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Abstract 

A general method of analy zing the combined effects of the filtering and 

sampling processes on the signal to noise ratio is proposed. It is based on some 

of the properties of the Fourier series, the stationary random functions, and the 

linear filters, and it leads to the estimate of the resultant standard deviation on 

the amplitude of each of the Fourier series components which would represent 

the signal alone in any limited interval. The magnitude of these standard devi

ations is then used as a criterion of the efficiency of these processes used together. 

One immediate application is the determination of the optimum rate of sampling 

discrete values of a signal mixed with noise. This optimum is a function of the 

frequency response of the noise filter, the spectrum bandwidth of the signal, 

and the relative increase of the standard deviation introduced by the sampling 

process which is considered acceptable. An example is given, from radio as

tronomy, in the case where a resistance capacity filter is used in the receiver 

output. It is shown that for any given acceptable relative increase of the standard 

deviations, optimum relations can be established between the values of the filter 

time constant, the sampling interval, and the spatial frequency bandwidth of the 

antenna used. 

I. Introduction 

In the reduction of the data from a record of signal and random noise, a 

problem is often met of limiting the number of points of measurement, to a mini

mum without losing any, or at least hardly any, of the information contained in 

the original record. This problem arises, for instance, when the degree of 



computation involved, or when the length of record to be put in a digital form, is 

extensive enough to make desirable a cutting of the quantity of data to be used. 

In the ideal case where the signal s(t) is free of noise and contains no fre

quencies higher than B cps, the answer is given by the sampling theorem, [1], 

which states that s(t) is completely determined by the knowledge of an infinite 

series of discrete values equidistant by no more than : 

When the signal is observed only over a finite interval T, the preceding theorem 

still applies, to the extent that s(t), instead of being completely determined in the 

interval T from the knowledge of a finite number of points, is now determined only 

to a very high degree of approximation everywhere within T, except at the edges 

(the smaller the amplitude of s(t) outside T, the better the approximation near the 

edges), [2 - 3]. 

In the case where the frequency spectrum of s(t) is not strictly limited to a band

width B, but contains only a relatively small amount of energy outside B, the 

sampling theorem still leads to a very good approximation of s(t), in the interval 
T T, from the knowledge of = 2BT equidistant values [2]. For these two last 

cases a necessary condition is to have 2BT » 1. 

One might consider extending the use of this theorem to the general case 

where a random noise x(t) is superimposed upon the signal s(t). To the extent 

that the power density spectrum of the noise can be considered as very small 

outside a certain bandwidth B"*", one can say that, by sampling any record of signal 

and noise at equal discrete intervals smaller or equal to the smallest of the two 

quantities and T~r*, one disposes of almost all, if not all, the information 
ZB 2B 

necessary to restore the original record. 

Actually, in the latter case, there are two objections against the use of the 

sampling theorem as a means of defining an optimum rate of sampling. One is 



that the definition of an equivalent bandwidth B of the noise power spectrum, 

which is ultimately shaped by the frequency response of the receiver output 

filter, is somewhat arbitrary (unless, the ideal case of a rectangular filter is 

considered). Furthermore, due to the fact that such a filter is generally sub

mitted to the requirement of distorting the signal as little as possible, its fre

quency gain may be still significant rather far away from the range of the signal 

bandwidth. Consequently, a conservative estimate of its bandwidth B* would in 

that case lead to a value of the sampling interval much smaller than it would have 

been for the signal alone. 

This last point leads to the second objection which is that one is generally not 

interested in being able to restore both signal function and noise function, but 

only the signal by reducing the error due to the noise to a minimum. And in

deed, as it will be shown, consideration of the problem directly in that form leads 

to the estimate of a sampling interval larger than it should have been if both signal 

and noise had to be restored. 

Actually, the problem we are considering is the following one: given a signal 

s(t), of which nothing is known except that it has no frequency components over a 

certain bandwidth B, and which is mixed with a random stationary noise x(t) 

whose power density spectrum is known; to what extent will the fact of knowing 

only discrete values of s(t) + x(t), at periodic intervals of given width 0 affect 

the final quality of the restoration of s(t)? 

