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ABSTRACT

Before retiring in 2005 December, Ray Escoffier augmented the GBT Auto-
Correlation Spectrometer to work in cross-correlation mode. We report on our lab-
oratory and sky tests of this mode. The executive summary of this technical memo is:
(a) except for sporadic lag dropouts, the cross-correlation mode works splendidly and
should be made available to the public; (b) the data product currently being delivered
to the public via SDFITS is not correct and needs to be fixed as soon as possible. This
should not preclude the release of this observing mode to the public since the hardware
is behaving as it should.

Here is the executive summary of what is needed for cross-correlation spectropo-
larimetry to be a viable observational technique using the GBT Spectrometer:

1. In SDFITS, we believe that the van-Vleck and scale factors that are currently being
applied to the correlation functions are correct. They should be retained.

2. In SDFITS, the symmetrization of the correlation functions and the calculation
of power spectra are not correct. We suggest scrapping the Python code that
currently does these tasks and replacing it using the algorithms described in §4 of
this memo. In particular, heed the comment under §4.3.2.

3. In SDFITS, several important pieces of information are not present and should be
inserted. Details are in §2.
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1. Introduction

The GBT Autocorrelation Spectrometer (ACS; hereafter the Spectrometer) was upgraded in
2005 by Ray Escoffier to produce cross-correlation output. This will now allow full-Stokes observa-
tions to be made with the GBT. It had been possible to do so using the Spectral Processor, and in
some cases this backend might still be preferable due to its higher dynamic range, however a number
of factors prompted the need to have a functioning cross-correlation mode for the Spectrometer:
(a) the Spectral Processor is on its last legs (with replacement parts nearly exhausted); (b) the
Spectrometer is the main backend for the GBT; (c) the Spectral Processor is limited in bandwidth
to less than 5 MHz; (d) the Spectral Processor can handle only 4 simultaneous sky frequencies, but
the limited number of channels usually means no more than 2 are useful; (e) Ray Escoffier, the
designer of the Spectrometer, retired in 2005 December, placing a firm deadline for a functioning
cross-correlation mode.

We therefore investigated the response of the new cross-correlation mode both in the laboratory
and on the sky using linearly-polarized astronomical sources. In the process we discovered that the
cross-correlation mode is functioning but that the data product provided by SDFITS does not store
the cross-correlation spectra correctly. In addition, vital information is missing from these data
files. § 2 directly addresses these problems. §§ 3.1–3.2 describe the lab and sky tests. We provide
astronomical polarization calibration results in § 3.3 that demonstrate that the GBT Spectrometer
cross-correlation mode is fully operational. We describe the proper way to obtain power spectra
from the GBT Spectrometer output in §§ 4–5. Finally, we explain what is wrong with the current
version of SDFITS in § 6.
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2. A Few Outstanding Problems with SDFITS

We begin this memo with a request that SDFITS be upgraded. To obtain the results in this
memo, we observed polarization calibrators using the observatory-supported observing scan type
“Spider” (which we describe in §3.2). We tried to analyze our results using only the information
stored in the SDFITS files. We were not able to do so. In order to produce the results presented in
this report, we had to rely on information not stored in SDFITS. This is not acceptable.

We strongly suggest that effort be made to correct the following in SDFITS:

1. In the current SDFITS, the cross-correlation spectra are not correct. § 6 describes what’s
wrong and § 4 offers the recipe to create proper cross-correlation spectra.

2. In the current SDFITS, the (RA, DEC) and Equinox of the requested source position are not
stored in SDFITS. This is a huge problem for any observing that uses position offsets. For
example, for the Spider scan type, the user specifies a source, say 3C286, and the source’s
position in the specified equinox is tracked. As this is happening, the telescope is driven
through the source position in such a way as to create a straight line in a specified reference
frame. Now, in order to analyze the polarized beam properties, we need to calculate the
offsets in azimuth and elevation from the source position. However, all that SDFITS provides
are the equinox and position of the telescope’s current position; we cannot calculate the offsets
because the source position is not provided. This is not peculiar to the Spider scan: many
people make maps in an offset mode.

3. In the current SDFITS, there is no indication of whether the high or low cal is used. We live
and die by whether the high cal is set since we do not rely on the winking cal. We would really
prefer if a binary keyword named HIGH CAL were stored in SDFITS. This can be set based
on the value of the HIGH CAL header keyword of the IF instrument FITS file. It’s certainly
been the case that we have accidentally observed with the low cal set. It might be true that
we have access to the band-averaged cal value stored in the variable TCAL in SDFITS, but to
know whether the high cal was set for any receiver based solely on this value would require a
priori knowledge of what the typical values of the high cal are as a function of frequency; for
instance, when observing at the high-frequency end of X band, the high-cal temperatures are
not very much larger than the low-cal temperatures: how would we know from the TCAL value
alone whether the high cal was set? Moreover, the band-averaged cal temperature might not
be an appropriate value for a particular observing method and the user might wish to access
the cal tables directly; in this case, we would need to know whether the high cal was set.

