposed modifications to the KFPA will
be delayed until later, and so a standalone prototype dewar for the test receiver will be
constructed solely for preliminary testing. Part of this development may proceed in parallel
with Phase 1 assuming proper staff resources are allocated and minimal engineering support
is required for the latter. In the later parts of this phase, it is assumed that all parts of the
system except possibly the backend will be available for unit testing. If software resources

3Incorporating FPGA development into a student project would allow the FPGA board to be purchased
under an educational discount. This cost reflects an educational discount applied to the purchase of a
ROACH-2 board
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are available, some initial development for the reference antenna manager would be useful,
but this is not necessarily required.

Phase 3 consists primarily of backend development. At this stage, all of the critical
DSP elements will be designed and tested, while more advanced functionality such as RFI
detection and mitigation will be saved for future development. If this is conducted as a
summer student project, this could proceed in parallel with Phase 2, and would also qualify
the purchase of the FPGA hardware for an educational discount (see footnote to Table 3).
Software development for the backend manager should also proceed in parallel.

It will be assumed that during Phase 4 all key components and software are available for
system level testing in the lab. Important figures of merit such as phase stability, receiver
noise temperature, correlator sensitivity, and delay tracking precision will be assessed and
compared with predictions. An initial assessment of the impact of RFI will also be possible
at this stage.

Assuming the system behaves as expected during lab testing, it will then be installed
on the GBT for Phase 5 testing. Included in the installation will be the plumbing in of
cryogenic lines to the reference receiver location and modification of the receiver room turret
to allow stowing at the offset position of the test receiver. Testing will include repeating
some of the previous lab measurements but while using astronomical sources. Delay tracking
performance of the new system will be compared with that observed for the current system
during Phase 1. This will also include the first measurements of the GBT primary reflector
with the new system and a verification that it meets the required surface measurement
uncertainty and timing requirements given in Section 2. The test receiver will still be in a
prototype dewar, which will be installed in its own turret slot during this short period of
testing.

Phase 6 represents the final stage of development before system commissioning can take
place. The KFPA will be fitted with modified parts to accommodate the test receiver and
its refrigerator will be upgraded to a CTI model 1020. Adequate cryogenic performance will
be verified in the lab after these modifications have been made and the test receiver installed
in the KFPA dewar. If it was determined in the previous two phases that RFI detection
and mitigation are required, work would begin at this stage to develop an effective backend
solution (e.g. spectral kurtosis or spectral flatness algorithms). If possible, an attempt will
be made to leverage previous work in this area by NRAO staff to streamline this effort.
In the meantime, all components will be re-installed on the GBT, including the KFPA in
preparation for eventual commissioning.

An overview of the required engineering development milestones for each phase is shown
in Table 4 along with the corresponding time estimates. The 25 month total development
time should be regarded only as a very rough estimate, since it does not take into account
opportunities for parallel development or estimates of software development time. Further-
more, much still has to be clarified about the details of the correlator backend and any
processing units downstream which transform the correlator data into surface corrections
that may be used by the active surface manager. This will be left to a future memo, but in
the meantime a 3 year total development time would seem to be an appropriate preliminary
estimate at this stage.
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Phase Milestone Duration
1 Delay tracking feasibility study 1 mo.
2 Component selection and sourcing 2 mo.

Custom parts design and fabrication 4 mo.
RF electronics testing 2 mo.
Cryogenic testing 1 mo.
Feed pattern measurement 1 mo.
Reference antenna pointing verification 1 mo.

3 FPGA benchmark verification 1 wk.
Unit testing of main correlator DSP blocks 1 mo.
Unit testing of delay tracking 1 mo.
Unit testing of filter bank 1 mo.
Unit testing of GPIO interface 1 wk.
Unit testing of network link 1 wk.

4 Receiver noise temperature measurement 1 wk.
Correlator phase stability measurement 1 wk.
Correlator noise measurement 1 wk.
Delay tracking verification 1 wk.
RFI impact assessment 2 wk.

5 GBT installation 1 wk.
GBT cryogenics modifications 2 wk.
GBT receiver room turret modifications 1 wk.
Initial on-sky testing 1 wk.

6 KFPA modification 1 wk.
KFPA cryogenic performance verification 1 wk.
RFI detection and mitigation development 6 mo.
Re-installation of KFPA/test receiver on GBT 1 wk.

Total 25 mo.

Table 4: Overview of estimated development timeline for new holography system

10 Conclusion

In this memo we have presented system requirements for a new holography system which
would allow measurements of the GBT primary reflector surface to be made using astronom-
ical sources over time scales as short as ∼ 10 minutes. This allows surface deformations to
be accurately measured and corrected over the full elevation range of the GBT, and it also
enables rapid follow-up of scientific observations after the associated surface corrections have
been made, thus opening up the possibility of daytime high frequency observing. From an
analysis of the sensitivity implications of these requirements, such a system has found to be
technically feasible assuming certain key hardware specifications are met. Principle among
these are the total instantaneous bandwidth, which will be increased to 1 GHz minimum, the
reference antenna diameter, which will be increased to 2 meters minimum, and the receiver
noise temperature, which will be in the range of a few Kelvin and will require a cryogenic
front end.
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Several changes to the holography system bring with them a new assortment of challenges,
such as the accurate pointing of the reference antenna and the cryogenic cooling of both the
test and reference receiver front ends, and we have presented workable solutions to each
case. We have also outlined several of sources of systematic measurement error which could
potentially limit the usefulness of the new system. For some of these we have presented
straightforward strategies for mitigating their effect, while others will require further study
to fully understand and estimate their impact. Finally, we have presented a path forward
for addressing these challenges and other required development milestones up to instrument
commissioning and regular operational use.
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A Sensitivity analysis

In this section we will derive the uncertainty σz in the reflector surface deformation ∆z
determined from the holography measurement. For simplicity, it will be assumed in the
following analysis that the reflector surface is undeformed, while the resulting uncertainty
remains approximately valid for cases where ∆z is small. A further simplifying assumption
worth mentioning at the outset is the quasi-monochromatic approximation, for which the
system bandwidth ∆ν is assumed small in comparison with its center frequency ν0. The
limits of the quasi-monochromatic approximation are examined in Appendix E.

The following analysis will proceed by deriving the statistical properties of the complex
correlator outputs vx and vy, which will be shown to be proportional to the farfield pattern of
the antenna under test when it and the reference antenna are illuminated from a distant point
source. From this we will then derive the statistical properties of the inferred test antenna
aperture field, which we take as the discrete Fourier transform (DFT) of the measured test
antenna farfield pattern. Finally, we will estimate the measured deformation uncertainty
σz using the above results and certain key system parameters, e.g. bandwidth, reference
antenna diameter, source power flux density, and system noise temperature.

A.1 Statistical properties of the correlator outputs

To begin we consider the simplified block diagram presented in Figure 10. Here, the voltages
vin and v

′
in are, respectively, the voltages developed at the inputs of the test and reference re-

ceivers (in general, unprimed quantities will be associated with the test receiver and antenna
and primed quantities will refer to the reference receiver and antenna). It is assumed that,
while the corresponding test and reference antennas will differ in construction and electrical
characteristics, the test and reference receivers are identical in both amplitude and phase
response between the input reference plane and the input to the backend. We do, however,
allow a phase imbalance θLO = θ′LO +∆θLO for the LO signal arriving at the two mixers.

The instrumental delays labeled td and 90 apply, respectively, an adjustable time delay
and a fixed 90◦ phase shift. The former, as will be described later in this section, is meant to
compensate for the inherent propagation delay from the source to the reference plane of the
two receivers, while the two 90◦ phase shifts are required to implement a complex correlator

Backend
input

v'Q

vQ90

90

td

θLO

θ'LO

vin

v'in
Ref. plane

Test
antenna

Reference
antenna

v'I

vLO

vI

Figure 10: Relevant input and output signals to the test and reference holography receivers
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for measuring both magnitude and phase. It is assumed that each of these delays introduces
no additional noise to the signal and are implemented after the signals have been digitized,
although the latter assumption is not strictly required.

The voltages vin and v′in may be expressed as a sum of correlated components vs and
v′s due to the observed source and uncorrelated components vn and v′n due to finite receiver
noise temperature, radiative transfer from the ground and atmosphere, the cosmic microwave
background, etc. It is assumed that each of these voltages has the character of Gaussian
white noise, and may be expressed as a Fourier series over the time interval 0 ≤ t < τ0:

vin = vs + vn = Re

[
∞∑
j=0

(cs,j + cn,j)e
2πijt/τ0

]
(5)

whereRe denotes the real part and the Fourier coefficients cs,j and cn,j are zero mean complex
Gaussian random numbers with equal variances along the real and imaginary axes. A similar
expression holds for v′in (in the following, unless otherwise stated, expressions related to the
reference antenna/receiver can be obtained from those of the test antenna/receiver by adding
primes to the relevant quantities).

In the continuum limit (i.e. as the observation time τ0 → ∞), we may relate the variances
of the uncorrelated Fourier coefficients to the system temperatures Tsys and T

′
sys of the test

and reference receivers. For example:

lim
τ0→∞

τ0⟨|cn,j|2⟩ = 2 · 4ZckBTsys = 8ZckBTsys (6)

where ⟨ · ⟩ denotes the expectation value, Zc is the characteristic impedance of the transmis-
sion lines at the reference plane, and kB is Boltzmann’s constant. This expression differs
from the usual Nyquist-Johnson noise relation by a factor of 2, but this will be canceled
when taking the real part in (5).

To determine the variances for the correlated coefficients, we use the reciprocity theorem,
which states that the received voltage vrx due to a monochromatic wave with frequency ν
is proportional to the incident field amplitude and the antenna farfield pattern evaluated at
that same frequency (Lee, 1988a):

vrx = C(ν)F (ν, θ, ϕ) (7)

where θ and ϕ are the spherical coordinates of the source, C(ν) is proportional to the co-
polarized component of the incident field amplitude and F (ν, θ, ϕ) is the farfield pattern.

In the continuum limit we can apply this theorem to the Fourier coefficients cs,j and c
′
s,j.

In particular, when the antennas are pointed at the source, we can relate cs,j and c
′
s,j to the

noise temperatures Tsrc and T
′
src due to the source:

lim
τ0→∞

τ0⟨|cs,j|2⟩ = lim
τ0→∞

τ0⟨|C(ν)|2⟩|F (ν, 0, 0)|2

=2 · 4ZckBTsrc
=8ZckBTsrc

(8)

lim
τ0→∞

τ0⟨|c′s,j|2⟩ = lim
τ0→∞

τ0⟨|C(ν)|2⟩|F ′(ν, 0, 0)|2

=2 · 4ZckBT ′
src

=8ZckBT
′
src

(9)
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As above, the extra factor of 2 will cancel when taking the real part in (5). The antenna
temperatures can also be expressed in terms of the antenna effective areas Ae and A′

e and
the incident power flux density S. We have for Tsrc:

Tsrc =
AeS

2kB
. (10)

Here we have assumed that the source is totally unpolarized, which accounts for the factor
of 2 in the denominator.

Combining the results above we have:

lim
τ0→∞

τ0⟨|C(ν)|2⟩ =
4ZcAeS

|F (ν, 0, 0)|2
=

4ZcA
′
eS

|F ′(ν, 0, 0)|2
=

4Zc
√
AeA′

eS

|F (ν, 0, 0)||F ′(ν, 0, 0)|
(11)

lim
τ0→∞

τ0⟨|cs,j|2⟩ = 4ZcAeS
|F (ν, θ, ϕ)|2

|F (ν, 0, 0)|2
(12)

lim
τ0→∞

τ0⟨|c′s,j|2⟩ = 4ZcA
′
eS

|F ′(ν, θ, ϕ)|2

|F ′(ν, 0, 0)|2
(13)

If both antennas have the same polarization, the Fourier coefficients cs,j and c
′
s,j will both be

proportional to the same field amplitude C(ν) and will therefore have nonzero covariance:

lim
τ0→∞

τ0⟨cs,jc′∗s,j⟩ = 4Zc
√
AeA′

eS
F (ν, θ, ϕ)F ′∗(ν, θ, ϕ)

|F (ν, 0, 0)||F ′(ν, 0, 0)|
(14)

All other Fourier components are assumed to be uncorrelated.
At this stage we will make a further simplification in assuming that the reference antenna

either tracks the source or its beam is wide enough that we can approximate its farfield
pattern by its on-axis value F ′(ν, 0, 0). In this case we can re-state (13) and (14):

lim
τ0→∞

τ0⟨|c′s,j|2⟩ = 4ZcA
′
eS (15)

lim
τ0→∞

τ0⟨cs,jc′∗s,j⟩ = 4Zc
√
AeA′

eS
F (ν, θ, ϕ)

|F (ν, 0, 0)|
e−iθ

′
F (16)

where θ′F is the phase of F ′(ν, 0, 0). Assuming the reference antenna is undeformed and
well-focused, the phase θ′F will be equal to the corresponding geometric phase θ′g described
in Appendix B. If we also separate out the geometric phase factor from the test antenna
farfield pattern as F (ν, θ, ϕ) = F0(ν, θ, ϕ)e

iθg , we may further simplify (12) and (16):

lim
τ0→∞

τ0⟨|cs,j|2⟩ = 4ZcAeS
|F0(ν, θ, ϕ)|2

|F0(ν, 0, 0)|2
(17)

lim
τ0→∞

τ0⟨cs,jc′∗s,j⟩ = 4Zc
√
AeA′

eS
F0(ν, θ, ϕ)

|F0(ν, 0, 0)|
ei∆θg (18)

where ∆θg = θg − θ′g.
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With the statistical properties of the input voltages vin and v′in having been established,
we can now determine the real and imaginary outputs of the complex correlator, which we
define to be:

vx = vIv
′
I (19)

vy = vQv
′
I (20)

To do this, we will assume both receivers have a perfectly rectangular bandpass of width ∆ν
and center frequency ν0, where the gain within the bandpass is unity:

vI = Re

[
jmax∑
j=jmin

(cs,j + cn,j)e
i[2π(νLO−j/τ0)t−θLO]

]
(21)

vQ = Im

[
jmax∑
j=jmin

(cs,j + cn,j)e
i[2π(νLO−j/τ0)t−θLO]

]
(22)

v′I = Re

[
jmax∑
j=jmin

(c′s,j + c′n,j)e
i[2π(νLO−j/τ0)(t−td)−θ′LO]

]
(23)

Here, jmin and jmax define the lower and upper bounds of the rectangular bandpass, νLO is
the LO frequency, θLO and θ′LO = θLO − ∆θLO are the phases of the LO signal at the test
and reference mixer input, and td is the instrumental delay applied to the reference receiver
output. As shown in Figure 10, the quadrature voltage vQ is delayed 90◦ with respect to
the in-phase voltage vI , and this is expressed above by taking the imaginary part rather
than the real part. It is assumed that the LO will downconvert the incoming RF signal to a
designated IF band (hence the first minus sign in the exponentials) and that the bandpass
is so defined such that this does not result in overlap from image frequencies in the IF band
(i.e. νLO > jmax/τ0 for high side mixing or νLO < jmin/τ0 for low side mixing).