These conditions are encountered in radio astronomy observations: so far 

as the signal is concerned we know [4] that whatever the spatial frequency distri

bution of the source is, the spectrum of the image given by an antenna is steietly p^ctrCc*!!^ 

limited to a cut-off whose value is proportional to the ratio of the diameter of the 

antenna to the wavelength of observation. Also the power density spectrum of the 

receiver output noise is known from the measurement of the frequency response of 

the selective filter. A last point is that, for an observation being made over an 

interval of time T, what is desired is to restore, in this interval only, the signal 

s(t) to its best. 



In the following, we will consider the combined effects of the sampling rate 

and the frequency response of the noise filter on the final quality of the restored 

signal. This will be done by considering the value of the standard deviation which 

affects the amplitude of each of the components of the Fourier series which would 

represent the signal alone over the interval T of observation. Based on some of 

the properties of the Fourier series, the sampling theorem, and the linear filters, 

this approach seems to have the twofold advantage^ Of leading to an exact and 

rather simple estimate of the respective contributions of the filtering and of the 

sampling and of allowing this estimate to be obtained as a function of the signal 

frequency component considered. To begin with, a resume of the basic formulae 

used is given. 

II. Basic Concepts and Formulae 

A. A few properties of the Fourier series. 

One knows that a regular function s(t), whether it is periodical or not, can 

be identically represented by a Fourier series in any interval T, but in this interval 

only (the components of the Fourier series being themselves limited to the interval 

T): 

00 m 00 m 
s(t) — b + 2 b cos 27T — t + 2 a sin 2-tt t (1) w o m = 1 m T m = 1 m T 

for: 0 < t < T 

with: 

b™ * t~ -Cf s(t) cos 21T T" t dt (2) m 1 o 1 

| / s(t) dt 

In the case where the number of components is limited to a certain value m^,. the 



(2m + 1) unknown coefficients a and b can be calculated from the following 
o mm 5 

linear system: 

00 m 00 m 
s(t ) • b + 2 b cos 27r — t, + 2 a sin 2ir — t, 1 o m = 1 m T 1 m = 1 m T 1 

°° TTI 00 TTL 
s(t ) * b + 2 b cos 27r — t + 2 a sin 27r — t (3) 

p  o  m  =  1  m  T p m  =  l m  T p  

00 00 ry» 
+ ^ b cos 2tt —1„ .,+ S, a sin 27r — t 

2m0+l) o m = 1 m T 2m0+l m = 1 m T 2mQ+l 

of (2mQ + 1) equations, knowing (2mQ + 1) values (whatever they are) of s(t) in the 

interval T. If the (2mQ + 1) values of s(t) are chosen equidistant, the interval 

between consecutive points being: 

0 = 
2m o 

the solution of (3) lead to: 

o & o m 
a = 2 s(p©) sin 2tt — p© 
m 2m + 1 p = 0 T 

o 

o 2m 2 o m 
b = — 2 s(pG) cos 2ir — p© 
m 2m +1 p = 0 

0 

1 2m° 
b 0  = 2 ^ T T p 5 o  s ( p e )  ( 4 )  

O 

T 
When the sampling interval is smaller than , the coefficients a^ and 

o 
b^ can be estimated by still using relations (4), in which (2mQ + 1) is replaced 

by n, the number of values of s(t) sampled. It is interesting to note also that, 

should the number of sampled values be less than the number of coefficients to 

be calculated, relations (4) would give the best approximation of these coefficients 



(considering the criterion of the minimum mean square errors 

1  n - 1  2  
— 2 „ [s(t ) - S(t )] , where S(t) is the Fourier series calculated in that manner), n p = 0 p p 
15]. 

A last and useful property of the Fourier series is the following one* what

ever is the spectrum of a function s(t) considered in an interval T, the Fourier 

series expansion limited to its first terms is still the best trigonometric 

series of terms to represent s(t), (with the same minimum mean square 

criterion). , 

B. Sampling theorem and Fourier series 

Just as the Fourier series are either an identical representation of a function 

s(t) in a limited interval T, or a good approximation of it, also the sampling theorem 

in the time domain gives, for a strictly band limited function, either an exact 

representation of this function (from to +°°) or a high degree of approximation 

of it in a limited interval T (if BT » 1, where B is the spectrum bandwidth)? 

