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Abstract

Metrology measurements have been proposed to provide initial estimated pointing
coefficients for the Green Bank Telescope (GBT) before astronomical observations
can be made. The measurements are made by laser ranging from ground-based
rangefinders to targets on the antenna structure, using 2-axis tiltmeters on the
alid.ade and tipping structures, and a hydrostatic leveling system on the azimuth
track. Algorithms and equations are given for the conversion of metrology data
into pointing coefficients. The pointing coefficients include contributions to correct
for deflection of the GBT local gravity vertical from the geodetic zenith.



0.1. Introduction

Pointing of the Green Bank Telescope will be guided by the azimuth and eleva-
tion pointing series described by Condon [Con 921 If a reasonable initial set of
estimates for most of the pointing coefficients appearing in these series is provided
before astronomical measurements are made, then in principle valuable time can
be saved during GBT commissioning.

A measurement program was proposed by Hall et al. [fIGPP 98] to charac-
terize the GBT by metrology methods. These include laser ranging, tiltmeters,
accelerometers, and other instrumental techniques. As part of this program, mea-
surements would be made to provide a-priori estimates for most of the coefficients
defined in [Con 92]. A description of the proposed program, schedule, and mea-
surements is given in a draft memo [PG 98].

Earlier documents have appeared which discuss the use of metrology meth-
ods to obtain pointing coefficients: Pol. 91, tWel 98j, [PG 98]. The present
memo reviews and extends those discussions, and gives detailed analysis to pro-
cess measurement data to provide pointing coefficients. In particular we analyze
contributions to the pointing series coefficients which are due to tilt of the azimuth
track and collimation of the elevation axis, that is departure from perpendicular-
ity of the elevation and azimuth axes of the telescope. We define and measure
four parameters which describe the track tilt and elevation axis collimation and
analytically derive the expected pointing series coefficient contributions to be ex-
pected in terms of these parameters. We also discuss corrections to be expected
due to the deflection of the local gravity vertical from local geodetic zenith.

A major goal is to use available metrology tools to isolate specific defects in the
telescope structure. This is accomplished by measuring the telescope structure
and using the results of each measurement to decouple defects which collectively
are represented by single terms in the traditional pointing model. We begin by
using the hydrostatic leveling system to measure the azimuth track (see Wel 92;
Pei 931 for information about the Pellissier Model 115 hydrostatic level and [MR
98] for a description of the Green Bank system). These measurements will be able
to determine the average tilt of the azimuth track independent of the alidacle or



tipping structure. Next, two 2-axis tiltmeters placed below the elevation bearings
on the alidade will provide a model of the azimuth track. Unlike hydrostatic level
results, defects in the alidade structure, including problems in the wheels, etc.
should be present in the data. Then, if necessary, additional measurements can
be designed and made subsequently, based on the results. Last, laser rangefinder
measurements from the ground to targets on the alidade, box structure, and feed
arm will measure the elevation axis collimation (see [Par 91 for a comprehensive
review of the GBT laser metrology project). Defects in the azimuth track and
alidade will necessarily be included in the analysis of the laser rangefinder data.

Pointing coefficients expected to be important for the GBT are reproduced
from Mel 981, and appear in Table 1. (A typographical error in [Wel 98] Table
I has been corrected: a/Az and bA

1
were interchanged; the source code is correct,1,1 ,1z

however.) The double subscript notation is that which appears in the GBT's
monitor and control system source code software.

In this memo we assume the following convention: The azimuth and elevation
variables A and E which appear in the pointing series are geodetic azimuth and
elevation respectively of the radio object to be observed at a given local apparent
sidereal time. Correction terms AA and AE are computed using the pointing
series. The angles A + AA and E AE are then the commanded beam position
azimuth and elevation angles respectively for the telescope drive system. The
telescope is driven so that the encoder output angle readings are equal to the
respective commanded angles at the specified time of observation.



Condon Series()
Coeff
d0,0
bo,i
do,1

ala
C2 , 1
C/2,1

Term

sin E
cos E
cos A sin E
Sill A sin E
sin 2A cos E
cos 2A cos E

Meaning
Hor. Col.
El. Ax. Col.
Az Zero
Zen E-Tilt
Zen N-Tilt
Az Track
Az Track

Con92
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A2
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P4
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Condon Series()
Coeff
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Term

sin A
cos A
sin E
cos E

Meaning
Elev Zero
Zen E-Tilt
Zen N-Ttilt
Asym Gravity
Symm Gravity

C01192
C6
C4
C5

vI193
P4
P2

P8

P7

Stu72
P7

P4
P5

Mur92 Cia74
D5

C3 D 1
C2 D

D4
C4 D 3

Nei96
./ 79r
P4
P5

"G"

P8

Table 1: A Comparison Of Pointing Formula Notations.

AA. cos E Azimuth Pointing Series Terms)

AE (Elevation Pointing Series Terms)
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a The VLA formula for IXA cos E includes terms A3 cos A cos E and
(Az)A4 sin A cos E which correspond to inacti Ave GBT terms d(iiz) and These

terms represent "azimuth encoder centering error" and are of period one turn.
The analogous terms in elevation have the same form as the two gravity bending
terms.

Some VLA antennas are known to exhibit significant 3A terms in their pointing
(VLA antennas have three azimuthal support points), but these are not imple-
mented in the VLA pointing formulae because high frequency operations are now
done by frequent reference source offsets; that procedure automatically corrects
for those terms [Ken Sowinsky, private communication].

NeidhOfer Nei 96] includes Stumpff's P6 terms in the current Effelsberg
100-meter telescope implementation of AA, cos E and AE with amplitude of or-
der +10 it-radians. (See discussion in section 6 of [Wel 98].)

NeidhOfer [Nei 96] calls this term P10 and gives a formula for it which in-
cludes Pi plus terms for daily empirical zero-point-corrections, receiver offset,
and polarization effects. He gives analogous formulae for P2 and P7. He states
that these are the formulae which are implemented on the Max Planck Institute
100 meter instrument.
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0.2. Metrology Equipment

The following resources and data should be available to carry out the proposed
pointing coefficient measurements:

• At least seven operational and calibrated ground-based laser rangefinders.
It is expected that twelve rangefinders will be available at the time of mea-
surement. Functioning temperature, pressure and humidity instrumentation
to correct range data for atmospheric refraction must be available.

40 High accuracy 2-axis tiltmeters. These instruments are placed on the alidade
structure, near each end of the elevation axle.

• A water level measuring system which can measure over distances of 60 me-
ters. This system has had extensive development at NRAO Green Bank.
The water level system provides a way to determine the alid.ade track el-
evation profile and mean alidade track plane, independent of the alidade
structure. It provides essentially the same information as the tiltmeters,
but requires more extensive setup and measurement time.

• Ball retrorefiector targets. Two ball targets are mounted under each ele-
vation bearing's weldment platform. Additional targets are mounted under
the lower corners of the box structure, at the end of the horizontal feed arm,
and on the vertical feed arm.

• Survey control coordinates for the ground-based rangefinders. These must
be obtained by an a-priori control survey, and a reduction and adjustment
of the survey data.

• Ground rangefinder aiming coordinates for the GBT retroreflector targets.
These are generated from a data base table of retrotarget reference point
coordinates (in the main- reflector or alidade reference frame, as appropriate
for the retrotarget referenced to the telescope's 50.8° rigging elevation an-
gle), together with transformation equations to obtain ground rangefinder
platform local aiming coordinates as functions of telescope azimuth and el-
evation. The accuracy required of the coordinates supplied for aiming will
generally be significantly less than the accuracy of the range measurements.



• Operational software to reduce rangefinder measured phase to range distance
between rangefinder scan reference point and retrotarget fiducial reference
point.

• Operational software to adjust range distances for trilateration determina-
tions, to obtain ground coordinates of targets on the telescope.

• A North-South direction survey reference fiducial. This is a survey mon-
ument pair defining a horizontal reference line along a near North-South
direction. The precise bearing of this reference direction line from astro-
nomical North is measured by suTveying its bearing angle from Polaris, and
making appropriate ephemeris corrections for the position of Polaris at the
time of survey. The detailed procedure is described in [Ka y 96]. The ground
coordinate system's Y-axis is chosen to be horizontal and directed to local
-astronomical North, as consistent with the direction of the surveyed ref-
erence line. Both geodetic and astronomic azimuths of this line will be
specified. The geodetic azimuth of this line is also determined, by making
a horizontal Laplace correction [Lei 90].

• Control software to aim the rangefinders to retrorefiec or targets mounted
on the GBT alidade and tipping structures.

• Operating telescope azimuth and elevation encoders, with available encoder
readout supplied to the metrology system ZIY-computer.

• Functioning analytical code software to data base the rangefinder and tilt-
meter measurement data and to analyze this data to generate pointing co-
efficients.



0.3. Metrology Measurements And Analysis

0.3.1. Hydrostatic level measurements of the azimuth track

Level measurements of the azimuth track will be made by the Green Bank hy-
drostatic level to define the mean plane in which the GBT moves in azimuth. The
normal to this plane is the zenith vector, W, of the GBT which can deviate from
the local vertical. By measuring the deviation of the telescope zenith from verti-
cal, one can obtain an a-priori pointing correction due to alidade track tilt. Tilt
of the mean alid.ade track plane is measured directly, independent of the alidade
structure, by this method.