From here we may directly compute the expectation value of vx:

⟨vx⟩ =⟨vIv′I⟩

=

〈
Re

{
jmax∑
j=jmin

(cs,j + cn,j)e
i[2π(νLO−j/τ0)t−θLO]

}

·Re

{
kmax∑
k=kmin

(c′s,k + c′n,k)e
i[2π(νLO−k/τ0)(t−td)−θ′LO]

}〉

=
1

2
Re

{
jmax∑
j=jmin

⟨cs,jc′∗s,j⟩ei[2π(νLO−j/τ0)td−∆θLO]

}

=
1

2
Re

{∫ νmax

νmin

4Zc
√
AeA′

eS
F0(ν, θ, ϕ)

|F0(ν, 0, 0)|
ei[2π(νLO−ν)td−∆θLO+∆θg ]dν

}
=2Zc

√
AeA′

eSRe

{
e−i∆θLO

∫ νmax

νmin

F0(ν, θ, ϕ)

|F0(ν, 0, 0)|
ei[2π(νLO−ν)td+∆θg ]dν

}

(24)

where in the third step all products of uncorrelated Fourier coefficients in the double sum
have been excluded, and in the fourth step we have taken the continuum limit and converted
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the sum into an integral between νmin = ν0 −∆ν/2 and νmax = ν0 +∆ν/2. In the last step
we have assumed the characteristic impedance Zc, antenna effective areas Ae and A′

e, and
incident power flux density S are all frequency independent.

In Appendix E, it was shown that for small fractional bandwidth (i.e. ∆ν ≪ ν0) and small
incident angles θ, the antenna farfield pattern is approximately frequency independent, and
its value at ν = ν0 may be brought out of the integral above. The only remaining frequency
dependent term in the integral is then the exponential. As stated earlier, the purpose of the
instrumental time delay td is to compensate for the geometric phase delay ∆θg due to the
difference in path lengths from the source to the reference plane in the two receivers. If we
ignore unequal dispersive effects along the two paths, we can express ∆θg as:

∆θg = 2πνtg (25)

where tg is the geometric time delay associated with the path length difference. When we
adjust td to be equal to tg we obtain:

⟨vx⟩ =
2Zc
√
AeA′

eS

|F0(ν0, 0, 0)|
Re

{
e−i∆θLOF0(ν0, θ, ϕ)

∫ νmax

νmin

ei[2π(νLO−ν)tg+2πνtg ]dν

}
=
2Zc
√
AeA′

eS∆ν

|F0(ν0, 0, 0)|
Re
{
ei(2πνLOtd−∆θLO)F0(ν0, θ, ϕ)

}
=2Zc

√
AeA′

eS∆ν
|F0(ν0, θ, ϕ)|
|F0(ν0, 0, 0)|

cos(2πνLOtd −∆θLO + θF )

(26)

Similarly, we have for ⟨vy⟩:

⟨vy⟩ = 2Zc
√
AeA′

eS∆ν
|F0(ν0, θ, ϕ)|
|F0(ν0, 0, 0)|

sin(2πνLOtd −∆θLO + θF ) (27)

Thus we see that the correlator output represents a complex voltage with modulus rc and
phase θc given by:

rc = 2Zc
√
AeA′

eS∆ν
|F0(ν0, θ, ϕ)|
|F0(ν0, 0, 0)|

(28)

θc = 2πνLOtd −∆θLO + θF (29)

Since the instrumental time delay td will vary with the source direction over the course
of the holography measurement (see (122) in Appendix B), the complex output from the
correlator will be proportional to the test antenna farfield pattern F0(ν, θ, ϕ) modulated
by the geometric phase factor. But since this phase factor is known, it can be canceled
either during data acquisition or in post-processing by multiplying the correlator output by
the complex conjugate of this phase factor. This of course assumes that ∆θLO and all other
phase delays through the receiver elements remain stable for the entirety of the measurement.

Before continuing, it is worthwhile to consider what would happen if there were only
partial compensation of the geometric delay with the instrumental delay, i.e. tg−td = ∆td. It
may be shown that this contributes an additional factor of sinc π∆ν∆td to both ⟨vx⟩ and ⟨vy⟩.
In turn, the modulus rc gets multiplied by the absolute value of this factor (which we plot in
Figure 11), while the phase θc remains the same as that given by (29). Overall, then, the effect
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Figure 11: Modulus of complex correlator output versus delay compensation error ∆t relative
to its value at zero delay compensation error

of the imperfect delay compensation is to reduce the amplitude of the correlator signal, which
fundamentally is due to the test and reference signals becoming decorrelated as their relative
delay approaches their coherence time ∆ν−1. When the system bandpass is rectangular as
we have assumed here, a 1% reduction in amplitude corresponds to ∆ν∆td = 0.08, which
for ∆ν = 1 GHz would correspond to ∆td = 80 ps. In Section A.4 we will examine the effect
when the delay error ∆td is not fixed but fluctuates about zero.

Under the assumption of ergodicity, the quantities ⟨vx⟩ and ⟨vy⟩ represent the complex
correlator outputs for a fixed source position after an integration time τ approaching infinity.
To determine the uncertainty in the measured surface error, we will need to compute the
expected variances in these values when the integration time is finite. To do this, we begin
by computing the autocorrelation functions Rx(t − t′) and Ry(t − t′) as well as the cross-
correlation function Rxy(t− t′):

Rx(t− t′) = ⟨vx(t)vx(t′)⟩ = ⟨vI(t)v′I(t)vI(t′)v′I(t′)⟩ (30)

Ry(t− t′) = ⟨vy(t)vy(t′)⟩ = ⟨vQ(t)v′I(t)vQ(t′)v′I(t′)⟩ (31)

Rxy(t− t′) = ⟨vx(t)vy(t′)⟩ = ⟨vI(t)v′I(t)vQ(t′)v′I(t′)⟩ (32)

Since all of the voltages in the above expressions are assumed to be zero mean Gaussian
random variables, we can use the identity (Lawson & Uhlenbeck, 1950):

⟨v1v2v3v4⟩ = ⟨v1v2⟩⟨v3v4⟩+ ⟨v1v3⟩⟨v2v4⟩+ ⟨v1v4⟩⟨v2v3⟩ (33)
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in addition to the variances and covariances derived above in (17), (15), and (18) to obtain
the following results:

Rx(t− t′) = G2

[
S2 cos2 θc +

(
S2 +

STsys
K

+
ST ′

sys

K ′ +
TsysT

′
sys

KK ′

)
g2c (t− t′, 0)

+ S2gc(t− t′, θc)gc(t− t′,−θc)
] (34)

Ry(t− t′) = G2

[
S2 sin2 θc +

(
S2 +

STsys
K

+
ST ′

sys

K ′ +
TsysT

′
sys

KK ′

)
g2c (t− t′, 0)

− S2gs(t− t′, θc)gs(t− t′,−θc)
] (35)

Rxy(t− t′) = G2

[
1

2
S2 sin(2θc) −

(
S2 +

STsys
K

+
ST ′

sys

K ′ +
TsysT

′
sys

KK ′

)
gc(t− t′, 0)gs(t− t′, 0)

− S2gs(t− t′, θc)gc(t− t′,−θc)
]

(36)

where we have defined the following terms:

G = 4ZckB
√
KK ′∆ν (37)

K =
Ae
2kB

|F0(ν0, θ, ϕ)|2

|F0(ν0, 0, 0)|2
(38)

K ′ =
A′
e

2kB
(39)

gc(t, ζ) =∆ν−1

∫ νmax

νmin

cos[2π(νLO − ν)t− ζ] dν

=cos[2π(νLO − ν0)t− ζ] sinc(π∆νt)

(40)

gs(t, ζ) =∆ν−1

∫ νmax

νmin

sin[2π(νLO − ν)t− ζ] dν

=sin[2π(νLO − ν0)t− ζ] sinc(π∆νt)

(41)

We can now compute the power spectra for vx and vy by taking the Fourier transform of the
above correlation functions:

Sx(ν) = G2

[
S2 cos2 θcδ(ν) +

(
S2 +

STsys
K

+
ST ′

sys

K ′ +
TsysT

′
sys

KK ′

)
Γc(ν, 0) + S2Γc(ν, θc)

]
(42)

Sy(ν) = G2

[
S2 sin2 θcδ(ν) +

(
S2 +

STsys
K

+
ST ′

sys

K ′ +
TsysT

′
sys

KK ′

)
Γc(ν, 0)− S2Γs(ν, θc)

]
(43)

Sxy(ν) = G2

[
1

2
S2 sin(2θc)δ(ν)−

(
S2 +

STsys
K

+
ST ′

sys

K ′ +
TsysT

′
sys

KK ′

)
Γcs(ν, 0)− S2Γcs(ν, θc)

]
(44)
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where δ(ν) is the Dirac delta function and Γc(ν, ζ), Γs(ν, ζ), and Γcs(ν, ζ) are defined as
follows:

Γc(ν, ζ) =

∫ ∞

−∞
e−2πiνtgc(t, ζ)gc(t,−ζ) dt

=
1

4∆ν

[
Λ

(
ν + 2νLO − 2ν0

∆ν

)
+ 2 cos(2ζ)Λ

( ν

∆ν

)
+ Λ

(
ν − 2νLO + 2ν0

∆ν

)] (45)

Γs(ν, ζ) =

∫ ∞

−∞
e−2πiνtgs(t, ζ)gs(t,−ζ) dt

=
1

4∆ν

[
−Λ

(
ν + 2νLO − 2ν0

∆ν

)
+ 2 cos(2ζ)Λ

( ν

∆ν

)
− Λ

(
ν − 2νLO + 2ν0

∆ν

)] (46)

Γcs(ν, ζ) =

∫ ∞

−∞
e−2πiνtgs(t, ζ)gc(t,−ζ) dt

=
1

4∆ν

[
iΛ

(
ν + 2νLO − 2ν0

∆ν

)
− 2 sin(2ζ)Λ

( ν

∆ν

)
− iΛ

(
ν − 2νLO + 2ν0

∆ν

)] (47)

Λ(x) =

{
1− |x| |x| ≤ 1

0 |x| > 1
(48)

We can incorporate the effect of averaging the correlator outputs vx and vy by multiplying
their corresponding power spectra by the square of the responseHτ (ν) of a low pass filter with
characteristic time constant τ . We will assume the response is that of an ideal integrator:

|Hτ (ν)|2 =

∣∣∣∣∣1τ
∫ τ/2

−τ/2
e−2πiνt dt

∣∣∣∣∣
2

= sinc2(πντ) (49)

The variance in the time averaged vx and vy will then be given by:

(∆vx)
2 =

∫ ∞

−∞

[
Sx(ν)− ⟨vx⟩2

]
|Hτ (ν)|2 dν

≈
[
Sx(ν)− ⟨vx⟩2

]
ν=0

∫ ∞

−∞
|Hτ (ν)|2 dν

≈ G2

2∆ντ

[
(1 + cos 2θc)S

2 +
STsys
K

+
ST ′

sys

K ′ +
TsysT

′
sys

KK ′

] (50)

(∆vy)
2 =

∫ ∞

−∞

[
Sy(ν)− ⟨vy⟩2

]
|Hτ (ν)|2 dν

≈
[
Sy(ν)− ⟨vy⟩2

]
ν=0

∫ ∞

−∞
|Hτ (ν)|2 dν

≈ G2

2∆ντ

[
(1− cos 2θc)S

2 +
STsys
K

+
ST ′

sys

K ′ +
TsysT

′
sys

KK ′

] (51)

where in the second lines we have assumed that the bandwidth of the low pass filter is narrow
enough that [Sx(ν)− ⟨vx⟩2] and [Sy(ν)− ⟨vy⟩2] are approximately constant in that interval
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and can be brought out of the integral as their values evaluated at ν = 0. Similarly, for the
covariance we have:

cov(vx, vy) =

∫ ∞

−∞
[Sxy(ν)− ⟨vx⟩⟨vy⟩] |Hτ (ν)|2 dν

≈ [Sxy(ν)− ⟨vx⟩⟨vy⟩]ν=0

∫ ∞

−∞
|Hτ (ν)|2 dν

≈G
2S2 sin 2θc
2∆ντ

(52)

The associated covariance matrix is given by:

Σ =

[
σ2
0 + σ′2 cos2 θc σ′2 cos θc sin θc
σ′2 cos θc sin θc σ2

0 + σ′2 sin2 θc

]
(53)

σ2
0 =

G2

2∆ντ

(
STsys
K

+
ST ′

sys

K ′ +
TsysT

′
sys

KK ′

)
(54)

σ′2 =
G2S2

∆ντ
(55)

Its eigenvalues and eigenvectors are given by:

σ2
u = σ2

0 + σ′2 =
G2

2∆ντ

(
2S2 +

STsys
K

+
ST ′

sys

K ′ +
TsysT

′
sys

KK ′

)
(56)

σ2
v = σ2

0 (57)

û =

[
cos θc
sin θc

]
(58)

v̂ =

[
− sin θc
cos θc

]
(59)

Hence, the probability distribution in vx and vy, whose centroid is given by (26) and (27), is
elongated along the û direction, which is oriented at an angle θc from the real (vx) axis. Note
that, when both antennas are pointed at the source (θ = ϕ = 0) and are arranged such that
the geometric time delay tg is zero, both antenna farfield patterns will be real (θF = θ′F = 0),
then θc = 0 and the u axis will coincide with the vx axis. This is essentially the situation
described in Crane & Napier (1989) for the case of a tracking, two-element interferometer,
and the variance in the real part of the correlator output determined there agrees with that
given in (56) above.