SW = _ s^)°m 2"B '' " £or --<*<+» (5) 

2»B (t -

c 
. +BT f c \ SU1 27rB (t ~ 2B* T T 
. =2.Bt s ^ for --<t<+- (6) 
C = "BT 12B/ 2irB(t-t^-) 2~ ~ 2 

The fact that (6) is a very good approximation of (5) when s(t) is only known in a 

finite interval T* is due to the rapid attenuation of the quantity)sin 27rB (t - ~-) 
f  1̂3 

0 
when (t - —) diverges from zero. The effects of any term in (5) are therefore 

of consequence only within a relatively small number of intervals in the neighborhood 

of the corresponding sampling point [2]. The approximation given by (6) in the 

interval T is then good anywhere within T except at the edges. 



Using this property of the sampling theorem, one can show, at least 

qualitatively, that a function s(t) which contains no frequencies higher than 

B can be represented with a good approximation in any interval T (with the 

condition that BT » 1) by a Fourier series limited to m terms, with: 
o 

m^ = integer part of BT 

We have been unable to find elsewhere a direct demonstration of this rather 

intuitive property, and propose the following approximate one. 
T T Let us consider a regular function s(t) in the interval - — , + — . In 
Z A 

this interval it is identically represented by equations (1) and (2) which can 

be written in complex terms: 

+co 27Tj^-t 
s(t) S s C e T (7) m = m 

with 

r  
b m ~ j a m  _  1  f + T / 2  ~ 2 ^  T  1  . . .  

m ~ 2 " T -T/2 e (8) 

Replacing in (8), s(t) by its value given by (6), one has 

- 1 f+T/2 +BT (0| 
Cm " T '-I/* « -2-BT 8 

2lB(t c, 6 

2B 

In consequence of the uniform convergence of the series one can reverse sum

mation and integration: 

c t 
xrt .m/o sin 2ttB  (t - —) - 2Trim — 

c ,i fTOTsfe|/+T/,2 —Tdt (9) 
m T c = -BT E5H-T/2 2„B(t_̂ , 

2B 

Using the same argument that applied for the degree of approximation given by 
T T the sampling theorem (6), we see that for t < - — or t > + ~ the quantity 



s i n 2 i r B ( t - ^ )  c  

falls rapidly to zero, whatever — such that: 

T C T _ ® < — < + — 
2 2B 2 

condition which is fulfilled in the actual case. Therefore (9) can be written: 

C rn 
1 +BT , +<* Sln 2lrB (t ~ ^ t t 

Cm ? ; c -?BI >- , „„ ? e dt (10) 
2x B (t - —) 

the limits of the integral being extended to and +°° 

Let: 

u  =  2 B ( t - ^ )  

m 
X * 2BT 

Equation (10) becomes: 

n a- 1 Ic j -27rjcx i>+°° sin m. -27rjux 
m = BT c = -BT S SB/ 6 -°° 7ru 6 

In this form, it is clear that the value I(x) of the integral is the Fourier transform 

of . Therefore: 
7TU 

_  1  1 .  1 - ^ m  1  I ( x ) - l f o r  - - < x  <  +  - i . e  

du 

I(x) = 0 for x > i. e 
Ct 

m 
2BT 

1 
> 2 

The coefficients D and C are therefore zero for m > BT, and the number of 
m -m 

Fourier series components is limited to mQ = BT. 

More exactly, the preceeding shows that the Fourier series expansion of s(t) in 

the interval T, limited to mQ = BT components, represents s(t) in this interval 

with a degree of approximation comparable to the one given by the sampling 

theorem. This approximation is therefore better when BT is larger. 



In. figures 1, 2, and 3 are shown a few examples of the degree of approximation 

obtained in this manner. 

Figure 1 represents the function g(a) = (S"* whose Fourier transform 

G(v) (figure la) is zero for v > B. 

It is considered over the ranges - ̂  < a <+~. and - < a < \, and in each case, 
B B B B 

the Fourier series components are calculated from points at abscissae k/2B 

within the range of observation (k being an integer). The function g(o:) is then 

restored by adding these Fourier harmonics. 
sin 7rBOL 

Figure 2 shows similar results in the case of the function g(a) ^ -r— whose 
TTBO! 

Fourier transform is G(v) = 1 for 0 < v < B, and G(v) = 0 for v > B (fig. 2a). 

The first example > in radio astronomyv represents the gain of a continuous linear 

aperture as a function of a, angle between the direction considered and the plan 

perpendicular to the antenna. 