Fig. 1 shows the geometry. Unit orthogonal basis vectors X, Y, Z define
a fixed ground-based reference frame for describing the telescope geometry. A
ground based Cartesian X, Y, Z coordinate system with its axes respectively par-
allel to those frame vectors has its origin at the intersection point of the telescope
azimuth axis at the mean alid.ade track level. The unit frame basis vector 2 is
directed along the local upward gravity vertical at the coordinate system origin.
The vector Y is directed horizontally along local astronomical North, at the co--
ordinate system origin. The vector X is defined by the relation: X Y x Z.
A is horizontal and points eastward in a positive sense. The telescope's alidade
track is initially approximated by a geometric plane, the "Mean Alidade Track
Plane.". Unit vector W is the normal to this plane; it is the zenith vector of the
GBT. Angle (T is the angle between the zenith vector and gravity vertical. The
horizontal bearing of the telescope's zenith vector relative to Y is given by 41T.
Level measurements of track elevation versus azimuth are used to determine a
physical plane which best embodies the Mean Alidade Track Plane, in some least
squares sense.

The hydrostatic level data provides a set of track level heights as a function.
of azimuth, H = H(AZ) . It is assumed that astronomical North has been pre-
viously measured, and a control network of survey markers has been established
so that the ground frame axis directions are known relative to the ground survey
control network. The measured heights are relative track elevations along the
direction of the local gravity vertical, Z. The heights are measured relative to a
fixed bench mark (not loaded) near the GBT center. The height profile data is
least-squares-fitted to a sinusoid with an amplitude Hi and an azimuth 'min of
minimum height. The pair of angles ((T ,4)T) are then given by:



,
(3.1.01) tan((T) and

(3.1.02)

where R is the radius of the track in the same units as Hi. Appendix A de-
scribes an algorithm which can be used to fit a sine wave.

The design radius of the track center line is: R 1260.0 inches. On 24 Octo-
ber 1992 the track was set and was recorded to be level to ±0.015 inches. On 23
June 1993 the track was grouted, cured, and 70% rechecked. The level to +0.015"
was found to still be true [Mor 97]. A slope of 0.015" per 1260" corresponds to
2.46 arc-seconds angle. It is to be expected a-priori that (T will not significantly
exceed this tilt, assuming that the track has not significantly deformed or moved
since 1993.

Hydrostatic level measurements are too labor and time intensive to be used
to provide information on the "fine structure" of the azimuth track. . They are
however suitable to give an estimate for the track tilt terms in Table 1. These
pointing coefficients can be expressed in terms of the azimuth track tilt parame-
ters (T and .1) T by either using spherical trigonometry or rotation matrices. For
example, the tilted track in Fig. -1 can be described as two small rotations about
the orthogonal axes X and Y. [Con 92] has derived the coefficients in terms of
tilted angles to the north AN (T - cos(4)T) and the west AW = --(T • sin(4)2--).
Using Eq. (5) of [Con 92] yields:

(3.1.03) (AZ) .(Eai,i = at = - cos(4)T) and

(3.1.04) - = 4E
,0

L) = - 5in(4)7
.) .



0.3.2. Tiltmeter measurements at the elevation axle

A 2-axis tiltmeter will be placed at each end of the elevation axle, near the
bearing (see Fig. 2). Instrument leads will be run to the alidade room and will
terminate at a GPIB instrument bus and the readouts sent to a dedicated com-
puter used for the measurement program.

When the telescope moves in azimuth, deviations or bumps in the track can be
detected. The readout of each tiltmeter is measured versus the encoder reading
for telescope azimuth, AZenc . Measurements will be made at L-z. I' increments of
azimuth. The two tiltmeters measuring tilt perpendicular to the elevation axle
are averaged, and least-squares-fitted to a sinusoid to yield (T and (

DT (see be-
low). These results should agree with the hydrostatic level system's calculations
of the track tilt. The tilt component residuals left after removal of the sinusoid
can then be used to produce a track model. Further measurement and analysis
can be pursued if the amplitude of the tilt component residuals is significant. For
example, there may exist higher harmonic terms as a function of azimuth such as
the track terms in Table 1.

Finding the mean alidade track plane and track model by tiltmeters depends
upon the fact that the alid.ade structure is almost rigid during azimuth rotations.
The tiltmeter pairs at the two bearing ends are initially levelled when the tele-
scope is at zero azimuth and rigging elevation angle (as recorded by the telescope
axis encoders). If the aliclade track is plane and the alidade structure rigid, the
like-oriented tiltmeter pairs at the two ends of the alidade should read the same
at every azimuth. A significant departure from equality would indicate alidacle
deformation, assuming that no significant temperature change of the structure oc-
curred during the alidade rotation. Alid.ade structure bending would be implied
for differences in the axially oriented tiltmeters; torsion would be implied by a
difference in the tiltmeters oriented perpendicular to the elevation axle. Mean
readings of the tiltmeters oriented in each direction would be used to obtain the
mean alidade track plane angle parameters and the track model. The readings of
the tiltmeter pairs oriented parallel to the elevation axis and those perpendicular
to that axis should independently lead to the same track angle parameters.



Derivation of the track tilt parameters (T and (1) 7
, in terms of tiltrneter data

can be simplified by introducing the "alidade coordinate system". The aliclade

structure is assumed to be a rigid structure with an embedded X., Ya, Z. coordi-
nate system and mutually orthogonal unit frame vectors X,„ Ya, Za. Let (I) be the
rotation angle of the alidade structure about telescope zenith from the position
of zero azimuth encoder readout. If the azimuth encoder readout is linear then
(I) A Zenc We will use 43 rather than AZ en, as our azimuth angle variable, to
allow for the possibility of later accounting separately for azimuth encoder non-
linearity contributions to the pointing series.
The aliclade coordinates can then be expressed in terms of the ground coordinate
system (see Appendix B).

Tiltmeters are used to find track parameters (T and )2- by the following pro-
cedure. The telescope is driven to commanded elevation EL = E Lr ig = 50.8°
(the telescope rigging angle) and commanded azimuth AZyy m, 0°, which we refer
to as the telescope reference position. The tiltmeters are supported on levelling
screws which are set initially so that all tiltmeter readings become zero. That is,
offset reference position reading angles of the tiltmeters are initialized to zero. The
telescope is stepped in 'azimuth in 1' increments, and tilt readings are recorded.
These readings give incremental tilt components of the elevation axis of the tele-
scope with respect to its tilt position at the telescope reference position. As the
telescope rotates in azimuth, the mean of the two axial tiltmeter readings for each
tilt component varies to first approximation as a Fourier series.

The tiltmeter readout angles are given by Tye and Tx, for tiltmeter orientation
parallel to and perpendicular to the elevation axis, respectively. Calculations to
analyze the tiltmeter measurements are given in Appendix C. They give the fol-
lowing result:

(3.2.01) 'rxe( ls ) --- CT • cos 41T (T • cos .1) • (cos 4)) + (T
.
 • sin (I)T -(sin 4)) , and

(3.2.02) Tye() = — CT • sin 4:IT (T • sin 4)T • (cos 4)) — cos 4? • (sin 4))

Tilt profiles Txe(4)) and Tye() are least-squares-fitted by a three-term Fourier
series to obtain track parameters (T and 41)T . The residuals produced from the
difference between the model fit and the data provide a track model. Algorithms
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for computation of Fourier coefficients are given in Appendix A.

We comment here on a particular feature of the measurements. The measure-
ments, as just described, require that the tiltmeters always be levelled at standard
azimuth as an initial condition. It is further implied, if not explicitly stated pre-
viously, that the alidade is thermally stable during the measurements, that is, it
remains rigid. If those two conditions are fulfilled, the measurements will deliver
the track parameters, independent of the actual alidade shape. If the alidade
were to be heated non-uniformly before starting new measurements (so its shape
departed from its earlier shape) tiltmeter readings at standard azimuth would
depart from their previous level readings, and would thereby indicate a change
in orientation of the elevation axle. New measurements, made with re-levelled
tiltmeters, would deliver correct track parameters provided that the alidade were
to maintain its new shape during the new measurements. (This however would
be unlikely when alidade temperature was non-uniform or unstable).
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0.3.3. Laser rangefinder measurements of targets on the box structure
and feed arm

Ball retroreflector targets have been mounted under the box structure and
on the horizontal and vertical feed arms. One or more ball retroreflectors have
been positioned to lie on or close to the telescope's right-left plane of symmetry
When the tipping structure is moved in elevation, such a target should move ac-
curately in a plane which can be determined by rangefinder measurements from
the ground. Right-left deformations of the telescope (e .g. bending deformation
of the elevation axle) should be near-symmetric and should not cause a midplane
target's trajectory curve to depart significantly from planarity (If trajectory mea-
surements were to indicate a lack of planarity, they could be analyzed to provide
additional pointing correction. Such a program will not be discussed in this doc-
ument).

At a fixed azimuth the telescope will be stepped in elevation, typically in 1°
increments. The unit normal vector to the target's plane of motion determines the
direction of the elevation axis. The direction of the elevation axis, together with
the alidade track tilt parameters, allows computation of the collimation pointing
errors.