A.2 Statistical properties of the measured antenna aperture field

All that remains at this stage is to determine the mean and variances in the test antenna aper-
ture field, which is proportional to the Fourier transform of the collection of measurements
{vx,jk, vy,jk} made over an appropriate grid of pointings {θjk, ϕjk} about the source. We will
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begin by computing the expectation value for the estimate of the test antenna aperture field,
which we take to be the DFT of N2 farfield pattern measurements {vx,jk, vy,jk}:

ẼR,jk = Re

{
N−1∑
l,m=0

vz,lme
−2πi(jl+km)/N2

}
(60)

ẼI,jk = Im

{
N−1∑
l,m=0

vz,lme
−2πi(jl+km)/N2

}
(61)

where we have defined vz,lm = vx,lm + ivy,lm and ẼR,i and ẼI,i are the respective real and
imaginary parts of the aperture field estimate at location ρ⃗jk = j∆x x̂ + k∆x ŷ, where ∆x
is the aperture plane grid spacing determined from the angular size of the measured farfield
pattern. We will first compute the expectation value of ẼR,jk and ẼI,jk using (26) and (27):

⟨ẼR,jk⟩ =Re

{
N−1∑
l,m=0

⟨vx,lm + ivy,lm⟩e−2πi(jl+km)/N2

}

=
2Zc
√
AeA′

eS∆ν

|F0(ν0, 0, 0)|
Re

{
N−1∑
l,m=0

|F0,lm|eiθF,lme−2πi(jl+km)/N2

} (62)

⟨ẼI,jk⟩ =Im

{
N−1∑
l,m=0

⟨vx,lm + ivy,lm⟩e−2πi(jl+km)/N2

}

=
2Zc
√
AeA′

eS∆ν

|F0(ν0, 0, 0)|
Im

{
N−1∑
l,m=0

|F0,lm|eiθF,lme−2πi(jl+km)/N2

} (63)

where we have used the abbreviation:

F0,lm = F0(ν0, θlm, ϕlm) (64)

θF,lm = θF (θlm, ϕlm) (65)

and assumed that the phase angle θc of the correlator outputs vx and vy have been compen-
sated for the offset from θF described above in (29).

The above result would be proportional to the antenna aperture field in the limit ∆x→ 0,
but since the measurement consists only of a finite sampling of the farfield pattern, the DFT
above can only represent an estimate. In Appendix F it is shown that for small ∆x the
DFT of the farfield pattern is approximately equal to L2 times the actual aperture field,
where L = N∆x. We will assume this is the case and proceed with the model aperture field
described in Appendix B, where the test antenna representing the GBT is undeformed and
the Gregorian feed illumination has the raised cosine form given in (101). In this case, the
aperture field is real and symmetric over the projected aperture, and using (119) we have:

Ea =
k0

2πfM
· [1− (ρ/2fM)2]

p

[1 + (ρ/2fM)2]p+1 (66)
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where k0 is the wavevector at the center frequency ν0, f and M are the respective GBT
focal length and magnification, and p is the exponent associated with the raised cosine feed
illumination. Substituting L2Ea into Re{} and Im{} above in (62) and (63) gives:

⟨ẼR,jk⟩ =
2Zc
√
AeA′

eS∆ν

|F0(ν0, 0, 0)|
· k0N

2∆x2

2πfM
· [1− (ρ/2fM)2]

p

[1 + (ρ/2fM)2]p+1 (67)

⟨ẼI,jk⟩ = 0 (68)

where ẼI,jk evaluates to zero due our assumption that Ea is a purely real quantity. We can
also use (119) to compute |F0(ν0, 0, 0)| in the denominator of (62) and (63) above:

|F0(ν0, 0, 0)| =
k0

2πfM

∫ 2π

0

∫ R

0

[1− (ρ/2fM)2]
p

[1 + (ρ/2fM)2]p+1 ρ dρ dψ

=
k0
fM

∫ R

0

[1− (ρ/2fM)2]
p

[1 + (ρ/2fM)2]p+1 ρ dρ

=2k0fM

[
B

(
1

2
, 1 + p,−p

)
−B

(
1

2
− 1

2

(
R

2fM

)2

, 1 + p,−p

)] (69)

where the function B(z, a, b) is defined in (128) and R is the radius of the GBT projected
aperture. The effective area Ae of the test antenna will also depend on the model feed
illumination, and so we take the associated aperture efficiency ηa to be equal to the product
of the illumination and spillover efficiencies given in (126) and (127) in Appendix B. We will
take the aperture efficiency of the reference antenna to have a fixed nominal value in the
remainder of the analysis.

The above expressions are enough to completely specify the expectation value for the
aperture field, and we have only to derive its variance. Before we proceed however, we will
simplify the expressions derived earlier for (∆vx)

2, (∆vy)
2, and cov(vx, vy) by assuming the

weak source approximation (S ≪ Tsys/K, T
′
sys/K

′), in which case we can neglect all terms
proportional to the power flux density S:

(∆vx)
2 ≈

G2TsysT
′
sys

2KK ′∆ντ
= 8Z2

c k
2
BTsysT

′
sys∆ν/τ (70)

(∆vy)
2 ≈

G2TsysT
′
sys

2KK ′∆ντ
= 8Z2

c k
2
BTsysT

′
sys∆ν/τ (71)

cov(vx, vy) ≈ 0 (72)

Hence, in this limit, the probability distribution is symmetric, has zero skewness, and is
approximately constant assuming the system temperatures do not vary considerably with θ
and ϕ over the course of the holography measurement.
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Under this assumption we have for the variance of ẼR,jk:

(∆ẼR,jk)
2 =⟨Ẽ2

R,jk⟩ − ⟨ẼR,jk⟩2

=
N−1∑

l,m,p,q=0

[⟨(vx,lm cos θjk,lm + vy,lm sin θjk,lm) · (vx,pq cos θjk,pq + vy,pq sin θjk,pq)⟩

− ⟨vx,lm cos θjk,lm + vy,lm sin θjk,lm⟩ · ⟨vx,pq cos θjk,pq + vy,pq sin θjk,pq⟩]

=
N−1∑
l,m=0

[(∆vx)
2 cos2 θjk,lm + (∆vy)

2 sin2 θjk,lm]

=8N2Z2
c k

2
BTsysT

′
sys∆ν/τ

(73)

where in the third step we have assumed statistical independence between different measure-
ments of the farfield pattern (i.e. cov(vx,jk, vx,lm) = 0 for j ̸= l and k ̸= m) and used the
above weak source approximation to eliminate cross terms proportional to the covariance
between the real and imaginary part of the correlator output. For compactness of notation
we have also defined:

θjk,lm =
2π(jl + km)

N
(74)

It may be shown that the variance (∆ẼI,jk)
2 is identical. Under central limit theorem

(τ → ∞), the DFTs given in (62) and (63) for ẼR,jk and ẼI,jk are sums of joint Gaussian
random variables, and it follows that ẼR,jk and ẼI,jk are also joint Gaussian random variables
with mean and variance given above.

The aperture field phase, which we define by

θ̃a = tan−1

(
ẼI,jk

ẼR,jk

)
(75)

will then have the following probability distribution (Crane & Napier, 1989):

P (θ) =
1

2π
exp

(
−1

2

⟨ẼR⟩2

(∆ẼI)2

)[
1 + ξ

√
π exp(ξ2)(1 + erf ξ)

]
(76)

ξ =
⟨ẼR⟩ cos θ√

2∆ẼI
(77)

for large signal to noise ratio (i.e. ⟨ẼR⟩/∆ẼI ≫ 1), the probability distribution for θc
becomes sharply peaked around its mean value (0 in this case), and the associated phase
error ∆θa may be approximated as:

∆θa ≈
∆ẼI

⟨ẼR⟩
=
λ0fM |F0(ν0, 0, 0)|kB

√
2TsysT ′

sys

∆x2
√
AeA′

eS
· [1 + (ρ/2fM)2]

p+1

[1− (ρ/2fM)2]p
· 1√

N2∆ντ
(78)
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The equivalent uncertainty σz in the measured surface deformation can be computed from
(143) in Appendix C:

σz =
f + P 2/4/f

f
· λ0∆θa

4π

=
f + P 2/4/f

f
·
λ20fM |F0(ν0, 0, 0)|kB

√
2TsysT ′

sys

4π∆x2
√
AeA′

eS
· [1 + (ρ/2fM)2]

p+1

[1− (ρ/2fM)2]p
· 1√

N2∆ντ

(79)

where P is the distance between the specified point in the aperture plane and primary
reflector axis, λ0 is the wavelength at the center frequency ν0, and |F0(ν0, 0, 0)| is given
explicitly in (69).

A.3 Effective surface deformation

The uncertainty given above in (79) for the measured surface deformation evidently depends
on both the radial distance ρ from the center of the projected aperture and the radial distance
P from the paraboloid axis. But since the center of the projected aperture will generally
receive greater illumination from the feed than will the edges, it is more important to mini-
mize the measurement uncertainty at the center if the antenna gain is to be maximized. We
therefore define an effective r.m.s. measurement error ϵrms after (Ruze, 1966):

G/G0 ≈ e−δ
2
rms ≡ e−(4πϵ2rms/λ0)

2

(80)

where G and G0 are, respectively, the on-axis gain of the antenna with and without aperture
plane phase errors, and δ2rms is the r.m.s. of the aperture field phase weighted by the aperture
field:

δ2rms =

∫∫
E ′
a∆θ

2
a d

2ρ∫∫
E ′
a d

2ρ
(81)

Here, the aperture field E ′
a is that produced by the feed for which the antenna gain is to

be optimized, and is generally not equal to that produced by the holography test antenna
feed. As mentioned in Appendix B, most GBT feeds are designed to optimize the antenna
aperture efficiency, for which the edge taper is approximately 11 dB and the equivalent raised
cosine exponent is 36. For convenience, we will also assume E ′

a has the raised cosine form
given in (101) of Appendix B, for which the aperture field is given by (66).

Substituting (78) into (81) we obtain:

δ2rms =δ
2
0

∫ U
0

(1−u2)q
(1+u2)q+1 · (1+u2)2p+2

(1−u2)2p u du∫ U
0

(1−u2)q
(1+u2)q+1 u du

=4δ20
B (1/2, 1− 2p+ q, 2 + 2p− q)−B (1/2− U2/2, 1− 2p+ q, 2 + 2p− q)

B (1/2, 1 + q,−q)−B (1/2− U2/2, 1 + q,−q)

(82)

δ0 =
λ0fM |F0(ν0, 0, 0)|kB

√
2TsysT ′

sys

∆x2S
√
N2AeA′

e∆ντ
(83)

U = R/2fM (84)
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where B(z, a, b) is defined in (128) in Appendix B. Once all terms in the above expressions
are known, the effective r.m.s. surface error can be determined from the Ruze equation
above:

ϵrms =
λ0δrms
4π

(85)

In Section A.5 we will calculate ϵrms for various system configurations and measurement
conditions and compare the result to the required 100 µm measurement uncertainty given
in Section 2. We will also discuss various sources of systematic measurement error in Ap-
pendixes D, E, and F, and for these we will use the same criterion to determine the extent
to which they can be neglected.

A.4 Phase and time delay fluctuations

In the analysis of Sections A.1 and A.2, it was assumed that, for fixed source coordinates θ
and ϕ, the difference td−tg between the instrumental and geometric delay is zero and remains
so for the duration of the integration time τ . Furthermore, it was assumed that the relative
phase response of the signal paths corresponding to vI , vQ, and v

′
I were constant during the

same interval (including the LO contributions θLO and θ′LO). In reality, however, pointing
instability, disturbances in the atmosphere, differential timing jitter in the analog-to-digital
converters, and differential phase noise in the LO will cause these values to fluctuate with
time. If we include these effects as normally distributed, zero mean phase and time offsets, it
can be shown that this contributes the following factor to both the mean real and imaginary
correlator outputs:

e−
1
2
(∆θ)2

2
√
2π∆ν∆td

{
erf

[
2π(νLO − ν0 +∆ν)∆td√

2

]
− erf

[
2π(νLO − ν0 −∆ν)∆td√

2

]}
(86)

where ∆θ and ∆td are the corresponding standard deviations and the function erf(z) is the
standard error function:

erf z =
2√
π

∫ z

0

e−t
2

dt (87)

There is a similar modification to the variances (∆vx)
2 and (∆vy)

2 in the correlator outputs,
but in the weak source limit, the corresponding changes are negligible. The net effect there-
fore is a reduction in the modulus rc of the complex correlator output and no change in the
variance, so that the signal-to-noise ratio suffers a net reduction.

In the limit of small ∆θ and ∆td, the above factor can be expanded to second order:

1− 1

2
(∆θ)2 − 1

6
π2[∆ν2 + 12(νLO − ν0)

2](∆td)
2 (88)

If we assume a nominal intermediate frequency of νIF,0 = |νLO − ν0| = 750 MHz and a
bandwidth ∆ν = 1 GHz, limiting the separate contributions of ∆θ and ∆td to a 1% reduction
in signal to noise ratio would require:

∆θ <
√
0.02 = 0.14 = 8.1◦ (89)
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∆td <

√
0.06

π2(∆ν2 + 12ν2IF,0)
= 28 ps (90)

For a well-designed system, phase noise in the LO and timing jitter of the digital-to-analog
converters should be below these thresholds, and so pointing instability and atmospheric
disturbances will become the limiting factor. We will consider pointing instability first.

Using (122) we can consider the effect of a small, fluctuating pointing error ∆θ on the
geometric delay:

|∆tg| =
b sin θ

c
∆θ (91)

where θ is the mean angle between the baseline vector b⃗ and the source direction r̂ (we have
assumed the length b of the antenna baseline remains fixed). If we apply the above limit to
∆tg, we can in turn limit ∆θ:

∆θ < 28 ps · c

b sin θ
(92)

For the current reference antenna location and source directions nominally on-axis with the
GBT, b ≈ 60 m and sin θ ≈ 1, in which case we have ∆θ < 30”. The dominant driver for
short time scale pointing fluctuations is wind, and while these tend to be smaller than this
upper limit, they are smaller only by a factor of a few, depending of course on wind speed
and direction (Ries, 2009; Constantikes, 2003).