The second one would represent the gain on a synthesis antenna obtained by multi

plying the output signal of the same linear aperture by the output of one element at 

its end [71. 
d 

In both cases, the spatial frequency cut-off of the antenna is equal to — , 
A 

the ratio of the length of the aperture and the wavelength of observation. 

The third example corresponds very nearly to the actual case of the 85 foot para

bolic antenna used at the NRAO. 

Due to the tapering of the illumination, the level of the side lobes is appreciably 

reduced, and in consequence the main lobe is widened; its width at half intensity 

points is 1.4 times larger than it would be if the illumination were uniform. 

In Figure 3, the gain of this aitenna is approximated by the Gaussian curve having 

the same width at half intensity points: 

g[oi)  = 2.72 exp 
a2 

2(0.53)2 

B -
T, d with B = — 

A 



The Fourier transform of a Gaussian function is also Gaussian. 

Figure 3A shows that, in the present case, G(v) is very small for v > B, and 

actually sampling g(a>) every ~ and restoring the function in the corresponding 
ZT3 

interval of observation, give the curves shown in Figure 3. 

C 
t. Random stationary functions and linear filters. 

Let x(t) be a random stationary fuic tion. Its correlation function is by 

definition: 

PO(T) = X(T)- X(T " T)« 

and its power density spectrum: 

r°° 
A0(v) - 4 JQ P(T) cos 2irvr dr (11) 

AQ(v) and P0(R) are Fourier transforms of each other and one has 

r°° 
p0(r) « Jo AQ(v) cos 2TTVT dv (12) 

Also: 

x2(t) » p0(o) = A0(f?) dv 

When x(t) is applied to a linear filter whose complex gain is 

G(v) = g(v) 

the power density spectrum of the output random function becomes: 

A(v) = AQ(v). g2(p) (13) 
[Bochner -Khintchine 

theorem] [- 8 -] 

In a radiometer where the most selective filter is the output low pass filter, the 

power density spectrum of the noise at the input of the latter can be considered as 

constant over the filter bandwidth. 

If g(v) is the modulus of the low pass filter gainj' the power density spectrum of 

the receiver output noise is therefore: 

A(v) • AQ. G2(V) . 



JII. Sampling of a signal mixed with noise. 

1. According to Section n, •, a signal s(t) whose Fourier spectrum is 

limited to a bandwidth B can be represented with good approximation over an 

interval T (such that BT » 1) by a Fourier series expansion limited to mQ = ; 

components. Amplitude and phase of these harmonics are cklculated exactly 

fro] 

4): 

interval T (such that BT » 1) by a Fourier series expansion limited to mQ = BT 

3xa 

from values of s(t) sampled at intervals smaller than, or equal to, ~ (equations 
2B 

2 ft " 1 / -v^v m a =— 2 s pT0) sin 2t — pQ 
m n p = 0 T 

2 n^-1 _ m 

m n p 
b =— S ̂  s(p©) cos 27r ^-p© 

b o  = n  p l j  B ( p e )  < " »  

When a random noise x(t) is superimposed on s(t), the estimate of the coefficients 

am and bm from the actual record f(t) = s(t) + x(t) leads to values: 

1 2 ft — 1 m 
a 

m = - P 10 [s(PG) + x(p0)] sin 2tt — p0 

1 2 n -1 ' , nx 
b  m  =  ~ p - 0  t s ( p © )  +  x ( p © ) ]  c o s 2 *  —  p 0  

b l o ^ p | 0  
[ s ( P G >  +  X ( P 0 ) 1  ( 1 5 )  

and the errors made on a and b are: 
m m 
2 ft " 1 m 

e «- E x(p©) sin 27r — p© 
am n p « 0 T 

9 n ~ 1 
€ = — 2 x(p0) COS 27T — P0 
bm n p = 0 T 

1 n - 1 
€ =- 2 x(p©) (16) 
bo n p = 0 

Since x(t) is random, these errors are also random, and only their statistical 

effect can be estimated. It i s expressed in terms of the mean noise energy 



which is added to the energy: V2 = a2 + b2 related to the component m. 
m m m 

One has: 

V12 = a12 + b12 = (a +€ )2 + (b + € )2 « (a2 +b2 ) +/c2 + c2 ) 
m m m m am m bm m m V am bm 

It is the purpose of the following to calculate the standard deviation: 

o* = -A2 + €2 

m am bm 

from the actual amplitude, V = Va? + b2 of each of the Fourier harmonics 
m mm ^ 

as a function of the sampling interval 0 (with 0 < —) and the statistical properties 
^13 

of x(t). 