We may accurately determine the direction of the elevation axis with respect
to the ground reference frame at an arbitrary alidade position (as indicated by
AZ), as follows (see Fig. 3). A ball target on the telescope tipping structure
is tracked by ground rangefinders as tipping structure elevation is varied. After
the range measurements have been reduced and least-squares adjusted by stan-
dard codes, the displacement vector between successive positions of the target's
fiducial reference point (denoted by D in Fig. 3) is computed and normalized
to unit magnitude. A sequence of unit target displacement vectors is generated
as the target is tracked. Each of these unit displacement vectors lies in a plane
perpendicular to the elevation axis of the telescope. The vector cross product ol
any two of these displacement vectors will be a unit vector in the direction of the
elevation axis. By making multiple measurements on several targets one has a
large set of measurement samples of the elevation axis unit vector, Xr(AZ,)
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corresponding to the telescope azimuth during the measurements.

The geometry of the tipping structure of the GBT is described with reference
to a "main reflector frame" having orthogonal unit basis vectors Xr , Yr , Zr , and
carrying a right-hand Cartesian coordinate system with coordinates Xr, Yr, Zr-
This is a mathematical abstraction without specific reference to physical 3-space.
To make the abstraction useful and unambiguous we must somehow embed the
frame and coordinate system in physical space and have it carried along with the
tipping structure as that structure moves in space and is driven in azimuth and
elevation. To each azimuth and elevation of the telescope there must correspond
unique direction cosines of the main-reflector-frame basis vectors with respect to
the ground frame of the telescope.

This presents a conceptual problem which must be resolved. The tipping
structure is not rigid. It deforms because of varying gravity moment torques as
elevation is varied. When the elevation axle of the telescope is rotated in elevation
by a specified angle, the axis of the "main reflector paraboloid" does not rotate by
exactly the same angle. The main reflector may be a paraboloid at the start and
finish of the elevation motion, but will not necessarily be the same paraboloid.
The surface actuators may or may not be driven, which further complicates the
conceptual problem. The elevation reference frame must somehow be embedded
analytically into a deformable 3-dimensional continuum, that is a 3-dimensional
differentiable manifold. This presents the problem. It can be uniquely stated
and solved, however, provided that a finite element deformation model for the
telescope is accepted. The orientation of a main reflector frame relative the to
the ground frame of reference of the telescope is obtained as the tipping structure
moves in elevation and azimuth. The ground reference frame of the telescope, as
determined by physical surveying methods, is considered to be invariant.

A method of doing this is given by 'Wel 98] and Poi 97j. One embeds a ref-
erence frame and coordinate system in physical space, to describe the deformable
tipping structure's geometry in the following way:

• The main reflector surface is physically set to conform to the design shape
of the parent paraboloid when the elevation encoder output reads 50.8°, the
"rigging elevation angle" of the telescope.

• The telescope is assumed to move as a rigid structure when it is driven
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only in azimuth.

By convention, the X. frame vector and Xr-axis of coordinates point along
the elevation axis of the telescope; unit frame vectors Yr and Z,. are per-
pendicular to the elevation axis. The origin of the Xr , Yr, Zr main reflector
coordinate system lies equidistant from the two elevation bearing centers.
The elevation axis of the telescope is, then, a reference direction which de-
fines the line of the main reflector coordinate system's X r-axis. We note
that if the alidade structure is rigid, and if one represents the unit vector
X, as a linear sum of alidade frame vectors: X,. el _Ka + c2 c3 • '2,„
then the coefficients are independent of the alidade's azimuth angle.

When the telescope is moved in azimuth only, motion of the embedded
Xr '

Yr Zr frame and coordinate system in physical space is described in the
following manner:

The main reflector frame is considered to be rigidly embedded in a rigid
rotatable alidade structure resting, to first approximation, on a slightly tilted
plane: the "Mean Alidade Track Plane (MATP)." The direction cosines
describing the orientation of this plane are physically determined by means
of fluid level measurements of track height or by tiltmeter measurements.
The unit upward normal to this plane, W, is a fixed vector in physical

3-space, the "zenith vector of the GBT."

The X„, Y„, Za "alidade coordinate system" is rigidly embedded in the

alidade structure. Its origin lies in the track plane (at the center of the

annular alidade track). The Za-axis points along the fixed zenith vector W.

(The physical track is actually bumpy. To deal with this, it is assumed to

be plane but elevation corrections are added later using the track model

obtained from track tilt residuals). Alidade rotations are described by the

angle parameter 4 (0 < < 270 the rotation in azimuth of the alidade

structure. Unit vectors ./17.(4)), ii.(4),1pa,rallel to the mean track plane are
defined so that X.(4)), '4(4)), and W form a right-hand orthogonal triple
and also, X.(4) = 0) E----_-: O.

Telescope azimuth is defined by the following requirement: When the al-
idade encoder output reading is zero, the X„ vector's projection onto the
horizontal (local horizontal plane at the center of the azimuth track) has no
component along Y.
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The departure of the elevation axis orientation from that of an ideal telescope
can be described in terms of two small-angle parameters (see Fig. 4). For a rigid
alidade structure and a plane alidade track, when the alidade has been rotated to
an azimuth angle 41), about the telescope zenith axis, the direction of the elevation
axis will be

(3.3.01) ir (l)) Ya (4)) Ii — ryl ka(4) ) (7e1) 2a(4)) (Oa) .

Here Pei and 'yet are small angular deviations of the elevation axis direction from
the alidade frame vector directions. They are assumed to be constant during
telescope motions. Angle Pei represents a deviation of the elevation axis from per-
pendicularity to the normal, Za , to the alidade track plane. The sign convention
used is that the angle between the positive Xr-axis and the positive Za-axis is
7r—

2
 +Pei • Angle rye/ is a deviation of the positive X r-axis from the positive Xa-axis,

towards the -1-ka direction.

The direction vector of the elevation axis is expressed in terms of components
relative to the ground reference frame, by substituting equations (3.01) and (B.10)
into (3.3.01). This gives long, complicated expressions. For our purposes we need
only first order approximation of these components, After extensive manipulation
and reduction we get, to first order.

(3.3.02) ir (4)) - [(cos (1)) (yei) • (sin )]

• [(— sin 4)) + ('ye' ) (cos 43')}

+ z• t(— Pa) + (6-e) - (cos Is
T) - (sin 4)) + (--() (cos (I)] .

This relation is a 4-parameter expression for Xr (*1). Measurement data for Xr(4))
is least-squares-fitted to give the four parameters. If track bumpiness is small,

(3.3.03) - (2) (X.(0
0
) Yr (180°)) cti

(3.3.04) ( ) (k) - (Yr (01 — Yr (180°)) ryd
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The measured small angles Pd and tyd correspond directly to the elevation
axle collimation error and the azimuth zero, respectively (see [Wel 98] and the
derivation in Appendix E). Explicitly,

(3.3.05) 141Z) 13 EL and

(3.3.06) dPA1Z)
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0.4. Derivation of Pointing Corrections

After measuring telescope parameters: eT, 4 T, ref 'Ye/ we wish to compute the
azimuth and elevation pointing series' which will be generated by non-zero values
of these parameters and four additional parameters which we will define. Our
goal is to generate "mechanical" pointing coefficients which can be used to give
initial estimates for pointing series coefficients which are due to specific stable and
long-term causes. The purpose of this program is to provide estimates of pointing
coefficients before astronomical operation begins. It is expected that as the tele-
scope begins its astronomical observations, and astronomical pointing coefficient
determination starts, the a-priori coefficients will aid initial pointing and lead to
small residues for the astronomically determined coefficients.

We next discuss how to generate the "mechanical" elevation and azimuth
pointing series. We model two telescopes. Model-1 is an ideal design telescope.
In Model-2 we introduce conceptual deviations from the ideal telescope.

We make the temporary assumption that telescope zenith coincides with the
local upward gravity vertical direction. Ground coordinate frame vector directions

Z coincide, respectively, with astronomical East, astronomical North, and
astronomical Zenith. (We later modify this to include deflection of local grav-
ity vertical from geodetic zenith). Under this initial assumption, the spherical
polar sky coordinates assigned to a direction in space are the same as the spher-
ical polar ground coordinates with respect to the X, Y, 2 ground reference frame.

Let us assume that the telescope is set to standard position, so the azimuth
encoder reads Ag

en, = 0 and the elevation encoder reads rigging elevation angle
ELfig . We first assume that the GBT construction is perfect: alidade and tipping
structures are rigid and invariant in shape and size, the main reflector surface is
a region of a 60 meter focal length paraboloid, aligned so that the paraboloid's
axis points to the X direction and to elevation ELfig with respect to the ground
reference frame. When the telescope observing program requests that the tele-
scope move to sky coordinates (A.Zsky , ELsky ), the telescope commanded track,
for this ideal telescope, will request motor drives to move to commanded tele-
scope coordinates ELsky and AZcom, AZsky . After the alidade and
tipping structure arrive at their requested positions, the azimuth encoder output
reads AZ,,,, = AZ,,„ and the elevation encoder reads ELen, = E Lconi . The main
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reflector is still a paraboloid of 60 meter focal length. Its axis points to the sky di-
rection (AZ sky , EL sky ). This describes the behavior of our Model-1 ideal telescope.