We also make an operational request. During an observing session, a collaborator observing
for us accidentally set the scan number back to 1 after finishing the 95th scan. There should be
a keyword to SDFITS that allows one to pass a time-stamp; this time-stamp would disregard any
scans made before the corresponding time. This could break the ambiguity. It would be better if
the observing software prevented this from ever happening! It’s tough to think of why one would
ever want repeating scan numbers in the same observing session.

3. End-to-End Tests of the Spectrometer in Full-Stokes Mode: It Works!

We have taken two sets of polarized data with the Spectrometer and carried through the
analysis to obtain all four Stokes spectra. One dataset was in the lab, the other on the telescope.
As it happened, only the telescope data were useful. Below we discuss the lab tests, the on-
sky telescope tests in which we correctly derive the astronomical position angle of the linearly
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polarized calibrator 3C286, and the “lag dropout” problem that was seen in our results. Our
analysis demonstrates that the full-Stokes mode of the Spectrometer is fully operational.

3.1. Laboratory Tests

Rich Lacasse and Nathan Sharp produced test fixtures for the Spectrometer cross-correlation
mode in the Jansky Lab at Green Bank in the summer of 2005. Rich conducted laboratory tests of
the modes listed in Table 1 in 2005 May and 2005 August. We analyzed the resulting Spectrometer
FITS files. We found the cross-power spectra of the correlated noise did not have the expected
shapes and found a large phase slope across the 12.5 MHz band. It was unclear to us what was
causing these anomalies, but our hypothesis was that the filters designed for the cross-correlation
test fixtures were not closely matched as they are on the Spectrometer. Rich agreed this was likely
the case. We decided it was necessary to test the modes on the sky.

Table 1: GBT Spectrometer Modes Tested in the Lab

Bandwidth (MHz) No. of Samplers No. of Quadrants Levels

12.5 2 4 9
50 2 4 9

12.5 8 4 3
50 8 4 3
200 4 1 3
800 2 4 3

3.2. On-Sky Telescope Tests

Sky tests were conducted from the period 2005 October 12 through 2005 November 26. The
observing method used to determine the polarization characteristics of the Spectrometer has come
to be known as the Spider pattern. The pattern is made up of four continuously-sampled scans
centered on the nominal pointing position that create an eight-armed symmetric pattern (hence,
Spider); two of the scans are aligned with the azimuth and elevation axes and the other two scans
are perpendicular to one another and oriented 45◦ to the azimuth-elevation axes. The extent of
each scan is three half-power beamwidths (HPBWs) on each side of the pointing position. Karen
O’Neil and Amy Shelton developed the Spider.py Python script, which we helped test for both the
Spectrometer and Spectral Processor, and there is now an observatory-supported scan type named
“Spider.” The Spider.py script allows the user to customize the parameters for this pattern,
including the number of legs (possibly making the name Spider a misnomer for anything but the
default [if you believe the original looked anything like a spider in the first place!])

Table 2 lists the Spectrometer modes that we tested by running Spider scans on the archetypal
linearly-polarized source 3C286 through the zenith to maximize the parallactic angle swing.

3.3. Astronomical Results!

We emphasize, first, that our results were obtained using the data product created by SDFITS

and were corrected to produce proper cross-correlation spectra as described in § 4. The current
SDFITS software doesn’t work and must be modified; see §§ 2 & 6.
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Table 2: GBT Spectrometer Modes Tested on the Sky

Bandwidth (MHz) No. of Samplers Levels

12.5 4 3
12.5 4 9
12.5 8 3
50 4 3
50 4 9
50 8 3
200 2 3
800 2 3

Appendix A describes how to modify current SDFITS output to produce proper results. Apply-
ing that fix, we analyzed the 3C286 Spider scans using our IDL package for polarization calibration.1

Figure 1 shows the results from Spider scans on 3C286 at L band. The observed cross-correlation
products show the exact sinusoidal variation that we expect to see as a function of parallactic angle
for a linearly-polarized source! The Mueller matrix is determined by fitting these data and we find
that the position angle of 3C286 is 32.◦2. Similarly, in Figure 2 we see the same plot for observations
made at C band. These results are within 1◦ of the actual position angle.