As for atmospheric disturbances, these are predominantly driven by turbulent fluctua-
tions in the water vapor content of the air column along the line of sight, which in turn
create fluctuations in the effective refractive index n and induced phase shift of a traversing
electromagnetic wave. For two antennas separated by distance d that are viewing a source at
zenith through a turbulent atmospheric layer of thickness L≫ d, the variance in the relative
phase between the two antennas is given by the phase structure function (Thompson et al.,
2017a)

Dϕ(d) =
〈
|ϕ(x)− ϕ(x− d)|2

〉
= 2.91

(
2π

λ

)2

C2
nLd

5/3 (93)

and the corresponding variance in the geometric delay tg will be given by:

Dtg(d) = (2πν)−2Dϕ(d) = 2.91
C2
nLd

5/3

c2
(94)

where c is the speed of light and C2
n is the refractive index structure parameter, which

quantifies the amount of turbulence in the atmospheric layer. L is often taken to be the size
scale of clouds, or about 2 km (Thompson et al., 2017a), while C2

n will often be in the range
of 10−15 to 10−12m−2/3, depending on the altitude of the layer and local weather conditions
(Thompson et al., 1980).

No statistics on the structure parameter are currently available for Green Bank, but if
we substitute a value of 10−14m−2/3 along with d = 60 m and λ = 2.56 cm, we find an r.m.s
phase of 3.3◦ and an r.m.s. geometric delay of 0.77 ps, which is close to what is observed
for the current GBT holography system (Hunter et al., 2011). Both of these are below
the above thresholds for a 1% reduction in signal-to-noise ratio, although this of course is
dependent on the weather conditions at the time of the holography measurement. Assuming
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the antenna separation remains the same for the upgraded system, we can expect a similar
level of fluctuations. For the remainder of the sensitivity analysis, we will therefore assume
these effects to be negligible.

A.5 Numerical sensitivity analysis

Symbol Description Value
S Source power flux density (Jy) 2
D′ Reference antenna diameter (m) 2
η′a Reference antenna efficiency 0.7
∆x Aperture plane resolution (m) 6.67
N Number of points per map row/column 20
q Optimal GBT raised cosine illumination exponent 36
∆ν Instantaneous bandwidth (GHz) 1
τ Integration time per point (s) 0.333

Table 5: Fixed system and measurement parameters for numerical sensitivity analysis

In this section we will estimate the expected r.m.s. surface measurement uncertainty ϵrms
across several different parameters for the holography system and measurement conditions.
To constrain the problem somewhat, we fix several of these parameters according to the
system requirements given in Section 2 or some approximate assumptions about what is
likely to be technically achievable. For instance, the reference antenna diameter likely cannot
be much larger than 2 meters if it is to be installed in the same location as the current one,
and the system instantaneous bandwidth cannot easily be made much larger than a few
GHz based on current limitations to ADC technology. The number of points per row and
column corresponds to an oversampling factor of 1.33, which was determined in Section
F.3 to limit the measurement error due to aliasing to below the measurement uncertainty.
The integration time per point is set by the maximum measurement time of ∼ 10 minutes
specified in Section 2 as well as the assumption that the measurement proceeds as an on-
the-fly map with a maximum slew rate of one GBT beam FWHM per 4.5 integration times,
which limits beam smearing to the 1% level (Mangum et al., 2007). All remaining fixed
parameters are shown in Table 5.

Referring to (82) and (83) for the weighted r.m.s. aperture plane phase, to which ϵrms
is proportional, the remaining quantities to be specified are the center wavelength λ0, the
raised cosine exponent p for the test antenna feed illumination, the test and reference system
temperatures Tsys and T ′

sys, and the test and reference antenna effective areas Ae and A′
e.

For this analysis, p was varied between 5 and 70, while the center frequency ν0 = c/λ0 was
varied between 2 and 100 GHz with an 18 GHz gap centered on the oxygen absorption line
at 60 GHz. Because the system temperatures will also vary with elevation, this was also
varied between 10◦ and 82◦.

The reference antenna effective area is specified by its diameter D′ and aperture efficiency
η′a, and the test antenna effective area is specified by the GBT diameter and p through the
expressions (126) and (127) for the illumination and spillover efficiencies. It will be assumed
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that the reference antenna consists of a symmetric Cassegrain whose axis is aligned with
that of the GBT, and in this case we can expect that the spillover temperatures for both the
test and reference receiver will be similar, ignoring the small offset angle α − β = 12.329◦

between the Gregorian feed axis and the GBT primary reflector axis. We will therefore set
Tsys = T ′

sys.
We can further decompose the system temperature as follows:

Tsys = Ta + Ts + Trx (95)

where Ta is the uncorrelated component of the antenna temperature, Ts is the antenna
spillover temperature, and Trx is the receiver temperature. The antenna and spillover tem-
peratures are given by:

Ta(E) = ηsTb(E) (96)

Ts =

∫ 2π

0

∫ π
θH
Tb(E(θf , ϕf ))(cos θf )2p sin θf dθf dϕf
2π
∫ π
0
(cos θf )2p sin θf dθf

(97)

where ηs is the test antenna spillover efficiency, (cos θf )
2p is the feed (power) pattern, and

Tb(E) is the brightness temperature for a ray propagating at elevation E :

Tb(E) =

{
Tcmbe

−τz/ sin E + Tatm
(
1− e−τz/ sin E) E > 0

εgndTgnd E ≤ 0
(98)

where Tcmb = 2.725 K is the cosmic microwave background temperature, Tatm is the effective
atmospheric temperature at frequency ν0, τz is the corresponding zenith opacity, and εgnd =
0.9 and Tgnd are, respectively, the emissivity and temperature of the ground (Weng et al.,
2001). We also use the zenith opacity to account for attenuation of the correlated part of
the antenna temperature, which means modifying the source power flux density as follows:

S → Se−τz/ sin E (99)

Note that in (96) the elevation corresponds to that of the GBT, whereas in (97) the elevation
depends on the particular direction of the ray emanating from the feed. We will assume the
receiver temperatures to follow the linear trend in noise temperature for the current state of
the art cryogenic low noise amplifiers (Longhi et al., 2019):

Trx = (0.3K ·GHz−1)ν0 (100)

In order to obtain representative values for the effective atmospheric temperature, zenith
opacity, and ground temperature at the site of the GBT, we have used the Cleo weather tool
to produce archived forecasts for these values over the period 00:00 UT, September 01, 2023
to 00:00 UT, September 01, 2024. All absorption terms were included in the forecasted data
except for rain, and the data were spaced in time at 4 hour increments. From these data a
random selection of 100 were drawn and used to compute Tsys from the above expressions.
In this discussion, we will present the results for two representative scenarios: Scenario 1,
which represents “good” weather conditions, has Tsys and τz set to the corresponding values
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Figure 12: Simulated holography measurement uncertainty ϵrms plotted versus frequency
and GBT elevation for Scenario 1. For all data, the exponent associated with the raised
cosine feed illumination of the GBT was kept fixed at the value p = 25, which minimized
ϵrms at nearly all frequencies.

at the first quartile of the 100 samples. For scenario Scenario 2, which represents “bad”
weather conditions, the values are set according to the third quartile.

In Figures 12 and 13 we show the results of these computations for Scenarios 1 and 2,
respectively. For reference, we also show the contributions of Ta and Ts to the zenith system
temperature and the zenith opacity τz for both scenarios in figures 14 and 15, respectively.
In all of these plots, the exponent p associated with the test antenna feed illumination was
kept constant and equal to 25, which was found to be the optimum value for nearly all
frequencies4, and corresponds to an edge taper of 7.7 dB.

A few observations from Figures 12 and 13 can readily be made. Firstly, it is clear that at-
mospheric opacity strongly degrades the measurement sensitivity. This is particularly acute
around the 22 GHz water line and the 60 GHz oxygen line, although there is an overall trend
in reduced sensitivity with frequency due to the continuum absorption by water vapor. Along
similar lines, we see a general worsening of sensitivity with lower elevation. The increase
in measurement uncertainty towards zero frequency is a result of reduced interferometric
sensitivity, i.e. the reduced change in aperture field phase with surface deformation.

For both scenarios a minimum measurement uncertainty is reached at zenith for Ku-
band frequencies (14 GHz for Scenario 1 and 12 GHz for Scenario 2). For Scenario 1 the

4The optimum value for p deviated from 25 for only about 3-5 out of 43 frequencies, depending on the
scenario, and the deviations did not exceed the sweep increment of ∆p = 5.
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Figure 13: Simulated holography measurement uncertainty ϵrms plotted versus frequency
and GBT elevation for Scenario 2. For all data, the exponent associated with the raised
cosine feed illumination of the GBT was kept fixed at the value p = 25, which minimized
ϵrms at nearly all frequencies.
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Figure 14: Contribution of antenna temperature Ta and spillover temperature Ts to the
system temperature at zenith. For Scenario 1, Ta + Ts is at the first quartile level and for
Scenario 2 the same quantity is at the third quartile level, according to recent Green Bank
weather statistics.

minimum measurement uncertainty is found to be 120 µm and for Scenario 2 it is found
to be 140µm. Both exceed the required measurement uncertainty of 100 µm specified for
the current GBT holography system, although these results show that it is feasible to make
moderate improvements to the corresponding system design such that this requirement can
be met. In particular, if both the test and reference antennas were made dual polarized and
the measurements from both polarizations were averaged, we would expect an approximate
factor of

√
2 decrease in uncertainty to 80 µm for Scenario 1 and 100µm for Scenario 2.
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Figure 15: Similar to Figure 14, but for zenith opacity τz.

B Aperture field of a dual reflector antenna

In Appendix A it was shown that the sensitivity of the holography system to measure
deformations at a given location depends on the strength of the aperture field at that location
and the geometric mean of the system temperatures of the test and reference receivers. Thus,
maintaining sensitivity over the entirety of the test reflector is a trade-off between aperture
field uniformity and spillover noise, and so in this section we will provide explicit relations for
the antenna’s aperture field, farfield pattern, and aperture efficiency so that this relationship
can be examined quantitatively. We will assume both the test antenna (the GBT) and the
reference antenna are perfect (i.e. undeformed) and well-focused dual reflector antennas.
While the GBT is of a Gregorian configuration, we will assume the reference antenna is of
a Cassegrain configuration, but the analysis will handle both cases. In this way we will also
make explicit the relative phase relationship between the test and reference antenna farfield
patterns, which is required for geometric delay compensation.

For the sake of simplicity and definiteness, we will consider either antenna to consist of a
feed linearly polarized along x̂f , and we choose the raised cosine form for its farfield pattern.
The associated electric field is given (up to a proportionality constant) by (Lee, 1988b):

E⃗f (rf , θf , ϕf ) =

{[
CE(θf ) cosϕf θ̂f − CH(θf ) sinϕf ϕ̂f

]
e
−i(krf+γf )

rf
0 ≤ θf < π/2

0 π/2 ≤ θf < π
(101)

CE(θf ) = (cos θf )
p (102)
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Symbol Description Value
α Gregorian feed axis tilt wrt. subreflector axis 17.899◦

β Subreflector axis tilt wrt. paraboloid axis 5.57◦

e Subreflector eccentricity 0.528
a Subreflector semimajor axis 10.417 m
θH Subreflector subtended half-angle 14.99◦

M Magnification 3.166
f Paraboloid focal length 60 m
D Paraboloid projected aperture diameter 100 m
R Paraboloid projected aperture radius 50 m
xc Paraboloid projected aperture center offset from axis 54 m

Table 6: GBT geometrical constants (Norrod & Srikanth, 1996)

CH(θf ) = (cos θf )
q (103)

where CE(θf ) and CH(θf ) are the E- and H-plane patterns, k is the wavevector, and (rf , θf , ϕf )
are the spherical coordinates in a coordinate system centered on the feed phase center. The
phase γf is meant to account for the phase change between the reference plane shown in
Figure 10 of Appendix A and the feed phase center. This will in general include dispersive
effects due to the waveguide and the precise nature of the transition region of the feed, and
so for the following analysis we will leave it unspecified. The exponents p and q parameterize
the width of the forward lobe of E⃗f , and can be determined from a specified edge taper, for
example. For simplicity, we will assume the E- and H-plane patterns are equal (i.e. p = q).
Also note that the form given above for the farfield pattern implies an additional assumption
that the E- and H-plane phase centers are both located at the same point along the feed
axis, i.e. rf = 0.

Determining the aperture field of the primary reflector from this can be accomplished
using geometric optics, from which we obtain the following result for both the Gregorian and
Cassegrain antennas (Rusch, 1990; Shore & Sletten, 1988):

E⃗a =
1 + C1 sin θf cosϕf + C2 cos θf

2fM

[
e−i[2k(a+f)+γf ](cos θf )

p
(
cosϕf ρ̂− sinϕf ψ̂

)]
(104)

M =
|1− e2|

1 + e2 − 2e cos β
(105)

where M is the magnification of the two-reflector system, e and a are the respective eccen-
tricity and semi-major axis of the secondary reflector, β is the angle between the secondary
reflector axis and the primary, paraboloidal reflector axis, and f is the primary reflector focal
length. ρ and ψ are polar coordinates for the primary reflector’s aperture plane, which is
offset from the primary reflector’s axis by an amount (Shore & Sletten, 1988):

xc =
4fe sin β

1 + e2 − 2e cos β
(106)

The aperture plane is normal to the primary reflector’s axis, and we have defined its axial
position such that it contains the primary reflector’s focal point (i.e. prime focus).
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The constants C1 and C2 are given by (Rusch, 1990):

C1 =
(e2 − 1) cosα sin β − [2e− (e2 + 1) cos β] sinα

e2 + 1− 2e cos β
(107)

C2 =
−(e2 − 1) sinα sin β − [2e− (e2 + 1) cos β] cosα

e2 + 1− 2e cos β
(108)

where α is the angle between the feed axis and the secondary reflector axis. For the particular
choice of e, α, and β given in Table 6 for the GBT, it is found that C1 = 0 and C2 = 1. At
this stage, we will also assume for simplicity that the reference antenna is of a symmetric
Cassegrain design with α = β = 0, and in this case we also have C1 = 0 and C2 = 1, but the
offset (106) becomes zero, as expected.