For telescope Model-2 we introduce changes. Starting from the ideal telescope
at standard position, we assume the following. The alidade is still rigid and has
the ideal dimensions. The alidade track is still plane but is now tilted consistent
with track parameters T and <IT• The elevation axle is twisted by the small
angle pei about the Kt direction and by the small angle -yei about the Z a direction,
leaving its midpoint fixed. The main reflector surface is still a region of a 60 me-
ter focal length paraboloid when the telescope is at standard position (telescope
azimuth encoder reads zero and the telescope elevation encoder reads ELrig)

For the Model-1 ideal design telescope we have assumed that the main reflec-
tor paraboloid has been initially adjusted so when it is at standard position, its
axis points in the direction: (jo <  (A.Zsky = 0, ELsky ELrig).

For the Model-2 telescope we now assume that the main reflector paraboloid
has been initially adjusted as built so when at standard position, its axis points
in the direction: Po <	> (A.Zsky Ao ELsky = E trig E0). Here .A0 and Eo
are small angles, typically less than 10 arc-minutes. We temporarily neglect the
deviation of local gravity vertical from geodetic zenith. In principle, Ao and Eo
could be directly measured by laser rangefinder determinations of the paraboloid
shape and orientation with respect to the ground reference frame of the telescope.

For the Model-2 telescope we make the following assumptions about the shape
and orientation of the main reflector surface when the tipping structure is driven
to change its elevation: The telescope elevation axis remains straight and unbent.
The main reflector surface is always a patch on a paraboloid of revolution. As
tipping structure elevation changes the reflector surface remains paraboloidal but
is no longer rigid. Focal length becomes a function of elevation (as read out by the
elevation encoder). The angle that the axis of the instantaneous paraboloid makes
with the elevation axis is fixed; that is, the paraboloid axis can be considered rigid.
and welded solidly to the rigid elevation axis. We also make a peculiar assump-
tion: when the tipping structure is driven from encoder elevation EL ELrig
to encoder elevation ELe EL,,„, the main surface paraboloid's axis direction
rotates about the elevation axis not by incremental angle (EL/corn 

g
lifig), but

instead by the incremental angle (E Lcom,— ELfig +Egra,), where Egray i S assumed-
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to be a known function of ELen

We introduce function Egra,(E Lew) to serve the following purpose. The tele-
scope's tipping structure is not rigid. The main reflector surface must be re-
adjusted to remain paraboloidal as tipping structure elevation changes, according
to a schedule which is theoretically calculated (using the current Finite Element
Model of the tipping structure). As elevation changes, the axis of this instan-
taneous paraboloid does not follow the rotation as indicated by the elevation
encoder, but lags or leads by an angle increment which can be calculated as a
function of encoder readout angle. The calculational program has been carried
out by D. Wells [Wel 98].

The gravity elevation function in the notation of Wells, is written:

(4.01) r (EL) diff - cos E biff • sin E .

Explicit values for this function are given in tWel 981. It takes value zero at
EL = E Lrig , At present it is not appropriate to use the tiff notation for the
above coefficient names, because we have not yet demonstrated that they are, in
fact, Condon model pointing coefficients.

We prefer to write (4.01) as:

(4.02) ELgra,(ELenc) == po + cos E Lmc + PS * sin ELenc where

(4.03) po -I- pc - cos E Lrig Ps- sin E Lrig 0 , which gives

(4.04) E Lgra,(ELenc) = pc • (cos E c — cos E Lrig ) p,. (sin E — sin E

We will later use first order approximations

rav - — enc, —rav --enc) , cos ELgra,(E Lenc)(4.05) sin ELIg (EL E gL (EL

We have defined two telescopes, and specified their initial pointing at stan-
dard position. Pointing at arbitrary commanded azimuth and elevation depends
upon four measured parameters (T, (IT , Pei, 'ye, discussed previously, together
with additional parameters E Lrig Ao, E0, pc, ps. We next compute the pointing
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when the telescopes are commanded to move to arbitrary encoder coordinates
(AZ ,  Lcom ) •

—
To do this we first rotate the initial paraboloid axis vector, Po ,

tilted elevation axis (see Fig. 5)

(4.06) )7,(4) = 0) =-- 17- h'ed + 2 - E—Pei (-(T). (sin )1

by the angle:

about the

(4.07) Rot i = E Lcom — E Lrig E r av E Leon, .

This carries the paraboloid's axis direction from Po to a new direction, P.

We then rotate vector P, about the telescope zenith W, by the angle Rot2 = (1).
( 41 = AZcom when the azimuth encoder is linear). The paraboloid axis then ar-
rives at the direction P. The deviations in azimuth and elevation of the direction
of P from the commanded azimuth and elevation gives the required pointing cor-
rections. The corrections appear as harmonic series in commanded azimuth and
elevation. The coefficients in these series are functions of the eight parameters
mentioned above. Term coefficients are of first order in small angle parameters. By
identifying harmonic coefficients of the "mechanical" pointing series (obtained by
carrying out the algebra for the above rotations) one-to-one with Condon's series
coefficients, we obtain a set of a-priori estimators for the pointing coefficients. Fi-
nally, we will compute additional contributions caused by track bumpiness (using
track model residues) and by departure of local gravity vertical from astronomical
zenith.

—We carry out the algebraic computation of direction P and express the result
in spherical polar coordinates in the ground reference frame, in Appendix E. The
rotation geometry is shown in Fig. 5. When ground frame Cartesian components
of P are available, computation of the pointing series is straightforward, and pro-
ceeds as follows.

One compares the computed components of P with those expected for succes-
sive rotations of an ideal telescope, (E Lc. E Lrig) in elevation and AZeom in
azimuth, of unit direction vector Qo . Vector Q0 has polar coordinates (0, ELrig)
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with respect to the ground frame. It is carried by the two rotations to a unit
vector whose polar coordinates are EL,„,n) with respect to the ground
frame. The Cartesian ground frame coordinates of the two-fold rotated vector,

, are (sin AZ • cos EL , cos AZcom cos Ekon, , sin EL,,). These would
be the Cartesian coordinates of P if the telescope were ideal. As-built telescope
imperfections, described by non-zero first order parameters, cause Po to arrive,
after successive rotations about canted axes at a direction whose ground frame
coordinates are:

(4.08) Px = sin AZ • cos EL , Py- = cos AZ • cos EL Pz sin EL,,

where AZ and EL are spherical polar coordinates of P relative to the ground ref-
erence frame. If the Cartesian ground coordinates of unit vector P are changed by
small increments dPx, dPy, dPz , then its ground-frame-related polar coordinates
change by increments d AZ, dEL. Differentiating (4.08), the small increments in
the Cartesian coordinates of P are related to changes in its polar coordinates by

(4.09) d Px = (cos AZ) (cos EL) • d AZ —• (sin AZ) (sin EL) d

(4.10) d Py = --(sin AZ) - (cos EL) • d AZ — (cos AZ) • (sin L) d EL,

(4.11) d Pz = (cos E d EL,

(4.12) Px • d Px Py • d Py Pz • d Pz =-- 0 , which give

(4.13) d EL = (sec EL) • d Pz

(4.14) (cos EL) - d AZ = (sec AZ) • d Px + (tan AZ) - (tan E d P.

If the as-built telescope were perfect and all first order parameters vanished,
the coordinates of 1-3 would be:

(4.15) Px = sin Ag
corn - cos EL =Qx ,

Py = cos AZ,,n - cos EL = sin E Lcom
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The deviations dPx dPy, dPz, of the components of P (for the as-built tele-
scope) from those of Q are computed in terms of the telescope parameters, in
Appendix E. The shifts in elevation and azimuth of P from those of the perfect
telescope are then given by:

(4.16) d EL = (sec ) • d Pz ,

(4.17) (cos EL,„) - d AZ = (sec AZ. ) d Px

-I- (tan AZ.) (tan E "'corn) d Pz

The right hand sides of equations (4.16) and (4.17) turn out to be linear sums
in products of sines and cosines of the harmonics of AZ with those of EL,„m.
These give our mechanical pointing series in elevation and azimuth. The negatives
of those shifts are the pointing corrections. That is

(4.18) A EL = —(sec ELcom) • d Pz

(4.19) (cos ELcom) A AZ = (sec AZ.) • d Px

— (tan AZ,,n) (tan ELcom) d Pz

The explicit computations are given in Appendix E. The results are given in
Table lb. The results do not include the correction for the deviation of local
gravity vertical from the local normal to the geodetic azimuth. That correction
is Riven separatelv in Appendix F.
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Table 1.b. Estimated Pointing Coefficients.

(Not including geodetic corrections)

AA cos E Azimuth Pointing Series Terms
Coeff Term Meaning . Estimated Value (radian)

(AZ)do,o lior. Col. . cos E Lrig — 7,1 • cos ELrig

1:4)Aiz)
zdo,i

cos E iz Zero

d(iAjz)
(Az)

ci,i
b (

i
A
l
z) cos nsin E Zen E-Tilt —(T Sill

(AZ)
ai,i L1 Sin E Zen N-Tilt (T COS

(AZ)C
2 1

d2A1Z cos 2A cos E AzT rack See Appendix D

AE (Elevation Pointing Series Terms)
Coeff Term Meaning Estimated Value(radian)

(EL)
d0,o

TN Zero
—E0 — CT . COS 4)T

+Pc. cos E Lrig + ps . sin E Lrig

c(1;

E

O

L)

sin A Zen E-Tilt (T - sin 4) T

eo
L)

cos A Zen N-Ttilt (T. cos ( I) T

bTIL
L) sin E Asym Gravity —Ps

dEL) cos E Symm. Gravity
-

— c
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0.5. Least-squares Analysis Of Metrology Data

The algorithm for finding the track zenith and azimuth is given in Appendix A.
It is basically the same as has been used for reducing laser rangefinder data, and
provides good accuracy The algorithm is easily extended to examine the track
fluid level and tiltmeter data for significant higher harmonic terms. A similar
algorithm for second harmonic terms can be applied to the orientation data for
the sub-bearing target balls to look for the presence of significant azimuth track
sin 2A • cos E and cos 2A • cos E coefficients and azimuth track terms of higher
harmonic content.