3.4. Available Full-Stokes Modes

While the Spectrometer could in theory produce results for 32 samplers, or 16 sky frequencies,
the IF is limited to 8 sky frequencies. This is a real shame for those wanting to do RRL work,
but we understand this is unlikely to change any time soon. Given that all the modes of Table 1
appeared well-behaved in cross-correlation when tested in the lab and all of the modes of Table 2
have been shown to behave as expected with sky tests, we feel confident that any configuration of
the GBT Spectrometer in full-Stokes mode will produce acceptable results. Of course, it would be
our recommendation that any observer hoping to use a non-standard (or non-tested) Spectrometer
configuration in full-Stokes mode actually test the polarization response by first running a set of
Spider scans on 3C286. This will provide the Mueller matrix needed to properly correct one’s data
in addition to putting one’s mind at ease that the Spectrometer will behave as expected.

3.5. Lag Dropouts

As part of project GBT05C-019, we made a very large (∼500 sq deg) map near the NCP
using the Spectrometer in full-Stokes mode while observing the HI and OH lines simultaneously.
This fully taxed the Spectrometer and in our understanding of how the Spectrometer is configured
(which might well be too simplistic), we ended up employing bad LTA cards that were hidden in
not-usually-found quadrants of the Spectrometer. Regardless of the true details of the physical
hardware that produced them, we discovered that our map is peppered with what have come to
be known as “lag dropouts.” These are places where a grouping of correlator lags is offset from its
neighbors. An algorithm for correcting these dropouts has been developed and will be implemented
in SDFITS according to the specifications in Software Modification Request 15C306.

1It should be noted that this was all carried out inside of GBTIDL without any problems!
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Rcvr1_2  1394 MHz  BRD0  3C286  16−NOV−2005
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DELTAG = −0.001 +/− 0.089
PSI = −162.0 +/− 18.5
ALPHA = −89.4 +/− 9.2
EPSILON = 0.007 +/− 0.022
PHI = 9.7 +/− 180.0
QSRC = 0.060 +/− 0.032
USRC = 0.125 +/− 0.032
POLSRC =  0.139 +/−  0.000
PASRC (**UNCORRECTED FOR M ASTRO**) = 32.1 +/− 0.0
NR GOOD POINTS:   X−Y = 51   XY = 52   YX = 52  /  52
SCAN 331
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Mueller Matrix:

      1.0000      0.0004      0.0141    −0.0024
    −0.0004    −0.9998    −0.0000    −0.0219
    −0.0127      0.0068    −0.9509    −0.3093
    −0.0067    −0.0208    −0.3094      0.9507

Fig. 1.— Spider scan results from polarization calibrator 3C286 at L band. The cross-correlation
mode of the GBT Spectrometer is functioning impeccably.

We strongly reiterate the recommendation regarding bad lags in MR15C306. It suggests that
the keyword -fixbadlags be made available that will, if set, correct the dropouts. However,
for some observing situations—and engineering tests—the ability to recover the original measured
correlation functions is crucial, even if they are incorrect. This is why it is important to be able to
not set the -fixbadlags keyword, because then one can regain the original correlation functions
by inverse-Fourier transforming the Stokes power spectra.

This brings us to proper and thorough documentation. It is important to make the algorithm
for this fix accessible to users. Similarly, the SDFITS documentation should be more detailed and
more easily accessible. We found it difficult to find information about what exactly is stored in
SDFITS and what the ZEROCHAN value is actually storing. In order for an observer to recreate
the measured lags output from the Spectrometer using the SDFITS spectra, it will be necessary to
have accessible documentation outlining how the data are stored and how the spectra were created.
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Rcvr4_6  4899 MHz  BRD0  3C286  14−NOV−2005
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DELTAG = 0.004 +/− 0.112
PSI = 176.3 +/− 19.3
ALPHA = −89.7 +/− 9.6
EPSILON = 0.001 +/− 0.028
PHI = −100.2 +/− 1108.4
QSRC = 0.072 +/− 0.039
USRC = 0.150 +/− 0.039
POLSRC =  0.166 +/−  0.000
PASRC (**UNCORRECTED FOR M ASTRO**) = 32.2 +/− 0.0
NR GOOD POINTS:   X−Y = 53   XY = 60   YX = 60  /  60
SCAN 403
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Mueller Matrix:

      1.0000    −0.0020    −0.0005      0.0028
      0.0020    −0.9999    −0.0000    −0.0115
      0.0007    −0.0007    −0.9980      0.0638
      0.0028    −0.0115      0.0638      0.9979

Fig. 2.— Spider scan results from polarization calibrator 3C286 at C band.