So far as the phase is concerned, only an estimate of the probable maximum error 

can be made, by considering the "worst" case where the noise vector and the signal 

vector are in quadrature. 

2. Calculation of a2 = e2 + e? 
m am bm 

Let: 

One has: 

With! 

Then; 

11 = € + j e 
m am bm 

cr2, = e2 + e2 = T) .17* 
m am bm m m 

^ . m ^ 
o ii 1 27rJ P0 

17 = - 2 x(p0) e 
m n p = 0 

1 1 -1 2<zri ^ (b1 - p)0 
o, L n - 1 n - 1 —1—- T 

<j =~2 2 ! S x(p0). xfc1©) e 
m r p = 0 p1 = 0 



By definition: x(p©). x(p*0) is the value p[(p* - p)©] of the correlation function 

P(T) = x(t)» x(t - T), 

Let A(v) be the power density spectrum of x(t), One has (equ. 12): 

P(tK = / A(v) COS 27TVT dV 

Thenj 

x(p0). x(px0) = pKp1 -p)0] = / A(v) cos 2irv (p1 - p)0 dy 

and: 

„ 4 n - 1 n - 1 
o 2  -  - J  , S A  m  r  p  =  0 p '  =  0  

;/Q A(v) cos 2irv (p1 - p)0 dv 
2^j ^ (P1 - P) 0 

_ A f°° 
- n2 Jo 

n E* e2^ T ^ cos 2av (p1 -p)0 
p = o p - 0 

A(v) dv 

- 4 r L 21 l2*1 4,1 - p)® (" + T> + e-2*i(p'-p)e(,'-?il A(v) dr 
n ^  o * p  =  o p 1  =  o |  f  

allv; v ^ and finally: 

cr2 - 2 /' 
m 

m , ,  2  .  ^ .  m . ( 2 n  
/sin mre(v+—) \ j sin n7r©(y -—) 

- . mv . ^/ mV _|n sin7r©(v+—)y ^n sm7r©(v~—) 
A(f?) dv (18) 

It has been seen (13) that A(v), power density spectrum of x(t) at the output of the 
2 

receiver, is actually defined by the power gain g ( v )  of the output filter: 

A(f) = A0 g2(v) 

where A0, the power density of the noise before this filter, is constant within the 

low frequency range considered. 

Equation (18) can be written: 

r*\ 

(19) aL' A o J o  gL(v)- g2,">d" 

with: 



e 14 -

, m . , 2  ,  .  _  m v ,  2  
fsrn n7T0(v+—/sin n7r©(v -—) 

T' 
+! ™ I <2°> 2 ̂  • c,  -sm7r0(v+—)/ \nsin7r0(v- — 

showing the equivalence of the sampling operation to a linear filtering. A similar 

calculation applied to the DC component: 

o-2 = €2 
s \ n s * ^2 * x(p0). xfc1©) 

o bo r p = 0 p - 0 

leads to: 

g (v) = 
&os 

_  , 2  
sm nTrv© 
n sin7rp© 

(21) 

3. Graphic Interpretation. 

The function g2 (v), which consists of a double series of lobes, the first 
ms 

two being centered at abscissae - — and + — (Fig. 4), has the following character

istics: 

- Interval between connective lobes: ^ 
1 1 

- Total area of one lobe, plus its sideslobes: —, slightly inferior to — 

- Surface of the main lobe — 10 times the total surface of the side lobes. 
2 . 2 

- Width at first zeros: — = — 
n© T 

In Fig. 5, both g2 (v), for arbitrary values of m and 0, and the gain g2(v) of an 
m s  

RC filter are plotted. ^ 

The hatched area represents according to equation (%), and the influence 

of the length © of the sampling interval on can be estimated graphically. One 

sees that shortening © has the effect of rejecting all the lobes, except the first one 

centered at + 7^, toward frequency regions where the low pass filter gain is amall. 

The lobe centered at + ^ cannot be avoided since the filter must allow the signal 

to pass. Its surface 4j? g2 (^) represents the unavoidable noise energy which affects 

the component m. 