The reduction of ball trajectory position data to find the best fitted plane
for the measured trajectory points is a standard statistical problem. The desired
plane is that which minimizes the sum of the normal distances squared of the
measurement sample points to a general plane. The unit normal vector to this
least-squares-fit plane is the elevation axis. The normal distance residuals of the
sample points from this plane can be examined as a function of elevation, to see if
there is a statistically significant trend indicating that the axis may be changing
with elevation.
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s(AZ)
d 1 cos E Azimuth Zero Yet + - tan0

0.6. Summary Of Pointing Coefficients

The pointing coefficients are listed below, with a summary of their determina-
tion by metrologic means:

dom
z
 1 Horizontal Collimation Ao - cos E Lrig — 

r
ya cos E Lrig

+Pei sin E Lrig (T sin (D T sin E Lrig

This coefficient contains offsets due to track tilt, elevation axis horizontal off-
set, and paraboloid surface initial horizontal offset. Determination of all parame-
ters except Ito is discussed in the text or appendices. The main reflector offset Ao
can, in principle, be measured as follows. The antenna is brought to standard po-
sition. Feed arm laser rangefinders are located by ranging from the ground. Main
reflector surface points locations are then determined by trilateration from the
feed arm rangefinders. To accomplish this, surface retroreflector target locations
are corrected to give surface point locations. The surface is then least-squares-
fitted to a 10-parameter quadric, a paraboloid. The axis of this paraboloid is then
computed, and referenced to the ground coordinate frame to give parameters Ao
and Eo. Practically, this coefficient is easily found by astronomical pointing. Its
determination by measurement of the main reflector surface is not usually needed,
and is of some complexity.

Wilz) sin E Elevation Axis. Collimation

The elevation axis collimation term is due to tilt of the elevation axis from
the horizontal caused by non-perpendicularity of the elevation and azimuth axes
of the telescope. The coefficient is measured by determining the normal vector
to the mean plane generated by a midpiane ball retroreflector, ranged from the
ground.

The parameter 7 is found by determining the normal vector to the plane gen-
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I wiz) cos A sin E Zenith E-Tilt T sm cbg-

erated by an orthogonal distance regression fit to the locations measured for a
midplane ball retrorefiector ranged from the ground, as telescope elevation is var-
ied. An additional contribution to the commanded pointing appears: the horizon-
tal Laplace correction, required to shift commanded pointing from astronomical
reference to geodetic reference. The value of parameter ri is given in Appendix F.
Parameter j5 is the geodetic latitude of the alidade track top center of the GBT,
and is also given in Appendix F.

This coefficient is due to two independent contributors: track tilt and astronomical-
to-geodetic frame correction. The latter correction behaves as an additional track
tilt, together with a constant azimuth shift (the horizontal Laplace term). The
term ri is a constant (for the GBT) which is the "prime vertical" component of the
gravity deflection of astronomical zenith relative to geodetic zenith at GBT. Its
value is given in Appendix F. The track component of the coefficient is obtained
by least squares fit of fluid level measurements of track elevation to a 3-term
Fourier series. It is also obtained independently by a similar fit of tiltmeter mea-
surements. The value in radians is used

a(t1z) sin A sin E Zenith N-Tilt (TY + T • cos (1)T ±

This coefficient is due to two independent contributors: track tilt and astronomical-
to-geodetic frame correction. The latter correction behaves as an additional track
tilt together with a constant azimuth shift. The parameter e is a constant (for
the GBT), the meridian component of the gravity deflection relative to geodetic
zenith at GBT. Its value is given in Appendix F. The value in radians is used in the
coefficient. The track tilt contribution for this pointing coefficient is obtained by
least squares fit of fluid level measurements of track elevation to a 3-term Fourier
series. It is also obtained independently by a similar fit of tiltmeter measurements.

i (AZ) .cz i sin 2A cos E Azimuth Track

uA (A1Z) cos 2A cos E Azimuth Track2 

These coefficients are due to track deviation from planarity. They can be ob-
tained from a least squares fit of second harmonic terms of the track rotation
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Elevation Zero —E0 + pc cos E Lrig

+ Ps • sin E Lrig OS ) T

(EL)
u0,0

(E0c i3O sin A Zenith E-Tilt (Tx ± = T

angle versus azimuth encoder readout derived from measurements of a reference
line direction defined by four alidade target balls under the bearing platforms.
The nature of the series term is discussed in [Con 92] and Appendix D. The de-
tailed values will be derived in a later note.

This coefficient contains offsets due to track tilt, gravity elevation offset to ini-
tialize the gravity deformation to be set to zero at the rigging elevation, paraboloid
surface initial elevation offset. Its determination is by the same procedure as for
dAZ) Practically, it is easily found by astronomical pointing. Its determination by
measurement of the main reflector surface is not usually needed, and is of some
complexity.

The value of (Tx is obtained by a three term least squares Fourier series fit
to track fluid level elevation data or tiltmeter data. The value of r i is given in
Appendix F.

droL) cos A Zenith N-Tilt (TY + T COS (1)T ±

The value of (Ty is obtained by a three term least squares Fourier series fit
to track fluid level elevation data or tiltmeter data. The value of is given in
Appendix F.

b,(3
E

1
14 sin E Asymmetric Gravity

This coefficient was computed by D. Wells [Wei 951, based on the Finite Ele-
ment Model of the GBT tipping structure. (It requires recomputation, however,
to correct for the change of elevation rigging angle to 50.8', from the value of
44

0
 assumed in 1995). It depends on appropriate reshaping of the main reflector

surface with elevation and is not directly measurable. It is however possible to
verify or correct the F.E.M. gravity deflections which determine the coefficient.
This can be done by an analysis of the midplane ball trajectory position data
measured by ground rangefinders when the tipping structure elevation is varied.
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I (EL)
t 1,1 COS E Symmetric Gravity 

See remarks above relating to bo(EaL)
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Appendix A. Hydrostatic Level Analysis Of The Azimuth Track

An algorithm useful to fit a sine wave to a set of n elevation samples hi(0i),
2/T - i 

((Ai = 
n 

, j = 0, • • - , n — I), uniformly spaced about the track is:

(A.1) (h). = (-1 )- 
nE1 

(hi)

(A.2)
A = (1) . nEl (h j _ (h)av

n
- cos( )

(A.3)
B = (1) . nEl (h j _ (h)av

n
. sin(0j)

j=0

(Ä.04) Hi , () . .,1 A2 + B2
n

(A.5) 4
)min = — tan-1 G.3

4,-) .

Here, 413.
anin is the fitted azimuth of minimum track elevation found for the data

samples. For the track data fit, (1),„ in ---=--

To fitfit higher harmonics to sampled data one can use:

(A.6) Am= ()
n
— • Y: (hi — (h).) cos(m, )
1 n-1

11- 1

(A.7) Bm 
( j)
— - E (hi — (h).) sin(Trt • 0i) .
n
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Appendix B. Alidade Coordinate System.

The telescope zenith vector is a fixed vector having spherical coordinates
((T , 43.

T) relative to the ground reference frame of the telescope. In the Cartesian
ground frame coordinate system it has representation:

(B.1) IV = [sin (T - sin 4)T1 -I- - [sin (7
, - cos 43

T] 4- 2 • [cos <T] .

The alidade reference frame vector 2 „ is fixed, and

(B.2) 2a( O) .

When the telescope azimuth is zero (as read out by the azimuth encoder) we
choose arbitrarily: 41) E----- 0 and AZen, -= 0 . At zero azimuth, the frame vector-
Xa(
—
 

= 0) is determined by the conditions that it is I to W and has no compo-
nent towards North. That is, we choose arbitrarily:

(B.3) :k:„(4) = 0) W 0 , and X"„(4) 0) - .

The second of these implies that we can write

(B.4) ic,,(4) = 0) -V1 — (2 )7 ( • 2

where ( is small and to be determined. The first condition then implies

(B.5) -11 — (2 • (sin CT • sin .1)T)

(B.6)  = tan (T - sin 4)T .

c. (cos (T ) ---,--- 0 , which gives

Because track tilt (T is small, we can use first order approximation, and with
negligible loss of accuracy set:

(B.07) = (T sin

Frame vector ir,„(4) = 0) is determined by the orthogonality relation
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(B.8) ii-
c,(4) -- 0) 2.2((b = x =

Expanding the vector product gives

(B.9) kc,(4) = 0) = (sin (T) (cos 4)

[(C) (sin (T) (sin 4)T) + (cos .1) —

+ 2 - [(— sin (T) • (cos .1) • (2}

At arbitrary azimuth, .1), the unit frame vectors are:

(B.10a) Y,,,((1) = = 0) - cos4) ka (4) -= 0) - sin

(B .10b) ka(4)) = = 0) • sin 4) -I- ka,(4) --= 0) • cos (I) ,

(13.10c) 4(4)) = i/-17

Substituting (B.08) and (B.09) into equations (B.10) gives:

(3.1.1a) Ya(4)) = — (cos 4)) + (C) (sin CT) (cos (I)T) • (sin 4))1

-FP" [( () (sin 
CT) - (cos (I)T) (sin (b) — .V1 — (cos CT) - (sin 4))1

+ [(sin (T) • N/1 — (2 • (cos 4)T) • (sin 4) ) — (C
. ) (cos 4))1

(3.11b) ka,(4)) = — (
2 

• (sin) ( () (sin 
(T) (cos (1)T) (cos)]

• - RC) - (sin CT) (cos ) (cos 4)) + (2 (
cos 

(T) (cos41)

+ 2 - [(— sin CT) — (
2 . (cos 49

T) - (cos (I)) ± (-0 - (sin 4))1
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To first order.

