
NATIONAL RADIO ASTRONOMY OBSERVATORY 
Green Bank, West Virginia 

May 7, 1988 

TO: Users Committee 
FROM: Ronald J. Maddalena 
SUBJECT: Data Reduction in Radio Astronomy 

Attached are my views and philosophy on data reduction and 
analysis. They are my opinions and may not reflect those of 
other astronomers. What I have attempted to describe are the 
basis by which I judged the functionalities of the various 
software systems I have encountered. I have stressed the 
philosophy behind data reduction, as opposed to the mechanics, 
since I believe that the 'how* of data reduction follows almost 
directly from the 'why'. 



I. Introduction 

Data reduction is a process by which only the most salient 
numbers are extracted or deduced from a large set of numbers and 
are then displayed in formats such as graphs or tables. This 
process allows the experimentalist to "play" with data in order 
to look for trends and structure in the data and to summarize 
their data so that other scientist unfamiliar with the original 
data can also appreciate the meaning of the data. There is, 
then, two kinds of analysis. That which the experimentalist does 
for his or her own learning and that which the experimentalist 
does for the education of his or her peers. 

Data reduction usually involves multiple steps which are 
chosen by the scientist according to what he or she feels is 
correct. The only laws governing how data is reduced are those 
dictated by the conventions used by the scientist's peers and are 
usually very loose. Thus, each scientist must be allowed to 
reduce data in a unique fashion. Whether or not the reduced data 
reflect what is present in the original data depends solely on 
the skills and honesty of the experimenter. Anything which 
unnecessarily increases the size of a set of numbers or severely 
restricts the kinds of process which can be performed on a set of 
numbers is against the practices of data reduction. 

For very large sets of numbers, a computer is usually 
essential. But, in order not to violate the principles of data 
reduction, each scientist would necessarily have to write their 
own program so as to reduce data in their own personnel way. 
However, since some of the steps one scientist will use are 
identical to those used by others, every computer program need 
not be written from scratch. Instead, the scientist's program 
usually uses a subset of routines from a large library of data 
reduction software interspersed with original computer code. 
Some types of data reduction, however, are sometimes so unique = -
that most of the computer code must be written from scratch. 

The following sections describe the data reduction process 
as applied to single-dish observation in radio astronomy and are 
based on my experiences in data reduction and my perception of 
the kinds of data reduction performed by other astronomers, 
particularly those who use the NRAO telescopes. I will first 
describe the major steps taken in data reduction (Sec. II), 
followed by what should be included in a data reduction 
library (Sec. Ill). My philosophy on how one invokes library 
routines will be discussed in Section IV. 



II. Steps in Data Reduction 

Data reduction is usually a multi-step process. Many times 
a series of steps are tried but prove to be unsuccessful, 
inadequate to the needs of the scientists, or just plain 
incorrect. In these cases, the scientist must have ready access 
to the original data or data at some preliminary stage of 
reduction in order to try a different series of steps. Thus, any 
data reduction procedure must leave the original data intact and 
allow for the temporary storage of processed data at various 
stages of reduction. Although most times impossible, information 
about the processing previously performed on the data should be 
stored with the data. Good book keeping is an integral part of 
data reduction and can be done with pencil and paper by the 
scientist, or, more ideally, by the computer program used by the 
scientist. 

In almost all cases in radio astronomy, the analog signal 
produced by a telescope are digitized and then passed to a 
computer. A series of data points, typically collected under a 
unique identifier called a scan number, are stored along with 
header information — details about how the data was taken. 
Typically two type of scans are possible: Continuum or spectral 
line. After an observations has been performed, the data are 
usually stored on computer tapes or disk and the astronomer 
begins analyzing the stored data. 

With today's faster radio telescopes with multiple backends 
or feeds and with large mapping projects, the use of scan numbers 
to identify observations becomes very awkward because of the 
large number of scans involved. Instead of having to address 
data by scan numbers, an alternative way would be to address 
scans by locations in the sky, name of the object, frequency, 
etc. For example, if an astronomer wanted to do some analysis on 
the observations of object XYZ, then he or she should only need 
to give the name XYZ to the computer and have it find the 
appropriate scan numbers. 

Most observations go through three stages of data reduction. 

Stage 1 — A quick look 

While observations are going on, the astronomer typically 
wants to quickly check whether the instrument is performing well. 
Most times the astronomer must decide on how to continue his or 
her experiment by looking at the results of the reduction 
performed on the data just collected. As with all subsequent 
stages in reduction, graphic and tabular summaries of the data, 
although possibly not of the highest quality at this stage, are 
needed to assist the astronomer in making a decision. The time 
between the completion of a scan and when the data can be looked 



at must be kept as short as possible. Thus, some type of data 
reduction capability must be available to the astronomer during 
the time of the observations. Although the range of library 
functions needed by any one astronomer at this stage of data 
reduction will only be a subset of a more extensive library used 
for more complete data reduction, the full library should be 
provided to the astronomer since it is impossible to predict what 
subset of functions would satisfy even 50% of experiments. Even 
at this early stage of data reduction, a significant fraction (10 
-20%) of experiments require that their data be manipulated in a 
unique fashion which probably was not anticipated by the 
programmers who created the library. 