4. A Proper Way to Produce Spectra from the Measured Autocorrelation and
Cross-Correlation Functions: Verbal Description

In this section, we shall explain the details of creating power spectra from the autocorrelation
and cross-correlation functions that are output by the GBT Spectrometer. First we define two
terms: the measured correlation function, which is the set of numbers provided by the Spectrometer
and which has entries for only positive lags; and the Whole Correlation Function (WCF), which
has both negative and positive lags.

Whole Autocorrelation Functions (WACFs) are inherently symmetric about zero lag. The
Spectrometer produces two measured autocorrelation functions that have only positive lags; we
denote these as XXlags and Y Ylags. In contrast, cross-correlation functions (CCFs) are inherently
nonsymmetric about zero lag. The Spectrometer produces two cross-correlation functions that have
only positive lags; we denote these as XYlags and Y Xlags. We can regard XYlags as the positive-lag
portion and Y Xlags as the negative-lag portion of the Whole Cross-Correlation Function (WCCF).

The power spectrum is the Fourier transform of the WCF. However, Fourier transforms produce
complex output, and power spectra must be real—they cannot be complex. Without delving into
theoretical details, it is clear that we must arrange the WCFs and their corresponding Fourier
transforms to produce real output.
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4.1. Obtaining the Whole Correlation Function (WCF) from the Measured
Correlation Functions

The measured correlation function values exist only for positive lags. We need to combine these
positive-lag measurements into Whole Correlation Functions (WCFs) that have both negative and
positive lags. The following two subsections discuss this process.

4.1.1. The invented value for the ACF

WACFs are real and are inherently symmetric about zero lag, i.e., they are Hermitian, so the
Fourier transform is automatically real. Computationally, we must generate a symmetric WACF
from the measured values at positive lags. The measured ACF has only positive lags with N
channels: the lags range from 0 to (N − 1)∆τ , where ∆τ is the sample interval (the delay time
from one channel to the next). If we generate a symmetrized WACF by duplicating the nonzero
positive-lag values at negative lags—and there are only (N − 1) nonzero positive lags—then the
number of channels in the symmetrized WACF is not 2N , but rather (2N − 1): the lags range
from −(N − 1)∆τ to +(N − 1)∆τ . This is awkward because we wish to retain an even number of
channels for the FFT, and for other reasons.

Therefore, we must invent a new ACF value, which will be the value at lag −N∆τ . Note that
this value is also the value at lag +N∆τ , because this is the nature of discrete Fourier transforms.
The numerical value for this lag should be chosen to minimally impact the derived power spectrum.
This means that the invented value at −N∆τ should be equal to the measured value at (N −1)∆τ ;
otherwise there will be a high-frequency ripple across the power spectrum. With this invented
value, the symmetrized WACF has 2N values and we can employ the FFT. Note that N of these
values were measured and one was invented; the symmetrized WACF contains N + 1 independent
numbers. The FFT of the symmetrized WACF is real, so the values at positive frequencies are equal
to those at negative frequencies. Because N + 1 independent numbers went into the symmetrized
WACF, the power spectrum also has N +1 independent numbers. These correspond to frequencies
0 to ±N∆f , where ∆f = 1

N∆τ
.

4.1.2. The invented value for the CCFs

A WCCF has no inherent symmetry about zero lag, so the Fourier transform is complex. The
two cross-power spectra are the real and imaginary portions of the Fourier transform. Compu-
tationally, we must arrange the 2N measured values of the two CCFs, each of which has only
positive lags, as a 2N -long WCCF with both negative and positive lags. To achieve this we follow
a procedure similar to that for the WACF described above.

Specifically, we generate a WCCF by considering the N values of XYlags as positive lags,
running from 0 to (N − 1)∆τ , and the N values of Y Xlags as negative lags, running from 0 to
−(N −1)∆τ . The zero-lag values of XYlags and Y Xlags are, in principle, identical; in practice they
might be a bit different because of hardware imperfections,2 so in the WCCF we make the zero-lag
channel equal to the average of the zero-lag channels of XYlags and Y Xlags. Again, as with the
WACF, the number of channels in the WCCF is not 2N , but rather (2N − 1); the lags range from
−(N − 1)∆τ to (N − 1)∆τ .