(B.12a) Ia,(4)) • [cos ] [-- sin -4)]

± - [((T) - (cos 43.
2-) (sin 41)) (--(T) - (sin (13 ) •(cos 4))1 .

(B.12b) rra (4)) = [sin 4)] [cos (I)]

+z • t(— (T) • (COS T) • (cos 4)) + (—(T) • (sin 4) 7-.)(sin .1))]

(B.12c) 2a(4)) = [((T) (sin 4)T)1 • K(T) (cos 4) )] + 2 . [ii.
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Appendix C. Track Model And Tilt Parameter Determination

Four tiltrneters will be placed on the alidacle bearing platforms, two near each
elevation axle. For small tilts, each behaves as an ideal 1-axis tiltmeter, which is
a frictionless mechanism of the following nature. A base plane (considered to be a
rigid plate) has two perpendicular lines on it. One of these is defined to be the axis
of a pendulum. The other is defined to be the direction axis of the instrument.
At their intersection a joint is attached which allows a pendulum weight bob,
suspended on a line of fixed length, to oscillate freely in a plane perpendicular to
both the base plane and the pendulum axis. It does not however allow motion
perpendicular to that plane. The deviation angle of the bob's support line from
the normal to the base plane is the observed tilt angle (with a suitable chosen
sign convention).When the base plane is near horizontal, the observed tilt angle
gives an accurate estimate of the inclination angle of the instrument's direction
axis to horizontal. The tilt angle is, however, insensitive to the inclination of the
pendulum axis to the horizontal.

Tiltmeter orientations are shown in Fig. 2. Instrument T1 is oriented to be
sensitive to elevation rotations of the alidade, and is located with Xr(71) > O.
Tiltmeter T3 will also be oriented to be sensitive to elevation rotations of the ali-
dade, but is placed at the opposite bearing, X(T3) < O. Tiltmeter T2 is oriented.
to be sensitive to rotations about a horizontal line perpendicular to the eleva-
tion axis, and is located at the same bearing as 71

1 , Xr (T2) > O. Tiltmeter T4 has
the same orientation as T2 and is located at the same bearing as T3, SO Xr(714) < O.

All tiltmeters are simultaneously levelled when the telescope is brought to the
standard position defined by: EL  E Lrig =-- 0, O. Tiltmeter
pairs will be placed on suitable base plates and calibrated in the Green Bank op-
tical calibration laboratory so that their orientations and orthogonality and zero
tilt calibration are well-determined in the laboratory. The tiltmeters may subse-
quently be installed on the GBT with accurate alignment along and perpendicular
to the elevation axis. Each 2-axis tiltmeter will be placed in an instrument pack-
age (possibly temperature regulated) which can be pinned and bolted to a bracket
on the alidade structure near the elevation axis, together with instrumentation
and power cables.
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T2

tiz(4)) 

(t (4) )) 2 	(t

t2z(4))

\At3x(4))2 (t3

tt,(4))

4)) 2 (t

t3z(l)

fly(4))2 ± (t4y

Txe(4))

Tye 4))

T3 TxeI (4))

4 Tive(4))

112(4))

T13(43)

T14(4))

Each instrument package will be provided with a temporary mount for a small
alignment telescope, to set directions of T1 and T3 parallel to the elevation axle.

Before starting measurements, the GBT will be brought to standard position
and all four tiltmeters will be levelled. The instrument behavior is described as
follows. A unit vector, L(4) , is associated to each tiltmeter  1, 2, 3, 4). The
observed instrument readout gives its tilt angle, either rxe(4)) about the Xe(4))-
axis, or Tye (4

)
) about the Ye(4))-axis. The expected instrument readouts are given

in Table 2.

Table 2.

Meter Readout Standard Position
Angle Direction Of

Instrument Axis

-4(4) 0)

Direction Of
Instrument Axis

(1) ) =
tiyk tiz

Instrument Axis
Angle To Horizontal

(Readout Angle)
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Assume a plane track. For 41) = 0, the instrument axis direction vectors are
initially,

(c.oi) II(o) ,V„(0) [17,(3) Ya(0)1

ka(0) [I(o) 2a (o)1 2„(o) 40)1 1.

This gives:

(C.2) t1 (0) = T3(0)

fra(0) - [(—() (sin (T) (sin 43•T) + (— cos (T)

2a,(0) • t(— sin (T) (cos )7')]

(C.3) Ti2(0) t4 (0) = --X = {a(0)' ()I +

I2a(0) • E(() ' (sin (T) (cos 4)
+ a(°) ' 5111 (T) (sin4)7.)]} -

After the alidade rotates about telescope zenith by angle 4) the instrument axis
direction vectors become, for the case of a plane track:

(C.4) = tel.) =

ka(4)) (sirl(T) (sin 4)7) + — cos —

2ael) • sin 
(T) (cos 4)T)1 -

(C.5) TT2(4)) = ) = ka(4)) (— — <-2 ) +

ka(11 ) - [(0 - (sin() - (COS 4)T)1 L( l) ) ' t( — sin (7')
 

(sin 43sT)1 -

These direction vectors are expressed in terms of ground frame basis vectors
x, Y, Z by substituting expressions (B.12) for the alidade frame basis vectors.
After some manipulation, the direction vectors, to first order in small angles re-
duce to
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(C.06) TV .1)) = T1
3 (4)) = X • sin .1] cos (11

(C.07)

+ 2 - K(T) • (cos (I)

T
'2(

4) ) = i'4(14))

+ cos (13. ) ((T) • (sin 4)T) • (sin a)].

(-- cos 43) (sin (I)) -I-

- t(—(T) • (COS T) (sin (I)) ((T) • (sin ) (-1 ± cos (1)} .

Computing the tilt angles to first order, using the equations of Table 2 gives:

(C.8) rx,(4)) = t((T) (cos 4D
T ) •(— 1 -F cos .1)) ((T) (sin 4DT)

(C.9) Tye() = [(—(T) • (cos (I)T) - (sin 4)) ((T ) • (sin 4)T) • (-1 + cos 4))1.

The tiltmeter measurement data is least-squares-fitted to (C.08) to obtain the
track parameters.
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Appendix D. Range Measurements Of Alidade Structure Targets

Pointing coefficient information may be derived by measuring trajectories of
alidade-mounted retroreflectors as the telescope rotates in azimuth. In 1999, four
ball retroreflector targets will be mounted underneath the elevation bearing sup-
port weldments located at each end of the alidade. Distance measurements will
subsequently be made from laser rangefinders around the telescope base to those
targets. For any alidade azimuth, at least two lines of sight will be available on
the right side of the alidade and two more on the left side, towards the bottom
surface of each weldment. The midpoint of the line between the right and left side
ball centers at each of the alidade ends defines a line which can be used to find the
elevation axis of the telescope, independent of the tipping structure's elevation.
In the alidade frame of reference this line is at a constant offset from the elevation
axis. After the elevation axis direction has been determined at some reference tele-
scope position (by tracking orbit planes of tipping structure targets and finding
the common normal to this plane) and this sub-bearing line has been determined
at the same telescope reference position, the constant vertical and horizontal offset
angles between this line and the elevation axis become available. One may then
track the direction of the elevation axis by observations of the sub-bearing targets
using the ground rangefinders, without having to vary the telescope in elevation.
It is expected that the horizontal angle of the sub-bearing line could be measured
to 1 arc-second, and the vertical tilt of this line to 2 arc-second, and the accuracy
of the elevation axis would be determined to the same accuracy.

Observations of the direction of this sub-bearing line can be used to cor-
rect for non-linearity of the azimuth encoder and obtain corrections for track-
nonuniforrnity. The measurement procedure is analogous to that used for the
tiltmeters. Using ground rangefinders, the direction of the sub-bearing reference
line is measured versus azimuth encoder readout angle. It is then possible to de-
rive from the measurement results the track rotation angle, 41) , versus the azimuth
encoder readout angle, AZenc . (By definition .13 = 0 when AZ,,„ 0).

Let the unit vector pointing along the sub-bearing reference line(Fig. 2) be
sb . This line is rigidly tied to the elevation axis to the extent that the bearing

platforms are rigidly related to one another. We may write its coordinates as

(D.01) risb (4) ) = — "ylb — it • ka (4)) + ('ysb) - r
f
a (4)) (— 030
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When the alidade is at uniform temperature, the small parameters rysb and OA

are constants. Basis vectors 5C
-
„(4) , ka(43) , and W are defined by equations

(B.11).