Stage 2. — "Playing" with and learning about the data 

After the data has been taken, or during leisurely moments 
during the experiment, the astronomer starts the next stage of 
data reduction which is usually more carefully done and more 
extensive than the previous stage. Most times the astronomer 
does not use the reduced data from the first stage, which can be 
in error since the data was quickly reduced under hectic 
circumstances, but turns to the original data to insure that the 
reduction is done well and under calm circumstances. The 
astronomer typically uses mostly library functions but spends 
more time using software developed specially for that experiment. 
It is at this stage in the reduction process that the astronomer 
makes conclusions about the data. It is typically the trial and 
error stage in reduction, the "lets look at the data in this 
bizarre way" stage where the discoveries and revelations occur. 
Stage 2 is were most of the time is spent in data reduction. 

While the previous stage of reduction usually involves an 
interactive program, some experiments would benefit if the second 
stage was performed in a batch type of program. Batch processing 
insures consistency in the data reduction, reduces human 
errors, and speeds the data reduction. 

Stage 3. — Preparations for publications 

Usually months after the observations are completed, the 
astronomer starts the third stage of reduction which typically 
entails the production of high quality graphs and tables which 
summarize the data and which are suitable for publication. The 
graphs and tables produced by a computer will occasionally need 
the helping hand of a typist or a draftsmen. The tastes of the 
experimentalist dictate, so the types of graphs and tables 
produced in this stage of reduction will differ significantly 
from those produced for a similar experiment by another 
astronomer. Any data reduction system must then have graphics 
and table capabilities which are under the control of the 
astronomer. For example, something as simple as the length of 
the tick mark on a graph, the arrangement of columns in a table, 



or as complicated as the viewing perspective for a 3-dimensional 
plot must be under the control of the astronomer. 

Therefore, during each subsequent stage of data reduction, 
each experiment becomes more and more unique as does the data 
reduction software used by the observer. In principle, each 
stage in reduction can be performed by different computer 
programs but, to make matters simple for the experimentalist, the 
syntax of how to enter commands should be identical. Few 
astronomers would enjoy having to read more than one set of 
documentation or learn more than one system. 

III. Library Functions 

A complete list of functions which should be part of a data 
reduction library would be as extensive as the number of 
astronomers who use the library, as implied by what I have 
described in the previous sections. However, a list of the basic 
functions can be easily created; my list, which may differ with 
lists made by others, is given below. It is based on careful 
reflection on what I have been actually doing to the various 
types of data I have encountered. Note that many functions 
astronomers usually consider imperative within a reduction system 
are, in actuality, combinations of functions in my list. For 
example, overlapping frequency switched spectral line data 
involves the use of functions 4, 5, 9, and 10. Averaging scans 
together entails functions 4 and 5. Thus, many complex library 
functions are built out of the simple functions listed here. The 
list is in no particular order. 

1. Obtaining data from a user-specified file located on 
computer disk or tape and storing the data as an array which 
can then be accessed and altered by the user. 

2. Fitting functions to certain specified points within an 
array containing data. These functions should be: 

Polynomials 
Sine Waves 
Multiple Gaussians 
Any linear or non-linear function 

3. Constructing a model of a function and storing it as an 
array. The type of functions are the same as given in 2 
above. 

4. Multiplying, Dividing, Adding, Subtracting data points in 
one array with another array 



5. Multiplying, Dividing, ... a constant with the 
data points in an array. 

6. Smooth the data points in a scan using: 
Any user supplied smoothing function. 
Certain types of standard smoothing functions 

7. Auto-correlate, cross-correlate the data in an array with 
that in another array. 

8. Produce a fourier or inverse fourier transform of the data 
in arrays. 

9. Shift the x-coordinate (time, position, frequency, velocity, 
...) of an array by an arbitrary amount or an amount which 
will align the x-axis in one array with that in another 
array. 

10. Re-griding of the data in a scan in the x-coordinate. 
Expand or contract the x-axis of an array. 

11. Calculate the parameters of a subset of data points in an 
array and store the results for later use. The parameters 
which should be calculated are, for example: 

rms and higher moments of the data 
average intensity across the data 
maximum/minimum intensity in the data and the 

x-coordinate at those points. 
integrated intensity 
intensity weighted average of the x-coordinate. 

13. Summarize in a table either: 
Data from an n-dimensioned array 
Any parameters produced by any stage of data 

reduction 
Header information 
Contents of the data file 

(For example, one should be able to produce a table with 
columns containing scan numbers, RA, DEC, system 
temperature, rms, the intensity of the 25th data point, 
integrated intensity, etc. ) 

14. To manipulate columns and rows within tables similar to what 
can be done in many of today's spread sheet or data base 
management programs. This should include: 

Fitting arbitrary functions to columns/rows 
Graphing any two columns/rows against each other 
Producing 1, 2, 3, ... dimensional arrays from the 

entries in a table. 