2In this treatment, we sweep this difference under the rug by averaging. In practice, if the difference is nonzero

it’s a hardware problem that should be investigated! But also, if the difference is small, it doesn’t matter much.
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So again, as with the WACF, we must invent a new WCCF value, which will be the value at lag
−N∆τ (which, again, is also the value at lag +N∆τ). Again, this invented value should minimally
impact the derived cross-power. The proper choice is the average of the highest lag values (the
(N − 1)∆τ values) of the measured CCFs, XYlags and Y Xlags.

4.2. Cookbook for Obtaining the WCFs from the Measured Correlation Functions

We can distill the above discussion to the following simple rules for combining two measured
correlation functions, each of which has only positive lags, into what we are calling the Whole
Correlation Function, which has both negative and positive lags. The WCF has 2N channels, with
indices running from 0 to (2N − 1) and lags running from negative to positive delay. Thus, index
0 of the WCF array has lag −N∆τ , index N has lag 0, and index (2N − 1) has lag +(N − 1)∆τ .

1. The WCF is generated from two correlation functions, one regarded as having positive and
one as negative lags (denoted as POS and NEG respectively). Each array has N elements
with lags increasing in absolute value with index. Thus, for POS, index 0 has delay 0 and
index (N − 1) has lag +(N − 1)∆τ ; for NEG, index 0 has delay 0 and index (N − 1) has lag
−(N − 1)∆τ . We generate these arrays from the measured correlation functions as follows:

(a) For a measured ACF of, say, XXlags, POS = XXlags and NEG = XXlags.

(b) For a measured CCF, POS = XYlags and NEG = Y Xlags.

2. Set the zero-lag value of WCF equal to the mean of the zero-lag values of POS and NEG.

3. Set the (N − 1) nonzero positive-lag values of WCF equal to the (N − 1) nonzero lag values
of POS.

4. Set the (N −1) nonzero negative-lag values running from −(N −1)∆τ to −∆τ of WCF equal
to the (N − 1) nonzero lag values of NEG.

5. Set the −N∆τ lag value of WCF equal to the mean of the (N − 1)∆τ values of POS and
NEG.

We can represent this prescription as follows:

WCF =

[

POS[N − 1] + NEG[N − 1]

2
, NEG[N − 1 : 1],

POS[0] + NEG[0]

2
, POS[1 : N − 1]

]

(1)

where the notation NEG[N − 1 : 1] denotes the reverse of the array NEG excluding the zeroth
channel. Note that the invented value, discussed above, is (POS[N − 1] + NEG[N − 1])/2. We
find that the whole autocorrelation functions are then:

WACFXX = [ XXlags[N − 1], XXlags[N − 1 : 1], XXlags[0 : N − 1] ] (2)

WACFY Y = [ Y Ylags[N − 1], Y Ylags[N − 1 : 1], Y Ylags[0 : N − 1] ] (3)

And the whole cross-correlation function becomes:

WCCF =

[

XYlags[N − 1] + Y Xlags[N − 1]

2
, Y Xlags[N − 1 : 1],

XYlags[0] + Y Xlags[0]

2
, XYlags[1 : N − 1]

]

(4)
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4.3. Taking the FFT of the WCFs and Obtaining the Power Spectra

4.3.1. The Method

Having generated a WCF, the proper way to extract its power spectrum is to take the FFT.
This produces 2N power values for frequencies ranging from −N

N∆τ
(which is, of course, equal to

−1
∆τ

!) through 0 (DC) to +(N−1)
N∆τ

. There are (N +1) independent powers at frequencies 0 to ±N∆f ,
where ∆f = 1

N∆τ
. Finally, perform the following manipulations:

1. If it’s a WACF, sum (not average!) the positive and negative frequencies. Given that the
powers at −N∆f and +N∆f are equal (because of the nature of discrete Fourier transforms),
the sum is simply twice the power at −N∆f . This provides powers at (N + 1) frequency
values (ranging from 0 to N∆f), as befits the presence of (N + 1) independent numbers in
the WACF. Do not sum the zero-frequency values with itself.

2. If it’s a WCCF, the power spectrum is complex. Because the input numbers in the WCCF
are real, the power spectrum is Hermitian.

(a) The XY cross-power spectrum is obtained from the real part of the complex spectrum
exactly as for the ACF above, namely sum the negative and positive frequency powers.

(b) The Y X cross-power spectrum is obtained from the imaginary part of the complex
spectrum by differencing the negative and positive frequency parts. These two parts are
the negatives of each other because the complex power spectrum is Hermitian, so taking
the difference is like taking the sum of the absolute values.

4.3.2. → AN IMPORTANT POINT!!! ←

Above we italicized the words sum and difference. Why?