In this case we then have the following mapping between feed coordinates and (primary
reflector) aperture plane coordinates:

ρ = 2fM tan(θf/2) (109)

ψ = ϕf (110)

Using these relations, we have:

cos θf = cos
[
2 tan−1(ρ/2fM)

]
=

1− (ρ/2fM)2

1 + (ρ/2fM)2
(111)

1 + cos θf
2

= cos2(θf/2)

= cos2
[
tan−1(ρ/2fM)

]
=

1

1 + (ρ/2fM)2

(112)

which we can use to simplify the aperture field (104) as follows:

E⃗a =
e−i[2k(a+f)+γf ]

fM

[1− (ρ/2fM)2]
p

[1 + (ρ/2fM)2]p+1 x̂ (113)

The antenna’s farfield pattern can be computed from this using the Fourier transform (Lee,
1988b):

F⃗ (θ, ϕ) =P̂θ,ϕ

[
k

2π

∫∫
eikr̂·R⃗E⃗a d

2R

]
=P̂θ,ϕ

[
k

2π
eikr̂·r⃗0

∫∫
eikr̂·ρ⃗E⃗a d

2ρ

]
=
kei[k(r̂·r⃗0−2f−2a)−γf ](cos θ cosϕ θ̂ − sinϕ ϕ̂)

2πfM

∫∫
eikr̂·ρ⃗

[1− (ρ/2fM)2]
p

[1 + (ρ/2fM)2]p+1 d
2ρ

≈ke
i[k(r̂·r⃗0−2f−2a)−γf ]x̂

2πfM

∫∫
eikr̂·ρ⃗

[1− (ρ/2fM)2]
p

[1 + (ρ/2fM)2]p+1 d
2ρ

(114)
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P̂θ,ϕ = Î − r̂r̂ (115)

The operator P̂θ,ϕ is a projection operator, which projects out the θ and ϕ components of
the quantity in brackets, which in turn is oriented along x̂. In the last line we have assumed
that θ is small, in which case P̂θ,ϕx̂ = x̂. Here, θ and ϕ are the spherical coordinates of a
coordinate system whose polar (z) axis is aligned with that of the primary (paraboloidal)
reflector, and r̂ is the corresponding radial unit vector. The choice of origin is arbitrary,
but in the second line above, we have simplified the integral by shifting the origin of the
integration domain to the center of the primary reflector’s projected aperture, r⃗0:

R⃗ = ρ⃗+ r⃗0 = ρρ̂+ r⃗0 (116)

It will be useful to separate out the phase factor outside the integral in (114) as follows:

F⃗ = eiθg F⃗0 (117)

θg = k(r̂ · r⃗0 − 2f − 2a)− γf (118)

F⃗0 =
k(cos θ cosϕ θ̂ − sinϕ ϕ̂)

2πfM

∫∫
eikr̂·ρ⃗

[1− (ρ/2fM)2]
p

[1 + (ρ/2fM)2]p+1 d
2ρ (119)

It can be seen that the phase θg consists only of a constant component −2k(f + a) − γf
accounting for propagation from the aperture plane to the chosen reference plane at the
feed input as well as a dynamic component kr̂ · r⃗0 which depends on the orientation of the
source. For this reason, we will refer to θg as the geometric phase of the farfield pattern,
to be distinguished from the phase contribution resulting from deformations of the reflector
surface.

In Appendix A it was shown that the correlation of the test and reference receiver outputs
will be proportional to FF ′∗, where F and F ′ are the magnitudes of the respective test and
reference antenna farfield patterns, which are assumed co-polarized. Using the definition
(117) for each of these, we have:

FF ′∗ = ei∆θgF0F
′∗
0 (120)

∆θg = θg − θ′g = k[r̂ · b⃗− 2(f − f ′)− 2(a− a′)]− γf + γ′f (121)

where b⃗ = r⃗0 − r⃗′0 is the baseline associated with the test and reference antenna. Further, if
the phases γf and γ′f associated with the two feeds are non-dispersive, i.e. they both may
be expressed as k times some fixed distance d, then we can associate with ∆θg a unique
geometric time delay:

tg ≡
∆θg
2πν

=
1

c
[r̂ · b⃗− 2(f − f ′)− 2(a− a′)− (d− d′)] (122)

where c is the speed of light and ν is the frequency. As discussed in Appendix A, com-
pensating for this delay, either before or after correlation, is required for the holography
measurement to accurately determine the phase changes associated with the deformations
of the reflector.
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Figure 16: GBT aperture efficiency ηa, illumination efficiency ηi, and spillover efficiency ηs
plotted versus exponent p for a raised cosine illumination (101).

We next determine the aperture efficiency ηa as a function of the reflector illumination,
which we have parameterized by the exponent p in the raised cosine form given in (101).
To do so, we’ll factor the efficiency into a product of illumination efficiency ηi and spillover
efficiency ηs (Thomas, 1971):

ηa = ηiηs (123)

ηi = 2 cot2(θH/2)

{∫ θH
0

[|CE(θf )|+ |CH(θf )|] tan(θf/2) dθf
}2

∫ θH
0

[|CE(θf )|+ |CH(θf )|]2 sin θf dθf
(124)

ηs =

∫ θH
0

[|CE(θf )|2 + |CH(θf )|2] sin θf dθf∫ π/2
0

[|CE(θf )|2 + |CH(θf )|2] sin θf dθf
(125)

where CE(θf ) and CH(θf ) are the E- and H-plane patterns of the feed, and θH is the half-
angle subtended by the secondary reflector. Inserting the forms given in (102) and (103) we
obtain:

ηi =
(2 + 4p)

1− (cos θH)1+2p
cot2(θH/2) [B(−1, 1 + p, 0)−B(− cos θH , 1 + p, 0)]2 (126)

ηs = 1− (cos θH)
1+2p (127)

B(z, a, b) =

∫ z

0

ta−1(1− t)b−1 dt (128)
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A plot of the total aperture efficiency is shown in Figure 16 for the case of the GBT, with
θH = 14.99◦. It is seen that for small p (small edge taper), the spillover efficiency is dominant,
whereas for large p (large edge taper), illumination efficiency is dominant, and a maximum
in ηa will occur between these two regimes. For the GBT, this maximum will occur at p = 36
(10.8 dB edge taper), where ηa = 0.81.

C Aperture field phase versus surface deformation

An essential step in the holography measurement is to convert the measured aperture field
phase of the antenna under test into an equivalent surface deformation. In this section we
will give an explicit expression for this relationship for the case of a dual reflector Gregorian
antenna such as the GBT. We will treat the problem from the standpoint of geometric optics
by considering an arbitrary ray emitted from the point Og shown in Figure 17. Assuming
this point coincides with one of the two foci of the secondary, ellipsoidal reflector, it will be
reflected at Σ and arrive at the other focus Op, which we take to be the prime focus of the
undeformed primary reflector, which is a paraboloid.

If the primary reflector were undeformed, the ray would continue on from the prime focus
to a point Γ on the primary reflector, and get reflected to a point A on the aperture plane,
which we take to be the plane containing the prime focus and lying normal to the paraboloid
axis. It may be shown that the total path length traversed by this ray is given by:

d = 2a+ 2f (129)

where a is the semimajor axis of the secondary reflector and f is the focal length of the
primary reflector.

If we define a cylindrical coordinate system with origin at Op and z-axis pointed along
the primary reflector axis, we can describe the undeformed paraboloid by the equation

z0(P ) = P 2/4f − f (130)

where P is the radial coordinate.
If we now turn to the actual deformed surface, which we describe by an arbitrary axial

displacement ∆z, we see that the original ray reflects off of a point Γ′ on the deformed
primary reflector, and travels an additional path length ∆d = ∆d1 +∆d2 on its way to the
aperture plane, as shown in the expanded view of Figure 17. Note, we assume here and
in the following analysis that the change in surface normal due to the deformation can be
neglected, and so the paths ΓA and Γ′A′ are parallel.

Under this assumption, we have for ∆d2:

∆d2 =z0(P0)− z(P0 +∆P )

≈−∆z − ∂z

∂P
∆P

(131)

where in the second step we have neglected higher order derivatives in the series expansion
of z(P0 +∆P ). If we denote the distance from Op to Γ′ by r0 and associate with this a unit
vector r̂, we then have:

r̂ =
P0

P 2
0 /4f + f

P̂ +
P 2
0 /4f − f

P 2
0 /4f + f

ẑ (132)
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Figure 17: Ray path length analysis for a dual reflector Gregorian antenna

∆r = ∆d1 (133)

(r0 +∆r)r̂ =(P0 +∆P )P̂ + z(P0 +∆P )ẑ

≈r0r̂ +∆PP̂ +

(
∆z +

∂z

∂P
∆P

)
ẑ

(134)

∆P ≈ P0

P 2
0 /4f + f

∆r (135)

∆z +
∂z

∂P
∆P ≈ P 2

0 /4f − f

P 2
0 /4f + f

∆r (136)

Solving the simultaneous equations (135) and (136):

∆P ≈ P0∆z

P 2
0 /4f − f − P0

∂z
∂P

(137)

∆r ≈ (P 2
0 /4f + f)∆z

P 2
0 /4f − f − P0

∂z
∂P

(138)

As mentioned above, we assume any change in the surface normal due to the deformation
can be neglected. Thus, we can simplify the derivative:

∂z

∂P0

≈ dz0
dP

=
P

2f
(139)

∆d1 ≈
(P 2

0 /4f + f)∆z

P 2
0 /4f − f − P 2

0 /2f
= −∆z (140)

∆d2 ≈ −∆z − (P 2
0 /2f)∆z

P 2
0 /4f − f − P 2

0 /2f
= −∆z +

(P 2
0 /2f)∆z

P 2
0 /4f + f

(141)

∆d = ∆d1 +∆d2 ≈ −2∆z +
(P 2

0 /2f)∆z

P 2
0 /4f + f

=
−2f

P 2
0 /4f + f

∆z (142)
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Finally, we have for the associated aperture field phase:

θa = −k∆d ≈ f

P 2
0 /4f + f

· 4π∆z
λ

(143)

where k is the wavevector and λ is the wavelength. Note that the proportionality factor
between θa and ∆z is not constant with radial distance from the paraboloid axis. In fact,
for the GBT, it varies from about 4π/λ near the vertex (P0 = 4 m) to about 0.57 · 4π/λ at
the edge farthest from the paraboloid axis (P0 = 104 m).

D Influence of dynamic gravitational deformations

D.1 Summary of gravitational deformations and their corrections

The holography measurement technique is predicated on the assumption that the antenna
under test rotates rigidly as the measurement progresses. In other words, in order for the
Fourier transform relationship between the measured antenna farfield pattern and the aper-
ture field to be valid, the deformations which are to be measured must be perfectly static.
This of course is only approximately true, and in fact one of the primary design criteria for
the holography system upgrade is to allow for short measurement durations so that dynamic
thermal and wind-induced deformations will be small. Gravitational deformations will also
change with time as the telescope is pointed at various offset angles from the source, par-
ticularly if the source is non-geostationary. Since these deformations are largely repeatable,
we will focus in this section on the effects these deformations will have on the holography
measurement. Since, as is often the case, dynamic focus corrections are applied to the sub-
reflector during a holography measurement, an attempt will be made to account for these as
well. In principal, gravitationally-induced pointing offsets and their associated corrections
will also be at play. But for low resolution holography maps (N = D/∆x ≈ 10 or so), the
offset pointing from the source will, depending on the wavelength, be at most ∼ 1◦, and
at these offsets the pointing error will only be a negligible fraction of a beamwidth (White
et al., 2022).

Much work has already been done to characterize and correct for gravitational deforma-
tions of the GBT, as has already been discussed in detail by others (Wells & King, 1995a;
Wells, 1998; Constantikes, 2008; Prestage et al., 2004; Maddalena, 2014; White et al., 2022).
But to briefly summarize: the GBT, owing to its offset feed design, is only a partly homol-
ogous structure. What this means in practice is that the primary reflector forms a perfect
paraboloid only at its rigging elevation angle (nominally 50◦), and at this position the sub-
reflector can also be positioned such that both the Gregorian feed and the prime focus of the
paraboloid can be simultaneously located at either of its two foci. At any other elevation,
gravity will cause the primary reflector to deform into the approximate shape of a paraboloid
with a different focal length. The feed arm will also deflect by a certain amount, displacing
the two foci of the subreflector from the feed and the prime focus.

To correct for these effects, the actuators underneath the GBT primary reflector drive
the reflector panels towards the nearest “best fit” paraboloid and the subreflector is driven
by its actuators to a position of best focus. The best fit paraboloid is known as a function
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of elevation from a combination of the GBT finite element model (FEM) (Wells & King,
1995a) and a parametric model for the residual error in the FEM (Maddalena, 2014). The
latter is an empirical model based on out-of-focus (OOF) holography measurements and
parameterized in terms of Zernike polynomials with elevation-dependent coefficients, and so
we will refer to it as the Zernike gravity model to distinguish it from the FEM. Each Zernike
polynomial coefficient (measured in microns) has the empirical form:

zn = an sin E + bn cos E + cn (144)

where E is the telescope elevation and an, bn, and cn are constant coefficients. These are
periodically updated to reflect structural changes to the telescope, and as of this writing the
latest model is Model 8.

The position of best focus for the subreflector is similarly parameterized using focus scan
data. Each of the subreflector coordinates (xs, ys, and zs) as well as the associated tilts have
the parametrization:

u = a+ b cos E + c sin E (145)

(note the different naming scheme compared to the one above for the Zernike gravity model).
These parameters are associated with the GBT pointing and focus tracking model, which is
also periodically updated. The latest model as of this writing is Model 6a. Previous to this
focus tracking model, another was developed based on a ray tracing analysis of the GBT
(Wells, 1998), but this was superseded.

It must be stressed that the above corrections are not perfect, however. In particular,
since the subreflector has no active surface, there are insufficient degrees of freedom to
compensate for the change in separation between the Gregorian feed and the prime focus. In
addition, the uncertainty in the Zernike gravity model’s parameters is comparable or even
larger in magnitude to the values of the parameters themselves, and so it is likely that the
corrections applied to the primary reflector still have some residual error of this order (a
few hundred microns for the lower order Zernike terms). Furthermore, for any observation
in which a source is mapped, the active surface is set to the best fit paraboloid associated
with the midpoint of the map (which for a holography scan would be the source’s location
halfway through the scan), but that setting remains fixed for the entirety of the map. At
points other than the midpoint of the map, gravitational deformations relative to that setting
occur without correction.