(Using the example in 13 above, one should be able to 
produce a 2 dimensional array of integrated intensity 
versus RA, DEC which can then be contoured plotted.) 

15. The ability to store and retrieve arrays, tables, or graphs. 

16. Accessing any number from the scan header or from the data 
itself. 

Storing the number for later use, 
Replacing the original number with any number. 

17. Summarize in a 1 dimensional graph the data in an array 
The graphics must allow for: 

Altering the range of x and y values which will be 
plotted. 

, Altering the number and label type for tick marks 
Altering the labeling of the graph 
Allowing multiple graphs to be displayed simultaneously. 
Interactive cursor for determining the x and y 
coordinates of any point in the graph. 

18. Storing one-dimensional data in a two or higher dimensional 
arrays. For example: 

Storing peak or integrated intensities as a function of 
the coordinates in the sky at which the data was 
taken (2-dim array). 

Storing the intensities at each data point in a scan as 
a function of the scan's x-coordinate (e.g., 
velocity) and as a function of position in the sky 
(so called position-velocity maps; 2-dim. array). 

Storing intensities at each data point in a scan as a 
function of the scan's x-coordinate (e.g., 
velocity), and the two sky coordinates (so called 
data cubes; 3-dim array). 

19. Turning high dimensioned arrays into lower dimensioned 
arrays by, for example, averaging or adding data along one 
or more dimensions. For example: 

Adding together all the data within a 3-dimensional 
data cube in the two sky coordinates so as to 
produce a 1-dimensional average spectra for a 
source. 

Specifying two points within a 2-dimensional continuum 
map of a source so as to produce a 1-dimensional 
profile through the source. 

20. Displaying, using contour, gray-scale, or color raster 
plots, the contents of subsets of these high dimension 
arrays. 

21. Performing all the same functions (*, /, +, -, FFT, etc.) on 



these higher dimensioned arrays as can be performed on the 
1-dimensional arrays. 

IV. Implementation 

For some simple minded applications or for first time users 
of an analysis system, it would be helpful if the user could be 
prompted for input through menus or through question and answer 
sessions. The speed at which one initially learns simple 
operations should be fast; sophisticated operations should not be 
too difficult to learn by a competent astronomer. 

Sophisticated users would find things like menus very 
cumbersome and time consuming so the quick way of typing commands 
on a terminal would also be needed. 

Help files should be accessible from within the program and 
both a cookbook type of manual and a complete, larger manual 
should be available and kept up to date. 

Hard copies of graphs and tables should b of publishable 
quality so that later work by a draftsman or typist will be 
minimized. 

The analysis system should have complete and up-to-date 
system documentation so that the program can be easily maintained 
by a small staff of programmers. The languages in which the 
program was written should be few and one of the standard 
languages. The program should run on commonly found machines and 
have few machine dependent feature so that the program will be as 
portable as possible. It would be great if the program could 
also be run on a PC. 

The input and output of the program should be easily 
converted into FITS image files so that AIPS or IRAF can further 
process the data or provide input back into the analysis system. 

Many existing analysis software are interactive programs but 
also give the user the capability of defining procedures for 
batch-like processing. Procedures can be built out of standard 
library functions or out of other user defined procedures. Thus, 
if a user wishes to create a new way of reducing data, he or she 
can write a procedure to do exactly what is desired. The syntax 
for procedures are usually unique in that they seldom resemble 
any of the standard computer languages but the rules of the 
language are usually easy to learn. Such items as assignment 
statements; loops; conditional and branch statements; defining 
variables to be logical, integer, real, character, or arrays; and 
math functions (sin, cos, atan, sqrt, int, ...) are part of many 



analysis languages though some languages do not provide all. 
Header information and data should be available as variables so 
that a procedure can examine and modify those items as needed. 

Full editing capabilities for user-defined procedures must 
also be part of the analysis system. If a procedure becomes 
useful to many observers, then it should be easy to install it 
into the standard library so that everyone can use it. A 
procedure, if written correctly, can also do the batch type of 
processing suggested in section II. 

Some very complicated analysis steps would be more easily 
performed not through procedures but through user-supplied 
functions or subroutines written in such standard languages as 
Fortran, C, or Pascal. The steps needed to get data into these 
subroutine and the steps needed to compile and link the 
subroutines should be spelled out carefully and made as simple as 
possible since most of the users of an analysis system are one
time user. 

It is my opinion that any analysis system which does not 
EASILY allow for the writing of procedures will be useful in only 
a few rare, simple cases and will have a short existence. A 
system which is only a batch-type of program and is not 
interactive or is only menu driven will also be very much less 
than the ideal. 