With the complex power spectrum, when summing or differencing, the zero-frequency power
is not summed with itself, so all of the nonzero powers get multiplied by two with respect to
the spectrum for only positive frequencies. This factor-of-two scaling is the correct scaling. So,
for example, for a WACF it is not correct to take only the zero and nonzero positive-frequency
portions of the power spectrum and discard the nonzero negative-frequency portions, because doing
so incorrectly discards almost half the power—in particular, it demagnifies the nonzero-frequency
components by a factor of two with respect to the DC component.

Moreover, for the WCCF, the zero-frequency value of the real component of XYlags (which is
symmetric about zero frequency) can be nonzero. In contrast, the imaginary component of Y Xlags

is odd and its zero-frequency component must be zero.

Here, we have made a big deal about getting the zero-frequency (DC) power correct with
respect to powers at nonzero frequencies. Formally this is important, but in practice it is not very
important because the DC power is generally a worthless quantity for the science. If the system
is AC-coupled, then there should be no DC power; the presence of DC power in an AC-coupled
system indicates a DC offset in the digital correlator, probably in the input A/D converters. If
the system is DC-coupled, then the presence of “red noise,” which tends to be environmentally
sensitive and therefore time-variable, makes the DC power unstable. In either case it is usually
scientifically worthless.

Nevertheless, DC power must be saved so that one can retrieve the original Whole Correlation
Function (WCF) values by taking the inverse Fourier transform. If the correct DC power value is
not available, then the calculated WCF values will be displaced from zero by an offset (recall that
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the DC power value is proportional to the sum over all correlation function values). The ability
to recover the original correlation function is particularly important for people needing to fix lag
dropouts on their own.

Then comes the question: we wish to present the astronomer with N power values, not (N +1),
so in the astronomer’s spectrum we must discard one of the channel values. The only two logical
choices are channel 0 or channel N . From the standpoint of mathematical elegance and technical
purity, we would prefer to retain channel 0 in the N -point astronomer’s spectrum because, when
taking the inverse transform to obtain the WCF, its value has far more influence than the channel
N value. However, given that the power for channel 0 is scientifically meaningless, and that the
astronomer’s spectrum is, after all, made for pure scientific utility,3 we should forego elegance and
go for practicality.

Thus, we recommend that the N -point astronomer’s spectrum consist of the power values at
frequencies ∆f to N∆f . It is very important to make sure that the SDFITS header parameters
provide the correct r.f. frequency—it’s easy to make a mistake and be one channel off! The zero-
frequency power should be saved in SDFITS in the ZEROCHAN value and it should be made
extremely clear in all supporting documentation that this is the zero-frequency power channel and
not the zero-lag correlator output.

5. Producing Spectra from the Measured Autocorrelation and Cross-Correlation
Functions: IDL

5.1. Producing the WCF from the Measured Correlation Functions

As an example of how to implement the method of § 4, we outline how we obtain power
spectra in IDL. To head off any confusion, we note that IDL’s FFT function requires that the input
correlation function be ordered such that the negative lags follow the positive lags. Therefore, our
general prescription for the WCF in equation (1) would be ordered as:

WCFIDL =

[

POS[0] + NEG[0]

2
, POS[1 : N − 1],

POS[N − 1] + NEG[N − 1]

2
, NEG[N − 1 : 1]

]

(5)

where the notation NEG[N − 1 : 1] denotes the reverse of the array NEG excluding the zeroth

channel. Note that the invented value, discussed above, is POS[N−1]+NEG[N−1]
2 .

Let the measured correlation functions, each with N positive lags ranging from 0 to (N−1)∆τ ,
be stored in variables names XX_lags, YY_lags, XY_lags, and YX_lags. The first two are the ACFs
and the latter two the CCFs. After re-ordering, we can translate equations (2) & (3) into the IDL
language and the whole autocorrelation functions can be represented as:

WACFXX = [ XX_lags[0:N-1], XX_lags[N-1], REVERSE(XX_lags[1:N-1]) ]

WACFYY = [ YY_lags[0:N-1], YY_lags[N-1], REVERSE(YY_lags[1:N-1]) ]

And the whole cross-correlation function would be:

WCCF = [ 0.5*(XY_lags[0] + YX_lags[0]), XY_lags[1:N-1], $

0.5*(XY_lags[N-1] + YX_lags[N-1]), REVERSE(YX_lags[1:N-1]) ]

3Moreover, if channel 0 is included in the astronomer’s spectrum, newbies will plot this value, which is often the

largest number in the spectrum, thus causing the spectral powers to be compressed into a useless squiggle.
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5.2. Taking the FFT of the WCFs and Obtaining the Power Spectra

First, we define the Fourier transform of the WCF:

FFT_WACFXX = FFT( WACFXX )

FFT_WACFYY = FFT( WACFYY )

FFT_WCCF = FFT( WCCF )

Here, each of the FFTs has 2N channels and is Hermitian; the zeroth channel has zero frequency
(DC).

