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I. Introduction 

The true phase angle of the complex visibility function of a point 
source is zero at all baseline lengths and orientations. When we derive 
from observation a phase angle other than zero for such a source, it 
implies that at least one of the constants used in the solution is in-
correct . 

The fringe reduction procedure determines the displacement between 
the fringes actually observed and those we would expect to see for a 
point source at the same position as the centroid of the source in question. 
The phase is said to be positive if the fringes come later in time than 
those expected for the point source. Thus if the observed fringes come 
one quarter of a fringe period late, the phase is +90°. The locations 
of the point source fringes are specified completely by the parameters 
of the interferometer (baseline length in wavelengths, hour angle and 
declination of the interferometer poles, and the difference in electrical 
path length from the local oscillator to the two mixers) and the source 
position (hour angle and declination). 

If we find that the phase angles we derive from observations of a 
point source, using an adopted set of instrumental parameters and an 
adopted source position, are not always equal to zero, there are three 
possible explanations. 

(a) One or more of the adopted instrumental parameters is 
incorrect; 

(b) The adopted source position is in error; 

(c) The local oscillator frequency is unstable, which means 
that the baseline length in wavelengths is variable. 

The following discussion will treat the first two possibilities. The 
effects of the third are essentially outside the calibration problem. 

In general, a non-zero phase angle found for a point source will be 
the sum of two parts, one constant and the other variable in time. We 
call the latter the phase drift, and this is the subject of the present 
report. We shall not consider the constant part further at present. 
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II. The Phase Drift Equation 

The fringe pattern for a point source is 

f(T) = A cos { 2n [bx sin 6 + b2 cos 6 cos (T - a - h) + B3]} (1) 

D 
= ^ sin d 
_ D = cos d 

= difference in electrical path length from the 
local oscillator to the two mixers, expressed 
in wavelengths. 

baseline length in wavelengths 

d = declination of the northern instrument pole 

h = hour angle of the northern instrument pole 

A = fringe amplitude 

a = source right ascension 

6 = source declination 

T = local sidereal time 

Equation (1) provides the phase reference used in the reduction of 
the observations for phase and amplitude. Clearly (Bi sin 6 + B3) is a 
constant for a given source; thus errors in the values adopted for Blf B3, 
or 6 will contribute to the constant component of an observed phase error. 
On the other hand, the second term in the argument of the fringe function 
is time dependent, and errors in the quantities comprising it will lead 
to a time dependent phase error; this is the phase drift. We shall assume 
that the sidereal time is always correct, and consider how errors in B2, 
6, a, and h enter into the phase drift. 

A progressive phase drift implies that the reference fringe pattern 
has the wrong rate. It is easily shown from equation (1) that the fringe 
rate in cycles per radian is 

where 

B 1 

B2 

B 3 

and 

R = B 2 cos 6 sin (T - a - h) (2) 
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We relate an error in R to errors in the quantities on the right-hand 
side of (2) by differentiating logarithmically; this gives 

A R _ A B 2 

R - A6 tan 6 - ( A a + Ah) ctn t 

where t = T - a - h, and A6, Ah, and Aa are in radians. 

Now,a cumulative phase drift A$(in degrees) developing in a time 
AT implies that 

A R I 
R 360° RAT 

Hence we have the phase drift equation 

— - A6 ctn 6 - (Aa + Ah) ctn t = A
 A B 2 360 RAT (3) 

Note that there is a constant phase drift due to errors in B 2 and 6, 
and a time varying phase drift due to errors in h and a. 

Now we shall consider how equation (3) can be applied to refining 
the calibration of the interferometer from observations of a point source 
with an accurately known position, or to finding an accurate position for 
a point source when the instrumental parameters are known precisely. 

III. The Determination of B2 and h 

Assume that we reduce observations of a point source whose position 
is known very accurately, using trial values of B2 and h. The values 
chosen for B^ and B3 are unimportant; any phase drift will be due to the 
errors in B 2 and h. In this case A6 = Aa = 0, and the phase drift 
equation reduces to 

A B 2 A $ 
- Ah ctn t = 3 6 0 r A t (4) 

This is the calibration equation. Our problem is simply to use it to 
refine the trial values of B2 and h. 
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It is best to use the phase drifts at a number of hour angles, and 
to make a least squares solution of (4) for AB2/B2 and Ah. This method 
offers high accuracy, and gives as a by-product a determination of the 
statistical reliability of the result. 

While this is the preferable means of solution, there are two very 
simple but less accurate procedures worth noting. First, ctn t = 0 when 
t = 90° (i.e., when the source is 6 hours from crossover). In this case 

ABg A$ 
B2

 = 360 RAT 

This can be used for a quick check on B2. 

Second, one can determine the phase drift at two hour angles such 
that t2 = 180° - ̂  . Then ctn t 2 = -ctn^; furthermore it follows from 
(2) that R is the same in both cases. We now have 

ab2 AS, 
— - Ah ctn Ti = i — b2 1 360 RAT 

AB2 . A#2 + Ah ctn ti = -2 1 360 RAT 

whence 
Ab2 + 

B2 720 RAT 

A#2 - Ai^ 
Ah ctn t.̂  = 

720 RAT 

IV. Determination of Source Position 

If we know Ab2 and Ah, we can use the phase drift observed on a point 
source whose position is not precisely known in order to refine its 
location. Equation (4) gives 

AC C ABO » A& AS tan 6 + Aa ctn t = ± - Ah ctn t - 36q r A t 
B2 

Again it is preferable to make the solution by least squares, although one can 
use short methods analogous to those discussed in the preceding section. 