We note that, to first order,

(D.02) )7,.(4)) = 03b(43 ) ("Yei 7sb) Cia(4) ) (13sb Pei) • a7-

Parameters rysb and f3sb are obtained by trilateration rangefinding of the cen-
ters of the four sub-bearing balls when the telescope is at standard position, with
A Zene = 0. The coordinates of the midpoint between the centers of the balls under
each bearing platform are computed using measured ball center coordinates. The
unit direction vector along the line of centers is then computed, to give and PA .sb

After these parameters have been obtained, one computes a table of the ground
frame r"-component of vector -031) (4

3 ) versus 4) using equations (D.01) and either
(B.11) or (B.12). For each measured value of Usb(AZenc) Y one looks up the
corresponding value of J. This provides us with a correction table of the measured
track rotation angle 4) versus the azimuth encoder readout angle A.Zen, . The
function (I)(AZenc) is then Fourier analyzed to give clff) and c(iAjz)
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Appendix E. Computation Of First Order Corrections.

Computation of pointing coefficients to first order involves much algebraic ma-
nipulation. To do the computations one needs efficient notation. Telescope small
angle parameters are sufficiently small that one can simplify; they are considered
to be "first order quantities." Rules of computation for first order quantities are
used.

Let u and v be first order quantities. We assume the following rules:

(F0-1.) u2 =0 , V2 = 0 , uv = 0.
(F0-2) sin u u , cos u = 1.
(F0-3) cos(M u) = cos M — u sin M,
(F0-4) sin(M u) = sin M u sin M.

The following quantities appear in the mechanical pointing series computations:

Alidade rotation angle,
Commanded Azimuth,
Commanded Elevation,
GBT Rigging Angle,
Gravity elevation shift,
Paraboloid axis' Azimuth Offset
at standard position,

Paraboloid axis' Elevation Offset
at standard position,

GBT zenith angle,
Alidade track azimuth parameter,
Elevation axis angle excess from
perpendicularity to azimuth axis,

Elevation axis' horizontal azimuth
offset from X direction is (—N),

Parameters generating E Lgrat;

(cf equation B.27) .

AZcorn
E Ledm

E Lrig

E Lgra,(E Licata

Ao

E0

fiel

let

Ps , Pc
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(T • Sin (1).T

CT • COS 4)7-'

Pe/ - sin 4)T•

Ao 'Yei
Eo
cos(n, • ELcom)

7e/
cos ELrig

cos(2 - E Lrig)

(Tx

(TY
a
Ic

CM

C

C2L,

P

Cd
= pc cos M ps sin M
= cos

To simplify the computations we use abbreviated notation:

52m

C2m

Snm

S
52L

G(M)

Sci

EL

- 

sin ELcom,
- cos E Lcom
- sin(2 - EL)

- COS (2 ELcom,)

- sin(n
- E Lrig
- sin E Lrig
- sin(2 ELrig)
- E Lgrav(E Lcom)
=- pc - cos L ps sin L
- sin Ci

To get pointing series coefficients we first calculate differences of the Cartesian
coordinates of the as-built telescope's paraboloid axis, at the commanded beam
angles, from the corresponding coordinates for the ideal design telescope. We then
compute the quantities AE L and (cos EL - L AZ) which appear in equations
(4.18) and (4.19). These are sums of harmonic terms in commanded elevation
and azimuth. The terms are compared to those in Condon's series' for the same
quantities, to get a-priori estimates for the pointing coefficients.

We first calculate

(E.01a) d Px Px — x = C m SC/

(E.01b) d Py = Py — Qy = P - cm

(E.01C) d Pz = Pz z = P - - .
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Condon's expressions for the pointing series can be written:

(E.02a) L EL = Li Euefraction+ cOp

am  • ,S;n1-1 - Snm -I- i(EL) • Cmil - Snm +{
Cm(E:14n ' iSmf/ ' CnM 4

- d
in( L

ti,) ' CITA/ • CrIM

(E.02b) ELcom
. A AZ =4A0z)

m n

Et ,(AZ) i(AZ) c`11m,, n "inf./ 4Jniti tim m, i-JnM
C 72-114, -,nZ) Smfi • CnM Ce,Zn) '-'mf1 • CnM

where all indexed quantities a, b, c, d are independent of gi and M.

The Cartesian coordinates of Po are:

(E 03a) Pox = (sin Ao) • cos(ELrig E0 ) ,

(E 03b) Poy = (cos A0) - cos(ELrig E0) ,

(E 03c) Poz = sin(ELrig Eta) •

Expanding the trigonometric sum terms, carrying terms only to first order, and
introducing the abbreviated notation, we obtain a first order expression for Po

(E.4) Po = (A0 + • (GL-
 

sL)-1- (s,L, E • CL)

We carry out computations to first order. We first carry out a right hand
rotation of P0 about the axis

(E.5) kr (4) = 0) = Tkr0 = • (1) -1- fr • (7) + 2 - (- ) by the angle

(E.6) EL ELgra, — E Lrig = M - - G —L to give

(E.7) = Iro[Yro Poi 4- [Po — Yr° (-3-C-ro Po)] cos(M G L)

Kro X 
PO1 • sin(M G — L) .
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1
- Cm • Co + (a • SL, — K • CL) • Sp + (Cry ) ' Sm

— a) Sm SQ .+ (7) Cm • Sa
—G Sm - — (E + (Ty) • S m • Co

We then carry out a left hand rotation about telescope zenith IT- by the az-
imuth track rotation angle fi, to give

(E.8) /3 = TV {147 - 13
11 -(1 — cos) Ncos + x CV] (sin f2) .

After extensive manipulation and reduction we get, to first order:

= L [Kg CL — a SL — Cm + a • S ml

(E.9) ECA,L — c • Sm — G Sm.]
+ . [sm € • Cm G Cm] .

Using the first order value

(RN) -117 ="1- (('x) + V • ((g-

we carry out rotation (E.08). After some reduction we get, to first order:

(E.11) j3=

- Cm - 5f2 (fc • CL, — a • SL,) • Cii + ((Tx) S M 1

ci s)

— (c + (Ty) • S m • Sc
 ± (a — (Tx-) • S m • Cn

-1 (-7) • Cm • C — GSm • S 

Sm (em' €) - Cm G Cm
(—(Tx) Cm - Sci — (Ty) Cm Co I

where

(E.12) G = (—pc•CL — SL)-F pc- Cm + ps • Sm .
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Using this result in (E.01) gives

(E.13) d Pz d EL - Cm = EL • Cm =

((TY C m SL) - Cm + pc
. Cm - Cm

-1-p8 • Sm - Cm + (—(Tx) Cm- Sn+ (—(ry) . Cm - -

(E.14) d Px =

((Tx) S m (lc C L — a - SL) Cn (E + (Ty-) S m -

-I- (a (Tx) • S M + (pc- CL+ ps- SL) Sm . S

+(—pc ) . Cm•Sm . 	(- Ps) M S M
• ( 7) C .

Substituting (E.13) and (E.14) into (4417) and (4,19) and combining terms gives:

(E.15) (CM ) • A AZ = —(CM ) • d AZ =

—(Go)-1 . d 
px (Gyfir1

(So) - (Cm) (5' d Pz

(- K . C LA-a* S + (CT —a) . Sm-4-(7) • C m (— (3- x) •Sm-Co ((Ty • S Sn

The azimuth pointing series then becomes

(E.16) (CM ) • AZ=

[(-4 — NI ) • cos E Lfig Wei -1- (Tx) • sin E Lrig]
 

(NO • C M

Pei) Sm (—(Tx) Sm + ((Ty) • So - Sm
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The elevation pointing series then becomes

(E.17) E =

E0 — (TY) + Pc - cos E Lrig Ps - sin E Lri (CTix So 4-

± ((Ty) - cf2 ± (-pc) - cm + (-ps) sm

Term-by-term comparison of the components of the above series with those of
Condon's series then gives the coefficients listed in Table lb.
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Appendix F. Astronomical To Geodetic Correction.

The pointing coefficients given earlier are used to correct the commanded beam
position angles relative to an astronomical local horizon system, that is where the
2 direction is the local sky zenith, the Y direction is locally horizontal and has no
eastward component and the X, Y, and 2, directions are mutually perpendicular.

Radio sky-object coordinates are given in a "star-fixed" equatorial system.
Coordinates of the radio object in this system are tabulated declination and right
ascension at a given epoch. These must be converted to topographic horizon co-
ordinates. To accomplish this, coordinates of the object are converted to geodetic
horizon coordinates corresponding to (geodetic) latitude and longitude of the ori-
gin of the local topographic system. The resulting geodetic coordinates include
corrections for precession and nutation of the rotation axis of the earth, and also
refraction. (Geodetic coordinates are referenced to a standard rotational ellip-
soidal model of the earth. The available latitude and longitude for the GBT are
referenced to the North American datum NAD83.)

Commanded encoder elevation and azimuth angles given relative to the astro-
nomical horizon system (computed using pointing series without any astronomic-
to-geodetic coordinate system transformation) must then be additionally cor-
rected to take account of the difference in spatial orientation of the local as-
tronomic and geodetic frames. This correction is time-independent.