For the autocorrelation power spectra derived from the WACF, the numbers in the power
spectrum are all real, but the computed imaginary parts will be nonzero because of roundoff error;
we want to get rid of these, of course, so the power spectra are obtained by taking the real part:

PSXX[0]= REAL_PART( FFT_WACFXX[0] )

PSXX[1:N] = REAL_PART( FFT_WACFXX[1:N] + REVERSE(FFT_WACFXX[N:2*N-1]) )

PSYY[0]= REAL_PART( FFT_WACFYY[0] )

PSYY[1:N] = REAL_PART( FFT_WACFYY[1:N] + REVERSE(FFT_WACFYY[N:2*N-1]) )

where we have followed the prescription of § 4.3. Note that the power spectrum contains N + 1
values as discussed. Operationally, SDFITS strips the zeroth channel and stores its value separately
from the remainder of the spectrum.

For the cross-correlation power spectra, we take the real part of the WCCF to obtain the XY
power spectrum:

PSXY[0]= REAL_PART( FFT_WCCF[0] )

PSXY[1:N] = REAL_PART( FFT_WCCF[1:N] + REVERSE(FFT_WCCF[N:2*N-1]) )

and the imaginary part to obtain the Y X power spectrum:

PSYX[0]= IMAGINARY( FFT_WCCF[0] )

PSYX[1:N] = IMAGINARY( FFT_WCCF[1:N] - REVERSE(FFT_WCCF[N:2*N-1]) )

Note that PSYX[0] should be zero.

6. The Current SDFITS

In 2006 May, a dialog was begun with Joe Wolf, an undergraduate summer student work-
ing with Prof. Tom Devlin at Rutgers. They were highly suspicious of the validity of the cross-
correlation spectra produced by SDFITS. Until this point, we did not use the SDFITS spectra;
rather, we had directly manipulated the correlator lags as stored in the Spectrometer instrument
FITS files in the manner detailed in §§ 4–5.

6.1. Problems with Cross-Correlation in the Current SDFITS

Figure 3 compares our spectra with the SDFITS spectra for an L-band observation during
which the correlated cal was injected. The correlated cal provides significant cross-correlated power
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Fig. 3.— Correlation spectra with the correlated cal injected. (Left) SDFITS output. (Right)
Assembled by us using raw lags from the Spectrometer FITS file. Notice that: the autocorrelation
spectra are identical; the cross-correlation spectra differ; the SDFITS cross-correlation spectra are
ill-behaved. The differing scales and the zero offsets are explained in § 6.2

that can be easily measured. It can be seen that the autocorrelation spectra look identical, but
the cross-correlation spectra are completely different. Something is clearly wrong with the SDFITS

cross-correlation spectra. We attempted to search through the Python files in /home/sparrow to
try to parse what SDFITS might be doing, but we weren’t able to find the source code that assembled
the correlation functions or performed the FFTs.

However, thanks to Joe Wolf’s discussions with Bryan Mason and Bob Garwood, he was able
to parse that SDFITS is likely doing the following to obtain the cross-correlation spectra. First,
SDFITS is calculating autocorrelation functions for each set of cross-products:

CCFXY = [ XYlags[N − 1], XYlags[N − 1 : 1], XYlags[0 : N − 1]] (6)

CCFY X = [ Y Xlags[N − 1], Y Xlags[N − 1 : 1], Y Xlags[0 : N − 1]] (7)

Next, these autocorrelation functions are FFTed and their real parts are taken. As a test, in
Figure 4 we perform these steps to the raw Spectrometer output directly and compare with the
SDFITS output. It’s a match. It is absolutely incorrect to calculate the cross-correlation spectra in
this way! Appendix A offers the IDL code that we used to properly fix the SDFITS cross-correlation
spectra. Figure 5 compares the corrected SDFITS output with the spectra produced from the raw
Spectrometer correlations via the method of §§ 4–5.
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Fig. 4.— Correlation spectra with the correlated cal injected. (Left) SDFITS output. (Right)
Assembled by us using raw lags from the Spectrometer FITS file, but in such a way as to reproduce
the SDFITS output. We understand what SDFITS is doing, and it’s wrong.