D.2 Evaluating the severity of dynamic gravitational deforma-
tions

As stated at the beginning of this section, the dynamic gravitational deformations which
occur over the course of a holography measurement should remain “static” to within the
measurement precision. To make this statement more precise, let us consider the case where
the aperture field phase, which we allow to depend on elevation E , can be expanded to first
order about the elevation E0 at the midpoint of the holography scan:

θa(E) =θa,0 +∆θa

≈θa,0 +
∂θa
∂E

∆E
(146)
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where θa,0 = θa(E0), ∆E = E − E0 and the derivative is evaluated at E0. If the telescope
must be moved to elevation E to measure the antenna farfield pattern along direction r̂ (with
spherical coordinates θ and ϕ), we can approximate the measured farfield pattern as follows:

F (θ, ϕ) =

∫∫
eikr̂·ρ⃗eiθa d2ρ

≈
∫∫

eikr̂·ρ⃗eiθa,0
(
1 + i

∂θa
∂E

∆E
)
d2ρ

≈F0 +∆F

(147)

F0(θ, ϕ) ≡
∫∫

eikr̂·ρ⃗eiθa,0 d2ρ (148)

∆F (θ, ϕ) ≡ i∆E
∫∫

eikr̂·ρ⃗eiθa,0
∂θa
∂E

d2ρ (149)

where in the first line of (147) we have assumed constant unit amplitude for the aperture
field and in the second line we have assumed the change ∆θa to be small. In (148) we have
defined F0 as the antenna farfield pattern at the midpoint elevation E0 while ∆F is the
corresponding change due to ∆E . In the limit of small aperture field sample spacing ∆x we
can approximate the measured antenna aperture field by the inverse Fourier transform of F :

Ea =F.T.−1 [F (θ, ϕ)]

=Ea,0 +∆Ea
(150)

Ea,0 ≡ F.T.−1 [F0(θ, ϕ)] =

{
eiθa,0 ρ ≤ R

0 ρ > R
(151)

∆Ea ≡ F.T.−1 [∆F (θ, ϕ)] (152)

Determining the effect of the elevation change ∆E then only reduces to finding the inverse
Fourier transform of ∆F . Since ∆E changes with coordinates θ and ϕ, we must determine
this dependence first.

The telescope elevation E and azimuth A can be related to the farfield coordinates θ and
ϕ as follows:

sin θ cosϕ = − cos Es sin(A−As) (153)

sin θ sinϕ = sin Es cos E − cos(A−As) cos Es sin E (154)

where As and Es are the source azimuth and elevation. For most holography measurements,
particularly those with low spatial resolution in the antenna aperture plane, the offset angles
A−As and E −Es will be small, and so we can approximate the above expressions as follows:

sin θ cosϕ ≈ −(A−As) cos Es (155)

sin θ sinϕ ≈ −(E − Es) = −E0 −∆E + Es (156)

If we assume the entire holography measurement lasts T = 10 minutes and the source
orbits the celestial pole once per sidereal day, the source elevation Es will change by at most:

∆Es ≈
360◦ · cosL
23.93 h

· 10min = 1.96◦ (157)
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where L = +38.4330◦ is the latitude of the GBT. This is about an order of magnitude larger
than the angular offset for a low resolution holography measurement at Ku-band, which for
a resolution of ∆x = D/15 = 6.67 m is:

∆m ≡ ∆(sin θ sinϕ) = λ/∆x = 0.2◦ (158)

The telescope in this case is essentially tracking the source while making only small angular
offsets to measure the antenna farfield pattern. If we approximate this by a linear function of
the time relative to the time t0 at the midpoint of the scan and we further assume Es(t0) = E0:

Es =
∆Es
T

(t− t0) + E0 (159)

we have for ∆E :
∆E ≈ Es − E0 =

∆Es
T

(t− t0) (160)

Conventionally, holography measurements are performed as RALongMap scans, in which
the telescope is raster scanned along parallel rows of constant declination, with the declina-
tion incremented between rows. In this case, the left hand side of (156) will have a stair-step
functional dependence on time, which we may also approximate as a linear function of the
time offset from t0. Within this approximation, we can use (160) to relate it to ∆E :

sin θ sinϕ ≈ ∆m

T
(t− t0) =

∆m

∆Es
∆E (161)

Solving the above expression for ∆E then gives the explicit dependence on θ and ϕ that is
required:

∆E = κ sin θ sinϕ (162)

κ ≡ ∆Es
∆m

(163)

We are now prepared to compute the expression for ∆Ea:

∆Ea =F.T. [∆F (θ, ϕ)]

=F.T.

[
i∆E

∫∫
eikr̂·ρ⃗eiθa,0

∂θa
∂e

d2ρ

]
=
iλκ

(2π)3

∫∫
e−i(kxx+kyy)ky

[∫∫
ei(kxx

′+kyy′)eiθa,0
∂θa
∂E

dx′ dy′
]
dkx dky

=
λκ

(2π)3
∂

∂y

[
eiθa,0

∂θa
∂E

]
=Ea,0(ϵx + iϵy)

(164)

where in the above we have defined:

ϵx ≡
λκ

(2π)3
∂2θa
∂y∂E

(165)

ϵy ≡
λκ

(2π)3
∂θa,0
∂y

∂θa
∂E

(166)
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and used the coordinate transformation in terms of the in-plane wavevector components:

kx =
2π

λ
sin θ cosϕ (167)

ky =
2π

λ
sin θ sinϕ (168)

Here, the y-axis of the aperture plane is aligned approximately orthogonal to the rows of the
raster map and along the direction of monotonically increasing (or decreasing) declination.
Note: in taking the partial derivative with respect to y, we have neglected the discontinuity
at the edge of the aperture.

Assuming |∆Ea| ≪ |Ea,0|, we can approximate the error ∆θ̃a in the measured aperture
field phase θ̃a as a result of ∆Ea:

∆θ̃a =− i log

[
Ea,0(Ea,0 +∆Ea)

∗

|Ea,0||Ea,0 +∆Ea|

]

=− i log

 1 + ϵx − iϵy√
(1 + ϵx)2 + ϵ2y


≈− ϵy = − λκ

(2π)3
∂θa,0
∂y

∂θa
∂E

(169)

In the following section, we will determine the aperture field phase θa from a modeled defor-
mation of the primary reflector surface z(E , x, y) and using the approximate proportionality
constant 4π/λ:

∆θ̃a = − 2κ

πλ

∂z0
∂y

∂z

∂E
(170)

In Section D.4, we will determine the aperture field phase from the optical path length (OPL)
l(E , x, y) from the Gregorian feed to the aperture plane, in which case the proportionality
constant is k = 2π/λ:

∆θ̃a = − κ

2πλ

∂l0
∂y

∂l

∂E
(171)

In either case, we will then proceed to numerically compute the effective surface measurement
error ϵrms from (85).

Before proceeding, however, it is important to note that the partial derivative with respect
to y in (169) is a direct consequence of the mapping sequence. If the holography scan were
conducted instead as a DecLatMap, where the raster scan would proceed along columns
of constant right ascension, ∆E would no longer relate to the coordinates θ and ϕ in a
straightforward manner, and the expression for ∆z̃ would be more complicated. The analysis
also changes if the holography map angular size ∆m along the elevation direction becomes
comparable to or larger than the elevation change of the source. We nevertheless use (169)
as a guide in the following discussion.
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D.3 Dynamic surface deformations

We will first examine the dynamic changes in the measured antenna aperture field due
only to the gravitational deformations of the primary reflector surface and their associated
corrections, leaving a discussion of the effects of the feed arm deflections for later. We will
assume that, at the midpoint elevation E0 of the scan, the active surface is set according to the
sum of the FEM and Zernike gravity model corrections zFEM(E0) and zZ(E0), respectively.
Whenever these corrections are applied at any arbitrary elevation E , we define the residual
correction required to shape the reflector into the best fit paraboloid to be:

zr(E , ρ, ψ) ≡
21∑
j=4

(∆aj sin E +∆bj cos E +∆cj)Zj(ρ/R, ψ) (172)

where the coefficients ∆aj, ∆bj and ∆cj are normally distributed, zero mean random vari-
ables with standard deviations equal to the corresponding parameter uncertainties of the
Zernike gravity model (Maddalena, 2014)5.

Since the reflector surface is set only at the midpoint elevation of the scan, the total
correction applied to the surface at any arbitrary elevation E will be given by:

zc,0 = zFEM(E0) + zZ(E0) (173)

whereas the required surface correction is given by:

zc(E) = zFEM(E) + zZ(E) + zr(E) (174)

The difference between these is just the net remaining surface deformation z:

z = zc,0 − zc = −zr(E)−∆zFEM(E)−∆zZ(E) (175)

∆zFEM(E) ≡ zFEM(E)− zFEM(E0) (176)

∆zZ(E) ≡ zZ(E)− zZ(E0) (177)

To evaluate the phase error ∆θ̃a from (170), we must then compute the following derivatives:

∂z0
∂y

= −∂zr,0
∂y

(178)

∂z

∂E
= −∂zr

∂E
− ∂zFEM

∂E
− ∂zZ

∂E
(179)

where z0 = z(E0), zr,0 = zr(E0), and the partial derivatives with respect to E are evaluated
at E = E0.

In Figure 18 we show the phase error ∆θ̃a over the entire aperture plane for the case
E = 90◦, κ = 10, and center frequency ν0 = 12 GHz, and in Figure 19 we show the

5Because the standard deviations σa, σb, and σc also reflect the scatter in the dynamic environmental
conditions during the gathering of data for the empirical Zernike gravity model, this expression for zr likely
overestimates the error between the active surface setting and the correct best fit paraboloid if gravitational
deformations alone are to be included.
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Figure 18: Simulated aperture phase measurement error ∆θ̃a due to dynamic gravitational
changes of the surface. Here, the midpoint elevation of the simulated holography scan is 90◦

and the source change in elevation ∆Es is assumed to be ten times the angular size of the
holography map.

equivalent deformation measurement error ϵrms calculated from (85) for several elevations
between 10◦ and 90◦. The partial derivatives given above were evaluated numerically with
step sizes of ∆E = 1.0◦ and ∆y = 1.0 m, and the residual error zr was simulated over 100
iterations according to the statistical properties mentioned earlier for the coefficients ∆aj,
∆bj, and ∆cj. Both figures 18 and 19 reflect the average over those 100 iterations. The
versions used for the FEM and Zernike gravity model were 95b and 8, respectively.

From Figure 19 it can be seen that, over the full range of possible telescope elevations,
the measurement error ϵrms associated just with the dynamic gravitational deformations of
the primary reflector is about four orders of magnitude smaller than the required 100 µm
measurement uncertainty for the holography system. In the context of holography measure-
ments, we can therefore regard these deformations as effectively static.

D.4 Dynamic feed arm deflections and focus tracking

As mentioned above, when the telescope tips away from its rigging angle, the feed arm will
undergo a deflection simultaneous with the deformations to the primary reflector. It is the
strategy of the GBT focus tracking model to compensate both for the deflection of the feed
arm and the transformation of the primary reflector into a different best fit paraboloid,
whose focal length, absolute position, and orientation have all changed with respect to the
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Figure 19: Equivalent surface error ϵrms due to dynamic gravitational deformations of the
primary reflector, plotted as a function of the elevation at the midpoint of the holography
scan. The elevation change ratio κ is fixed and equal to 10, and the center frequency ν0 is
fixed an equal to 12 GHz.
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design paraboloid in the co-rotating “reflector” coordinate system (Wells & King, 1995b;
Goldman, 1997). The correction applied by the focus tracking model can only ever partially
compensate for the induced optical aberrations since, in general, the separation between
the Gregorian feed and the prime focus of the primary reflector will be different than the
separation between the two foci of the subreflector’s parent ellipsoid.

In practice, then, even if the active surface corrections manage to shape the primary
reflector into the best fitting paraboloid, the imperfect illumination of the primary reflector
via the subreflector will still induce a nonuniform phase distribution over the projected
aperture plane, and this too will vary over the course of the holography measurement. The
axial displacement z associated with the phase in this case is not due to a deformation of
the primary reflector, but a change in the OPL from the Gregorian feed to the aperture
plane. By using the elevation-dependent deflections and corrections from the GBT FEM
and focus tracking model to determine the positions of the relevant optical elements, we can
therefore use raytracing to compute the OPL as a function of elevation and position within
the aperture plane and then use (171) and (85) to compute the measurement error.

In Figure 20 we show the result of this analysis for a midpoint elevation E0 = 90◦, elevation
change ratio κ = 10, and center frequency ν0 = 12 GHz. The equivalent measurement error
ϵrms of the surface deformation is plotted versus midpoint elevation in Figure 21. Similarly
to the preceding analysis, the derivatives in (171) were computed numerically with step
sizes ∆E = 1.0◦ and ∆y = 1.0 m. Simulated rays were projected from the (deflected)
Gregorian focus at regular increments of the feed spherical coordinates θf,j = j∆θf and
ϕf,j = j∆ϕf , with ∆θf = 0.5◦ and ∆ϕf = 1.0◦. The net deformations, deflections, and
tilts of all relevant optical elements (Gregorian feed phase center, subreflector, and primary
reflector) were incorporated using the version 95b GBT FEM and version 6a pointing focus
model. So that the effects of the feed illumination alone could be studied, it was assumed that
the primary reflector was in the shape of its best fit paraboloid at all elevations. Position and
rotational information is given for the relevant optical elements for all simulated midpoint
elevations in Table 7.

From these figures it can be seen that the measurement error associated with the elevation-
dependent feed illumination is several orders of magnitude larger than that due to the
elevation-dependent deformations of the primary reflector, at least when the elevation is
different from the 50◦ rigging angle. Figure 21 shows that the equivalent surface measure-
ment error remains below the 100 µm for all elevations, although it does climb rapidly towards
this value at zenith. This can be mostly attributed to the fact that the antenna model at this
elevation exhibits an approximately 0.5 radians per meter phase gradient along the y-axis,
which also increases with elevation at a rate of about 0.5 radians per degree.

It is difficult to assess whether these results and those in the preceding section above
are indicative of the true measurement errors one would encounter in an actual holography
measurement. For one thing, a phase gradient of 0.5 radians per meter at ν0 = 12 GHz would
produce a pointing offset of about 7’. This is comparable in size to both the symmetric and
asymmetric gravity terms of the current pointing model, which has not been included in
the raytracing simulation (White et al., 2022). A second source of uncertainty in the model
is the accuracy of the GBT FEM used to determine the positions and orientations of the
optical elements. For the present purposes, however, it is perhaps enough to say that, on an
order of magnitude basis, the interplay between the pointing model, focus tracking model,
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Figure 20: Simulated aperture phase measurement error ∆θ̃a due to dynamic gravitational
changes of the feed arm combined with focus tracking. Here, the midpoint elevation of the
simulated holography scan is 90◦ and the source change in elevation ∆Es is assumed to be
ten times the angular size of the holography map.
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Figure 21: Equivalent surface error ϵrms due to dynamic gravitational deformations of the
feed arm and focus tracking errors, plotted as a function of the elevation at the midpoint of
the holography scan. The elevation change ratio κ is fixed and equal to 10, and the center
frequency ν0 is fixed an equal to 12 GHz.
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and gravitational deflections of the feed arm are far more dynamic than the gravitational
deformations of the primary reflector, and there is at least a potential for those effects to
introduce systematic errors into the holography measurement.