A service for performing these computations is provided by the National
Geodetic Survey of the NOAA. This service is available on the Internet at address
"http://www.ngs.noaa.goviDEFLEC/defiec_comp.htnir  . Geodetic latitude and
longitude of the local coordinate system's origin are supplied by the user. The
program "DEFLEC96" returns three angles: Xi Deflec. (arc seconds), Eta Deflec.
(arc seconds), and Hor. Laplace (arc seconds). The sign conventions used and
definitions of these quantities are also returned. Given the three quantities, the
astronomic to geodetic azimuth and elevation corrections can be computed.
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Available NAD33 survey values (deg min sec) were entered for GBT Station
location:

(F.1) LAT (N) 38 25 59.23658, LONG (W) =--- 79 50 23.4054.

The DEFLEC 96 program returned

(F.2) = —3.43, 71 = 1.33, lion Laplace = —1.06 arc sec).

Converting these angle components to radians we use:

(F.4) = —16.6 x = +6.45 x 10 (radian).

Quantities and n are defined as follows (Fig. 7). Let be geodetic longi-
tude and ch geodetic latitude at the GBT track-top center. Let A be astronomical
longitude and (I) be astronomical latitude at the same point. Then,

(F.5) 4- = — , (A — A) - cos .

Quantity is the deflection of the vertical along the meridian, is the deflec-
tion of the vertical along the prime vertical.

The geodetic latitude and longitude of the GBT track-top center are:

(F.6) 4 = +38 25 59.23658 , A = —79 50 23.4054 (d m s).

Definitions of these quantities are given and discussed in [Coo 871

Computation of geodetic pointing corrections proceeds as follows. We assume
that the commanded beam angles given to the telescope are to be corrected so
that the telescope paraboloid's axis points to geodetic azimuth fi and geodetic el-
evation M. The commanded beam azimuth and elevation angles to be given to the
GBT drive motors are thereby assumed to be 12 AS2 and M AM respectively.
As before, we let /3 be a unit vector in the direction in which the paraboloid axis
is to point. Let HE be the direction of the normal, to the earth reference ellipsoid,
which passes through the track-top center of the GBT. Let N be the direction of
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geodetic North and .k be the direction of geodetic East at this point.

We desire that the telescope should point in the direction:

(F.7) P = (c m So) • (c m c) . KT + (49 m)

To achieve this we demand that the telescope paraboloid axis be brought to the
attitude

(F.8) /3 = (Cm+Am • Ssi+Au) • + (cm+Am Cf/-1-6,Q) k (Sm+Am) .

Geodetic and astronomical coordinate frames are related, to first order by the
relation:

- tançb
—7/

1-ri - tan 0 ?I
e
1.

[(F.09)

HE

To show this we use the defining equations for these frames. Those frames are
defined with respect to an earth reference ellipsoid centered frame: I, J, K. The
ellipsoid unit basis vector I is directed from the ellipsoid center along longitude
—90

0

, latitude 0°, J is directed from the ellipsoid center along longitude 0°, lati-
tude 0° and K is directed along the ellipsoid minor axis. The geometry is shown
in Figure 7. The defining equations of the geodetic and astronomical reference
frame unit basis vectors are then:
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1--(_Co+900 • SA) + 
Ac0+900 C

A ) + k(s0+900)Ar-

HE sA) Aco . cA ) K(so) ,

(F.10)

= f(so s)) j(-so- cA) k(c4)) ,

= x 17E = (-C)+f (-SA ) ,

= Tr(-c4)
. SA) + :Rap CA) + k(s4))

rf SA) ± AC4)+90° CA) + k(494)-1-900

= RS4)- SA) + A—St. - CA) -I- k(C4)) ,

---- )
7 x 2=1 (-CA) +J (-S

A) -

By definition:

(F.11) =(A— 
) co , = 4) — , which gives

(F.11.0 A A -I- n • C0
-1 ,

For small q, , n C;i 1 , the trigonometric angle sum formulas give:

(F.12)

SA SA -I- • co-1

CA CA — - co- 1 • s), ,

• = so + - co

C4) = —

Inverting the first three equations of (F.10) gives

(F.13)
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I =-(-cA ) (so- sA)±1-1E-(--co- sA)

. (-sA)+17- (-so- CA)+11E (co-CA) ,

----- A. (Co) TIE

Substituting relations (F.12) into the last three equations of (F.10), and retaining
terms to first order gives

(F.14)

= I(-C+ A-SA - c;i 1 CA),

= I. (so- SA+ • Co • SA-1-71 • tan C A)

(—So - G—•Co•CA + 71 • tan (/) SA ) k - (co- • so),

(--co- sA + - so- s,\--n-cA)
(co - CA—-So-CA--97- SA) K (S Co).

Substituting relations (F.13) into (F.14) gives, to first order, the astronomic frame
basis vectors in terms of the geodetic frame basis vectors,

(F.15)

5-C = + 01 • tan 0)- — .g E

= tan 0) -11E ,

=
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Inversion of (F.15) gives the geodetic frame base vectors in terms of the as-
tronomical frame basis vectors, which are the desired relations (F.09). Substitute
(F.09) into (F.07) to express the geodetic pointing requirement (F.07) in terms of
ground frame basis vectors. (The local ground frame is the astronomical frame of
reference).

This gives:

(F.07b) P = (cm • sci) • as- — ?I • tan • ±

± (cm • cn) • eri • tan • Yd- - 2) ±

• (sm) (-77 • Tc - + 2) ,

(F.07c) /3 = (Cm - St-1 + Cm Cfi • ri tan — sm (k)

+ (Cm Co — Cm So •
ii tan 4— Sm)

(Sm n • cm - So -1- - Cm Co) (2) .

Expanding the trigonometric angle sum terms of (F.08) gives

(F.08b) P =

(cm - CAm — Sm • SAm) • (So • Cpci Cci • Smi) -

± (Cm • CAA/ — Sm • 496,m) • (Cil • CM/ )

• (sm + cm • s Am) - .

From first order relations (F0-3), (F0-4), we get
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(F.08c) P

(CM —SM.iM).(S+C.L) . Y(

+ (Cm — S m - AM) (Cfl - Afi)

+ (Ski C m AM) -

Equating the components of 2 in (F.07c) with those of 2 in (F.08c) gives,
after algebraic reduction:

(F.16) AM = (n) + - cc, .

Equating components of X in (F.07c) with those of X in (F.08c) gives, after
algebraic reduction, and substitution of (F.16):

(F.17) C m • AS2 (77 - tan 0) C m 1) • Sm Cci ± Sm • Sci

The last two equations provide our geodetic pointing corrections. They appear
as an additive track correction,together with a constant azimuth shift (the hori-
zontal Laplace term) and give the following increments to the pointing coefficients:

(a(Az)) =-_ +e
k 1,1 geodetic

(AZ))
" 1,1 geodetic

(F.18) (4(31,tiz))

•

 - tan ,
geodetic

I (EL) \
kc1 0 ) geodetic = +71

( A (EL))
=—_

l '° geodetic

These geodetic contributions are included in the coefficients summarized in
Section 6. It is possible to check (F.16) and (F.18) independently by use of
equations (6.39) through (6.42) found in Leick [Lei 90].
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AZen,(P) — AZcom
ELenc(P) = EL„m

AZ(P)= AZcom + (-46, AZ)
EL(P)=-- ELcom EL)

Table 3. Main Reflector Axis Orientations For Pointing Correction Calculations

Point Associated Telescope Encoder Ground Frame
Unit Vector Reading Polar Coordinates

As-Built Telescope
Po AZenc(P0 ) = 0 (= 4)43)

EL(Po) = ELrig
Rotate tipping structure about ifr (4) 0)
until elevation encoder reads ELenc= ELcom.

P
1 AZenc(Pi) = 0, EL enc(PI) = ELcom

I Rotate alidade structure about telescope
zenith direction, W, until azimuth
encoder reads AZen, AZeom (=

AZ(P0)= Asa
EL(P0) Eo Etrig

AZ(Pi ), EL(Pi)

Ideal Telescope
AZenc(Qo) = 0, ELe.c(Ch) = ELrig

Rotate tipping structure about X until
elevation encoder reads ELcom.
AZ,(Q i ) = 0, ELenc(Ch) = ELcom
Rotate tipping structure about 2
until azimuth encoder reads AZenc = AZcom.

Agcom
EL,(Q) ELcom

Qo (jo

Qi Qi

AZ(C2 EL(Q0 ) = ELrig

EL(Q 1 )_, ELcom

AZ(Q) =--- AZ-corn
EL(Q) =--- ELcom

Ideal direction vector ejo points along the design direction of the main reflector surface's optical axis as
designed, when azimuth and elevation encoders indicate standard telescope position. Direction vector Po
is assumed to point in the direction of the main reflector surface optical axis, as built and aligned, when
the telescope encoders indicate standard position. Parameters Ao and Eo are small angle deviations of the
as-built paraboloid axis pointing as set initially (during surface panel alignment), from the ideal values
at standard telescope position. The rotations above are computed as functions of track parameters <-7,

and 413
7
, , elevation axis parameters pa and -yei , the Finite Element Model calculated gravity deformation

elevation correction ELgr av —(ELcom) , and the rigging elevation angle ELr ig, to compute the pointing
deviations: AAZ, AEL, to be added to the commanded values, in order to direct the (surface-actuator-
corrected) paraboloid's axis to polar angles E.L com , AZeom with respect to the ground reference frame.
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