6.2. The Van-Vleck Correction and Power Scaling: Done Correctly in the Current
SDFITS

When we calculated power spectra directly from the measured correlation functions according
to the prescriptions of §§ 4 & 5, we were not able to obtain proper results because our spectra were
offset from a proper zero point.4 This is because we did not apply a van-Vleck clipping correction.
In contrast, SDFITS does do a van-Vleck correction, and when we modified the current SDFITS

output using the algorithm of Appendix A, we obtained proper zero offsets. Moreover, we obtained
proper astronomical results on 3C286! This could not occur unless two conditions are satisfied:

1. The van-Vleck correction was correctly applied.

2. The correlation functions were properly scaled for total power.

E-mail conversations with Bob Garwood give us confidence that these actions are being done
correctly. In particular, the SDFITS van-Vleck correction is that given in two technical memos
written by Fred Schwab (Schwab 2001, 2002). And the scaling of the correlation functions is based
on the value of the zero-lag autocorrelation channels, as it should be. We therefore conclude that
the above two actions are being done correctly in the current SDFITS.

4You can see this offset in Figure 3, where our cross-power spectra do not fall to zero at the bandpass edges.
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Fig. 5.— Correlation spectra with the correlated cal injected. (Left) Corrected SDFITS output.
(Right) Assembled by us using raw lags from the Spectrometer FITS file. We now know how to
correct the SDFITS output. Notice how the SDFITS cross-correlation spectra now properly go to
zero at the edges of the bandpass.

6.3. The Current SDFITS: Recommendations for Cross-Correlation

The processing of measured correlation functions to obtain power spectra has the following
sequential steps:

1. Applying the van-Vleck correction to the measured correlation function. This is being done
correctly and the current Python code should be retained.

2. Scaling this corrected correlation function so that it reflects the total power. This is being
done correctly and the current Python code should be retained.

3. Combining these scaled, corrected functions to obtain a proper Whole Correlation Function
(WCF). This is not being done correctly. The current Python code should be scrapped and
rewritten according to the prescription in § 4.

4. Fourier transforming the WCS to obtain the power spectrum. This is not being done correctly.
The current Python code should be scrapped and rewritten according to the prescription in
§ 4.
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7. Conclusion

The full-Stokes mode of the GBT Spectrometer is fully operational and should be made publicly
available. The cross-correlation spectra produced by SDFITS are incorrect. The SDFITS Python
code should be made to implement the method outlined in § 4. Additional astronomical information
needs to be added to SDFITS as outlined in § 2. The authors will be happy to offer assistance to
the GBT staff in their effort to ready this observing mode for use by the community.
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A. An IDL Fix for the Current Cross-Correlation SDFITS Output

In order to properly calibrate our sky tests, we needed the cross-correlation spectra in SDFITS

to be correct. The following brief IDL code was used to produce the corrected spectra. The
SDFITS cross-correlation spectra are represented by xy and yx and their corresponding zero-
channel powers by xy_zero_channel and yx_zero_channel.

; HOW MANY CHANNELS IN A SPECTRUM...

nchan = N_elements(xy)

; BUILD ARRAY OF SPECTRA FROM WHICH THE INCORRECTLY-DETERMINED

; SDFITS AUTOCORRELATION FUNCTIONS CAN BE RETRIEVED...

fft_acf_xy = [xy_zero_channel,xy,(reverse(xy))[1:*]]

fft_acf_yx = [yx_zero_channel,yx,(reverse(yx))[1:*]]

; TAKE THE INVERSE FFT TO GET THE AUTOCORRELATION FUNCTIONS...

acf_xy = fft(fft_acf_xy,/INVERSE,/DOUBLE)

acf_yx = fft(fft_acf_yx,/INVERSE,/DOUBLE)

; BUILD THE CORRECT CROSS-CORRELATION FUNCTION...

ccf = [0.5*(acf_xy[0] + acf_yx[0]),$

acf_xy[1:nchan-1],$

0.5*(acf_xy[nchan-1] + acf_yx[nchan-1]),$

reverse(acf_yx[1:nchan-1])]

; TAKE THE FFT OF THE CROSS-CORRELATION FUNTION...

fft_ccf = fft(ccf,/DOUBLE)

; EXTRACT THE REAL AND IMAGINARY PARTS...

fft_xy = real_part(fft_ccf) ; symmetric

fft_yx = imaginary(fft_ccf) ; antisymmetric

; TAKE CHANNELS 1 THROUGH NCHAN...

fixed_xy = 2*fft_xy[1:nchan]

fixed_yx = 2*fft_yx[1:nchan]