E yf zf α′ ys zs β′ f yr zr γ′

10 -1.0312 -10.9223 12.17 -0.5655 -5.4764 -5.71 60.0023 -8.0800 7.7883 -0.14
20 -1.0288 -10.9293 12.21 -0.5617 -5.4772 -5.68 60.0008 -8.0900 7.7762 -0.11
30 -1.0342 -10.9360 12.25 -0.5550 -5.4771 -5.65 59.9999 -8.1087 7.7642 -0.08
40 -1.0473 -10.9423 12.29 -0.5456 -5.4760 -5.61 59.9996 -8.1356 7.7525 -0.04
50 -1.0677 -10.9481 12.33 -0.5338 -5.4740 -5.57 60.0000 -8.1699 7.7417 0.00
60 -1.0947 -10.9530 12.37 -0.5200 -5.4711 -5.53 60.0010 -8.2106 7.7320 0.04
70 -1.1276 -10.9571 12.40 -0.5046 -5.4674 -5.49 60.0027 -8.2563 7.7237 0.08
80 -1.1654 -10.9601 12.43 -0.4880 -5.4629 -5.46 60.0049 -8.3058 7.7170 0.11
90 -1.2068 -10.9620 12.46 -0.4708 -5.4578 -5.43 60.0077 -8.3574 7.7123 0.14

Table 7: Positions and rotations of relevant optical elements from ray tracing simulations,
as determined from the GBT finite element model version 95b and focus tracking model
6a. E is the telescope elevation; (yf , zf , α

′), (ys, zf , β
′), and (yr, zr, γ

′) are the respective
coordinates and inclination angles of the Gregorian feed, subreflector parent ellipsoid, and
reference feed; and f is the focal length of the primary reflector. All distances are measured
in meters and all angles are measured in degrees in a coordinate system centered on the
primary reflector’s prime focus and aligned with its z-axis along the primary reflector axis.
Angles are measured with respect to the +z-axis.

D.5 Effects on geometric delay tracking

Until now we have only considered the effects of dynamic gravitational deformations just to
the farfield pattern of the antenna under test, which in Appendix B was denoted F0(ν, θ, ϕ)
(see Equation (117)). However, since the holography measurement detects both magnitude
and phase, the actual quantity measured will also include the complex phase factor eiθg

which is due to the relative propagation delay tg between the test and reference receivers. If
the reference antenna is placed at the top of the feed arm, both it and the test receiver will
be subject to the dynamic gravitational deflections described in the previous section. Since
the geometric phase delay must be tracked and compensated by an equal instrumental delay
td in order to maintain coherence between the test and reference signals before correlation,
delay tracking requires accurate tracking or foreknowledge of the dynamic changes in tg due
to changing gravitational deformations (see Figure 11 in Appendix A for the effect delay
error has on the modulus rc of the complex correlator output).

We re-state the expression (122) for tg below:

tg =
1

c

[
r̂ · b⃗− (l − l′)

]
(180)

where c is the speed of light, r̂ is the source direction, b⃗ is the baseline vector pointing from
the center of the reference antenna projected aperture to the corresponding point of the test

72



Figure 22: Geometric delay between test and reference signals relative to that in which no
gravitational deformations of the GBT were present

antenna, and l and l′ are the OPLs from the test and reference feeds to the aperture planes
of their respective antennas, which we have defined to lie normal to the primary reflector
axis and contain the prime focus. If we assume the reference antenna to be perfectly rigid,
the geometric delay then contains two terms which are sensitive to gravitational changes:
r̂ · b⃗ and l.

The influence of the first term is simple enough to estimate using the GBT finite element
model if one simply picks a suitable FEM node to associate with the center of the reference
antenna aperture plane. For the following analysis we have chosen node 51020 (from FEM
version 95b), which lies in the GBT symmetry plane x = 0 and whose remaining coordinates
are given as yr and zr in Table 7 as a function of telescope elevation.

The gravity and elevation dependence of the OPL l is more difficult to determine. In
(122) it was shown equal to twice the sum of the GBT focal length f and the subreflector
semimajor axis a, however this only applies when the GBT optics are perfectly aligned. As
we have seen in the previous section, the OPL at any elevation other than the rigging angle
will vary over the aperture plane. But since the spatial variations of the OPL across the
aperture are what one desires to measure, the instrumental delay needs only to compensate
for the bulk, or average propagation delay from the aperture plane to the Gregorian feed.
To do so, we use ray tracing in combination with the version 95b FEM and version 6a focus
tracking model as was done in the analysis of the previous section. The result is shown in
Figure 22 for the case when the test and reference antennas are both pointed directly at the
source, which may lie at any arbitrary elevation.

73



In the figure, we have plotted the relative geometric delay, which is the the quantity given
above in (180) averaged over the test antenna aperture plane minus the “ideal” geometric
delay, which is what would occur in the absence of gravitational deformations. It can be seen
that, at least for the gravitational deformations and corrections incorporated into the model,
the relative propagation delay is significant in comparison with the inverse of the proposed
upgraded holography system’s bandwidth (1 GHz), which would lead to strong decoherence
between the test and reference signals if not accurately accounted for in the compensating
instrumental delay.

E Bandwidth smearing

In the sensitivity analysis of Appendix A it was assumed that the system fractional band-
width ∆ν/ν0 was small, which simplified the resulting expressions for the complex correlator
outputs vx and vy such that they were proportional to the test antenna farfield pattern eval-
uated at the center frequency, F (ν0, θ, ϕ) (see Equations (26) and (27)). In this section we
will drop this quasi-monochromatic assumption, at least for those terms with the strongest
frequency dependence, and examine what effect this will have on the measured antenna
aperture field and its phase. It will be shown that the effect results in a radial smearing of
the measured aperture field, which is analogous to the bandwidth smearing effect referred to
in the context of imaging radio interferometry (Thompson et al., 2017b).

Since the model for the aperture field in the sensitivity analysis was real, we can restrict
attention to the real part of the measured test antenna farfield pattern, which in turn is
proportional to the real part of the complex correlator output vx. In (24) it was shown
that vx was proportional to the following integral over frequency before making the quasi-
monochromatic assumption:

vx ∝
∫ νmax

νmin

√
AeA′

eS
F0(ν, θ, ϕ)

|F0(ν, 0, 0)|
dν (181)

where in the above we have ignored all frequency-independent terms and assumed that
the geometric phase delay has been exactly canceled by the instrumental time delay (see
Appendix B). The bounds of the frequency integral νmin and νmax are defined in terms of
the system bandwidth ∆ν and center frequency ν0:

νmin = ν0 −∆ν/2 (182)

νmax = ν0 +∆ν/2 (183)

The effective antenna areas Ae and A′
e will depend on frequency through changes in

the beamwidths of their respective feeds. However, if we assume that the antennas are
illuminated close to their maximum antenna efficiency (see Figure 16), we can assume that
any frequency dependence will be small, and these can still be brought out of the integral.
The incident power flux density S is assumed to be that of a blackbody with solid angle Ωs

and brightness temperature TB:

S =
2kBν

2

c2
TBΩs (184)
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In the Raleigh-Jeans limit, TB can be assumed constant and equal to the thermodynamic
temperature of the source, and so S contributes a factor ν2 to the integral.

The test antenna farfield pattern F0(ν, θ, ϕ) (normalized by its on-axis value F0(ν, 0, 0))
contains the largest frequency dependence through the presence of the wavevector k in the
Fourier kernel eikr̂·ρ⃗. If we use (114) to express it as a Fourier transform of the aperture field,
and retain all remaining frequency-dependent terms in the integral, we have:

vx ∝
∫ νmax

νmin

ν2 {F.T. [Ea(ρ, ψ)] (k sin θ, ϕ)} dν

∝
∫ νmax

νmin

ν2
[∫∫

eikρ sin θ cos(ϕ−ψ)Ea(ρ, ψ) ρ dρ dψ

]
dν

∝
∫ νmax

νmin

ν2
[∫∫

ei(ν/ν0)k0ρ sin θ cos(ϕ−ψ)Ea(ρ, ψ) ρ dρ dψ

]
dν

(185)

where we have used the shorthand notation F.T. to express the Fourier transform:

F.T. [Ea(ρ, ψ)] (k sin θ, ϕ) =

∫∫
eikr̂·ρ⃗Ea(ρ, ψ) d

2ρ (186)

and in the last line we have expressed the wavevector in terms of that at the center frequency:

k =
2πν

c
=

ν

ν0
· 2πν0

c
=

ν

ν0
k0 (187)

If we make an analogous change of variables in the spatial integral:

ρν ≡
ν

ν0
ρ (188)

Ea,ν(ρν , ψ) ≡ Ea((ν0/ν)ρν , ψ) = Ea(ρ, ψ) (189)

we then have:

vx ∝
∫ νmax

νmin

ν20

[∫∫
eik0ρν sin θ cos(ϕ−ψ)Ea,ν(ρν , ψ) ρν dρν dψ

]
dν

∝
∫ νmax

νmin

ν20 {F.T. [Ea,ν(ρν , ψ)] (k0 sin θ, ϕ)} dν
(190)

The measured aperture field Ẽa will be the discrete Fourier transform of the sequence of
measurements of vx, but in the limit that the sample spacing in the measured antenna farfield
pattern tends to zero, we can approximate it by taking the continuous Fourier transform:

Ẽa ∝F.T.−1 [vx(k0 sin θ, ϕ)] (ρ, ψ)

∝
∫ νmax

νmin

ν20
(
F.T.−1 {F.T. [Ea,ν(ρ′, ψ′)] (k0 sin θ, ϕ)} (ρ, ψ)

)
dν

∝
∫ νmax

νmin

ν20Ea,ν(ρ, ψ) dν

(191)
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From its definition above, it can be seen that Ea,ν(ρ, ψ) is a radially scaled version of the
antenna aperture field (which is stretched for ν > ν0 and contracted for ν < ν0), and since
it appears inside the frequency integral the result is a radially smeared image of the original
aperture field.

Since we will be interested in characterizing the antenna surface in terms of its Zernike
decomposition, it will be useful to determine the effect this radial smearing will have on the
Zernike polynomials Zm

n (ρ, ψ). For simplicity, we will assume that the aperture field has
uniform unit amplitude and the surface deformation is small, such that the associated phase
θa is given by its imaginary part:

Ea(ρ, ψ) =H(R− ρ)eiθa

≈H(R− ρ)(1 + iθa)
(192)

where H(x) is the Heaviside step function:

H(x) =

{
1 x ≥ 0

0 x < 0
(193)

In this approximation, if θa is expressed in terms of the Zernike polynomials

θa =
∞∑
n=0

n∑
m=0

[
amnZ

m
n (ρ/R, ψ) + bmnZ

−m
n (ρ/R, ψ)

]
(194)

the effect of the radial smearing can therefore be understood entirely from its effect on the
individual polynomials after multiplication with H(R−ρ) (note: for clarity we use a different
indexing scheme for the Zernike polynomials than that used in the GBT gravity model, for
example). Since the Zernike polynomials can be expressed as the product of a radial part
Rm
n (ρ/R) and an azimuthal part:

Zm
n (r, ψ) =

{
Rm
n (r) cosmψ m ≥ 0

R−m
n (r) sin(−mψ) m < 0

(195)

the effect of the radial smearing will affect the radial part alone (in the above we have defined
the normalized radial coordinate r = ρ/R). From this it also follows that the radially smeared
Zernike polynomial will remain orthogonal to Zernike polynomials with different azimuthal
index m, and so it will have a Zernike decomposition in terms of polynomials with the same
m. At the edge of the projected aperture, the measured field amplitude will no longer drop
discontinuously to zero, but will gradually taper to zero over a radial distance proportional
to the fractional bandwidth ∆ν/ν0:

R̃m
n (r) =

∫ νmax

νmin

H(1− (ν0/ν)r)R
m
n ((ν0/ν)r) dν

=


∫ νmax

νmin
Rm
n ((ν0/ν)r) dν r ≤ νmin/ν0∫ νmax

ν0r
Rm
n ((ν0/ν)r) dν νmin/ν0 < r ≤ νmax/ν0

0 r > νmax/ν0

(196)
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Figure 23: An example of the effect of radial smearing in the case of the Zernike radial
function R0

5(ρ/R) for several different fractional bandwidths

As an example we show R̃0
5(r) for several different fractional bandwidths in Figure 23.

For the present purposes, we will consider only the interior region of the aperture field
(where r ≤ νmin/ν0). In this region, the real part of the measured aperture field remains
constant and uniform, and so the real part of the frequency integral (191) evaluates to a
constant amplitude of ν20∆ν. If we retain the small angle approximation for the aperture
field phase θa, we can then give an approximate expression for the measured aperture field
phase θ̃a after bandwidth smearing:

θ̃a(r, ψ) ≈
ν20amnR̃

m
n (r) cosmψ

ν20∆ν

≈amn∆ν−1R̃m
n (r) cosmψ

(197)

In the above we have assumed for simplicity that θa consists of a single even Zernike term
with expansion coefficient amn. Since under the small angle approximation, amn is no larger
than 1 radian, we can then define the maximum phase error as follows:

∆θa ≡ ∆ν−1R̃m
n (r) cosmψ −Rm

n (r) cosmψ (198)

In Table 8 we list the first set of Zernike radial functions with 1 ≤ n ≤ 5 along with their
smeared versions (normalized by ∆ν) as a function of the fractional bandwidth. For each
of these terms we have also computed the equivalent surface measurement error ϵrms (see
Equation (85)) from the phase error defined in (198) above, and plotted this as a function
of fractional bandwidth for the case that the center frequency ν0 = 12 GHz.
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From this it can be seen that, by and large, the error ϵrms associated with Zernike terms
with higher radial indices tends to grow more rapidly with increasing fractional bandwidth
than it does for lower radial index terms. But for radial indices up to n = 5, this error does
not exceed the required surface measurement error 100µm until a fractional bandwidth of
about 0.2, which for ν0 = 12 GHz is 2.4 GHz. But given that we have not considered effects
at the boundary of the aperture or Zernike terms with n > 5, a safety factor of, say, 2 should
be probably be imposed when limiting the system bandwidth.

n m Rm
n (r) ∆ν−1R̃m

n (r)

1 1 r 1
δ
log
(
2+δ
2−δ

)
r

2 0 2r2 − 1 8
4−δ2 r

2 − 1

2 2 r2 4
4−δ2 r

2

3 1 3r3 − 2r 48
(4−δ2)2 r

3 − 4
δ
tanh−1(δ/2)r

3 3 r3 16
(4−δ2)2 r

3

4 0 6r4 − 6r2 + 1 32(12+δ2)
(4−δ2)3 r

4 − 24
4−δ2 r

2 + 1

4 2 4r4 − 3r2 64(12+δ2)
3(4−δ2)3 r

4 − 12
4−δ2 r

2

4 4 r4 16(12+δ2)
3(4−δ2)3 r

4

5 1 10r5 − 12r3 + 3r 640(4+δ2)
(4−δ2)4 r

5 − 192
(4−δ2)2 r

3 + 6
δ
tanh−1(δ/2)r

5 3 5r5 − 4r3 320(4+δ2)
(4−δ2)4 r

5 − 64
(4−δ2)2 r

3

5 5 r5 64(4+δ2)
(4−δ2)4 r

5

Table 8: Effect of radial smearing (191) on Zernike radial functions Rm
n (r) as a function of

fractional bandwidth δ = ∆ν/ν0
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Figure 24: Effective surface measurement error ϵrms due to bandwidth smearing of the lowest
order Zernike polynomials, plotted as a function of fractional bandwidth and assuming a
center frequency of ν0 = 12 GHz
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Should the original small angle approximation for the aperture field phase become invalid,
we can improve the approximation for the exponential in (192) up to second order, for
example. In this case we can see that the frequency integral (191) will involve smearing
of products of Zernike polynomials, which does not preserve the angular dependence of the
original polynomial. The analysis quickly becomes more complicated, and so we will not
attempt it here. But the results given above may still serve as an optimistic estimate for the
onset of appreciable phase measurement errors due to the effects of bandwidth smearing.

F Aperture field errors due to discrete sampling and

truncation

F.1 Overview

The antenna farfield and aperture field are both defined over continuous domains and are
related to each other through the continuous Fourier transform. However, in practice, one
must determine one from the other from a measurement over a finite domain and a dis-
crete set of points and approximate the Fourier transform by the discrete Fourier transform
(DFT). The error in this approximation manifests as two well-known effects: the Gibbs phe-
nomenon and aliasing. The purpose of this section is to quantify these errors in the context
of holography measurements.

We consider first the one-dimensional case in which we have an aperture field Ea(x) and
farfield Ef (ν), where

ν =
sin θ

λ
(199)

is the wavenumber Fourier conjugate to the aperture coordinate x, θ is the corresponding
angular coordinate, and λ is the wavelength. As stated above, these are Fourier transform
pairs (up to a proportionality constant):

Ef (ν) =

∫ ∞

−∞
Ea(x)e

2πiνxdx. (200)

Ea(x) =

∫ ∞

−∞
Ef (ν)e

−2πiνxdν. (201)

In practice, we measure the farfield Ef (ν) over a set of N discrete points νk = k∆ν over a
finite (truncated) domain, obtaining the values Ef,k = Ef (νk) (without loss of generality we
shall assume N to be even). Taking the DFT of Ef,k approximates the desired aperture field
over a discrete set of points xj = j∆x:

Ẽa,j =

N/2−1∑
k=−N/2

Ef,ke
−2πiνkxj

=

N/2−1∑
k=−N/2

Ef,ke
−2πijk/N ,

(202)
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where we have used the notation Ẽa,j to distinguish the quantity from the true aperture field
Ea(x). In the second line above we have used the Nyquist sampling theorem:

xn =
N∆x

2
=
L

2
=

1

2∆ν
(203)

∆ν∆x = N−1, (204)

where xn is analogous to the Nyquist frequency in the spatial domain and is therefore equal
to half the sampling frequency ∆ν−1 in the reciprocal domain. L = N∆x then defines
the interval |x| ≤ L/2 corresponding to the first Nyquist zone. In order to avoid aliasing
at the zone boundaries, Holography measurements therefore must be performed with ∆ν
chosen small enough that this interval fully encloses the region where Ea(x) is expected to
be significant, which is typically some factor k > 1 times the diameter of the antenna under
test. However, as will be shown below, some aliasing will nevertheless be unavoidable due
to the effect of the finite sampling interval |ν| ≤ N∆ν/2.

To proceed we use the Poisson summation formula, which states that for a given Fourier
transform pair f(x) and g(ν):

fL(x) =
∞∑

k=−∞

[
L−1g(k/L)

]
e−2πikx/L, (205)

where fL(x) is the periodic extension of f(x) with period L:

fL(x) =
∞∑

k=−∞

f(x− kL). (206)

We see that the right-hand side of (205) can be made equivalent to the DFT in (202) if
we regard Ef,k as a set of discrete samples of a function L−1g′(ν) and we define g(ν) as a
windowed version of g′(ν):

g(ν) = Π(ν/Q)g′(ν) =

{
g′(ν) |ν| ≤ Q/2

0 |ν| > Q/2,
(207)

where Q = N∆ν = ∆x−1 is the width of the sampling interval and Π(z) is the rectangular
windowing function. If f ′(x) is the Fourier transform of the original function g′(ν), we have
from the convolution theorem:

f(x) = f ′(x) ∗∆x−1 sincπx/∆x, (208)

where ∗ is the convolution operator and Q sinc πQx is the Fourier transform of Π(ν/Q). In
the limit as ∆x→ 0 we have:

lim
∆x→0

∆x−1 sincπx/∆x = δ(x) (209)
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where δ(x) is the Dirac delta function, and the result of the convolution is just the original
function f ′(x), as expected. Combining these results, we can finally express the values Ẽa,j
in terms of the actual aperture field Ea(x):

Ẽa,j =L
∞∑

k=−∞

[
Ea(x

′) ∗∆x−1 sincπx′/∆x
]
(xj − kL)

→LEa(xj)

(210)

where in the second line we have taken the limit as ∆x → 0 and assumed Ea(x) is zero
outside the interval L/2 ≤ x < L/2. This result may be readily extended to two dimensions:

Ẽa,jk =L
2

∞∑
l,m=−∞

[
Ea(x

′, y′) ∗ ∗(∆x∆y)−1 sinc(πx′/∆x) sinc(πy′/∆y)
]
(xj − lL, yk −mL)

→L2Ea(xj, yk)

(211)

where ∗∗ represents a convolution along both x and y.
Note, however, that for any finite sample spacing ∆ν, the convolution of Ea(x) with

∆x−1 sinc πx/∆x will be nonzero outside of this interval, and so the periodic extension
expressed in (211) will contain aliased components from nearby Nyquist zones. A second
effect of the convolution is the Gibbs phenomenon, which results in an apparent overshoot
near discontinuities. Both of these effects can be observed in Figure 25 for the case Ea(x) =
Π(x).

F.2 Holography measurement errors: Gibbs phenomenon
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Figure 25: Example showing the discrete Fourier Transform (DFT) of the sinc function,
which is equal to the rectangular function Π(x) in the continuum limit. Discrete sampling
over a finite domain results in aliasing from the periodic replicas f(x − kL) in adjacent
Nyquist domains and the oscillations near discontinuities (Gibbs phenomena). fL(x) is the
sum of all periodic replicas as defined in (206) and is equal to the DFT at the sampled
locations.
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To quantify the effect of the Gibbs phenomenon separately from the effect of aliasing, we
will first compute (210) for a one-dimensional model for the aperture field distribution and
include only the central k = 0 term. We express the model aperture field as:

Ea(x) =Π(x/D)e2πix/a

≈Π(x/D) [1 + 2πix/a]
(212)

where Π(x) is same rectangular window function defined above in (207), D = 2R is the
aperture diameter, and we have assumed the phase θa = 2πx/a is small and has uniform
gradient parameterized by a.

Inserting this into the convolution integral (208), we obtain the measured aperture field
including the Gibbs phenomenon:

E ′
a(x) =Ea(x) ∗∆x−1 sinc πx/∆x

=E ′
a,R(x) + iE ′

a,I(x)
(213)

E ′
a,R(x) =

1

π
Si

[
π(x+R)

∆x

]
− 1

π
Si

[
π(x−R)

∆x

]
(214)

E ′
a,I(x) =

2πx

a

{
1

π
Si

[
π(x+R)

∆x

]
− 1

π
Si

[
π(x−R)

∆x

]
+
∆x

π2x
cos

[
π(x+R)

∆x

]
− ∆x

π2x
cos

[
π(x−R)

∆x

]} (215)

Si(z) =

∫ z

0

sin t

t
dt (216)

For the aperture field phase θa we then have:

θa =tan−1
(
E ′
a,I/E

′
a,R

)
≈E ′

a,I/E
′
a,R

≈2πx

a
+∆θa

(217)

∆θa =
2π∆x

a

 1

π
·
cos
[
π(x+R)

∆x

]
− cos

[
π(x−R)

∆x

]
Si
[
π(x+R)

∆x

]
− Si

[
π(x−R)

∆x

]
 (218)

where we have defined ∆θa as the error term due to the above convolution. Figure 26
shows ∆θa plotted for a few values of the grid spacing ∆x and phase gradient 2π/a. From
the figure it is may be seen that the “overshoot” associated with the Gibbs phenomenon is
prominent within about ∆x of the aperture field edge, and it becomes more pronounced with
both increasing phase gradient (decreasing a) and decreasing resolution (increasing ∆x), as
expected from Equation (218).

To compute the effective surface measurement error (85) due to the Gibbs phenomenon,
we extend the model aperture field to two dimensions and retain only the l = m = 0
convolution term in (211). The model aperture field may be expressed analogously to (212):

Ea =

{
e2πix/a ρ ≤ R

0 ρ > R
(219)
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Figure 26: Phase error due to the Gibbs phenomenon in the case of the model aperture field
(212) for several values of aperture plane resolution ∆x and aperture field phase gradient
2π/a. Markers show the associated DFT values.

In this case we will drop the small phase angle assumption and simply define the phase error
∆θa as:

∆θa ≡ θa − 2πx/a (220)

where θa is the aperture field phase after convolution. After substituting ∆θa into (82) and
carrying out the integration, we obtain the results shown in Figure 27 (both convolution and
integration were performed numerically).

Here it is seen that the surface measurement error is also proportional to both the spatial
resolution parameter ∆x and the phase gradient parameter a−1, but there is an apparent
rolloff at large values of a−1. This is possibly due to a breakdown of the small angle ap-
proximation used earlier, since at D/a approaching 1, the aperture field phase goes through
2π across the aperture diameter. In any case, over this range of phase gradients, all curves
shown remain below the required 100 µm measurement uncertainty.

The maximum phase gradient in Figure 27 corresponds to a pointing offset of λ/a =
41” or an equivalent surface deformation gradient of λ/2a =100µm·m−1. Assuming local
pointing corrections were applied before commencing with the holography measurement, the
pointing offset should be much smaller than this (White et al., 2022). As for the equivalent
surface deformation gradient, we can estimate this following a similar procedure to that
used in Section D.3. Specifically, we use a Monte Carlo method to generate random surface
deformations according to the scatter in the Zernike coefficients of the GBT gravity model
(Maddalena, 2014), compute the r.m.s. surface gradient for each of these, and average the
results. In Figure 28 we see that for all telescope elevations, the gradients are ∼160 µm·m−1.
From Figure 27 we therefore expect measurement errors due to the Gibbs phenomenon to
remain about a factor of 2 below the measurement uncertainty, at least for the use case
specified in Section 2 for which ∆x = D/15 = 6.67 m.

F.3 Holography measurement errors: aliasing
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Figure 27: Equivalent surface measurement error ϵrms due to the Gibbs phenomenon plotted
versus the phase gradient parameter a−1 for several values of the spatial resolution ∆x,
assuming an operating frequency of ν0 = 12 GHz
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Figure 28: Simulated r.m.s. surface deformation gradient over the entire GBT projected
aperture as a function of elevation. Surface deformations were modeled as Zernike polyno-
mials whose coefficients were randomly distributed about zero and with standard deviation
given by those listed in Table 1 of Maddalena (2014). Values shown were averaged over 104

iterations.
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To estimate the measurement error due to aliasing, we will again assume a model aperture
field distribution of the form (219) but with it phase equal to zero:

Ea =

{
1 ρ ≤ R

0 ρ > R
(221)

For sufficiently large Nyquist domain size L, we need only consider terms with −1 ≤ l,m ≤ 1
in the sum (211). But in the region of overlap, −L/2 ≤ x, y ≤ L/2, we will further assume
that the aliased replicas from adjacent Nyquist domains are all purely imaginary. For the
real-valued model aperture field given above, this would not be the case, but we use this
contrivance to estimate the worst case scenario for general aperture field distributions where
the phase is not zero or even uniform.

In Figure 29 we show the model aperture field (221) after convolution as well as the
imaginary-valued aliased components superimposed in the central Nyquist domain for several
values of L. Note that, due to the symmetry of the model, the aliased components undergo
near-total cancellation over most of the central Nyquist domain for certain values of L.
Conversely, for other values the aliased components add together constructively.

We next compute the aperture field phase for each value of L and insert it into (82)
in order to obtain the effective surface measurement error ϵrms. As before, the convolution
integrals and integration over the aperture plane were performed numerically. The result is
shown in Figure 30 for several values of the spatial resolution ∆x, assuming a fixed operating
frequency of ν0 = 12 GHz.

As noted above, there is a strong periodicity in L (with period ∆x) due to the strong
constructive and destructive interference of the aliased components, but the prevailing trend
is lower measurement error with higher oversampling ratio L/D and smaller spatial resolution
∆x, as would be expected. For a spatial resolution of ∆x = D/15 = 6.67 m, the surface
measurement error remains below the required 100µm level for all L > D6. However, to
avoid compounding systematic errors, a safety factor of, say, 2 should be applied. In this
case, an oversampling ratio of 1.2 or 1.3 is recommended.

6Since the Gibbs phenomenon and aliasing are not totally separable effects, some of the measurement
error at low oversampling ratio is partly due to the Gibbs phenomenon

88



Figure 29: The first image on the left represents the model aperture field distribution (221)
after convolution, which remains purely real. The three images to the right represent the
aliased components, which are assumed purely imaginary, for three different values of the
Nyquist domain size L relative to the aperture diameter D. The spatial resolution is ∆x =
D/15 = 6.67 m and he grayscale mapping is fixed for all images.

Figure 30: Effective surface measurement error ϵrms due to aliasing, computed as a function
of Nyquist domain size L relative to the aperture diameter D and for three different values
of the spatial resolution ∆x and a fixed operating frequency ν0 = 12 GHz.
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