The square root of the ratio of the total hatched area to the area of the lobe centered 

at + ^7 then represents a measure of the contribution of the sampling process to the 

final standard deviation affecting the component m. 

Applied to a somewhat similar problem, the method developed in Section ni has been 



previously proposed by the author [f], helped by the advice of E. Le Roux and J. 

Arsae. The last mentioned has extended it [10] to the more general context of the 

Fourier transform, and applying it to a different example has given a result very 

similar to the first following one. 

IV. Application to particular cases 

1. Case where the filter has a bandwidth strictly limited to the frequency 

range 0 - B; the spectrum of the signal is limited to 0-vo, with vo < B. 

Figure 6 shows that for every signal component, all lobes except the first one are 

rejected outside the filter bandwidth when: 

-o + | > B + i 

Or, since by assumption BT » 1, when: 

1 
© < 

- B + v0 

The optimum sampling interval for the signal mixed with noise, that is the minimum 

interval for which the sampling process does not introduce any excess error on the 

signal, is eQ = 
O _1_ 

A sampling interval equal to 2v0 would allow restoration of the signal, only if it 

were free of noise. On the other hand, by sampling every one could restore 
2iJ$ 

both signal and noise. The relation between these three intervals, each of them 

optimum at a different point of view, is: 

< — < — (22) 
2vQ B + uQ 2B 1 ' 

This result corresponds to the remark made in the introduction: The sampling 

interval has to be smaller when it is desired to restore identically the original 

record of signal and noise than when one is interested only in restoring the signal 

to its best. 

This is due to the fact that limiting the Fourier series expansion to mQ = vQ T 



terms effects by itself a filtering of the noise frequency components above v0. 

Actually, one could use such a tefahnique for smoothing a record of signal and 

noise, by: (1) Sampling the record at the optimum interval^ (2) Calculating the 

mQ = vQ T Fourier components (equ. 15), aai (3) Adding these harmonics with 

their respective phases, and (4) plotting the result. 

2. Case where both signal and noise have a bandwidth strictly limited 

to B. 

The optimum sampling interval is then: ©0 = relation[22jbecoming 

a double equality. 

3. Optimum sampling interval for a DC signal 

The amplitude of the DC signal being b0, the square of the standard de-
19 

viation from it is, after filtering and sampling (equ. ^ and 21): 

<^> = A0 /~ g^g (y), g2(v) dv 

with: 

g2 (»;) JSin n7rV0 
4 2 , | sin irvT '2 

i irvT 'os \ nirv© 

In the case of a rectangular bandwidth filter (Fig. 7), the optimum sampling interval 

is: 

or, — being by assumption small compared to B: 

e " 5  

V. Filtering'* Sampling, and observing time. 

After filtering, the noise energy is: 



x(t)2 = A0 g2(v) di> 

and is represented by the area delimited by the curve A0 g2^) and the coordinate 

axes. 

When signal and noise are observed over a time interval T, the noise energy which 

affects the amplitude of each of the Fourier series harmonics is equal to: 

a2 = / A0 g2(^). g2 (v) dv m o o & \ / &ms 

and is shown by the hatched area on the previous figures. 

By choosing a sampling interval short enough, all lobes except the first one centered 

at +~5 can be rejected toward high frequencies where g2(v) is small and make their 

contribution negligible. 

The area of the remaining lobe is: 
A 

2 % O 9 im\ Q-c rr^ /—\ 
mo • T T 

The standard deviation cr^, affecting the component m, is inversely proportional 

to the square root of the observing time (but it must not be forgotten that the am

plitude of the component depends itself on the interval within which the signal 

is observed.) 

In the case of a DC signal and of a rectangular bandwidth filter, the ratio of the 

noise energy after integration over an interval T (the sampling interval being 

0 < ~) to the noise energy before integration is (Fig. 7): 
B 

A 
2 9 1 

"Uifr = 1 

-j - = 2BT 
cr A B 

o 

a is also proportional to so is the amplitude of the harmonic m which has 
m T 

passed through the filter. The final signal to noise ratio is therefore independent 

of the characteristics of the filter. 

What is gained by a proper choice of the filter, is merely an economy in the amount 

of data to be sampled and afterward computed. 



It seems that there has occasionally been some confusion in this matter. Some 

authors [12-13] have considered that the choice of the radiometer output time 

constant T has to be made in such a way that there is no appreciable loss of in-

formation. In this respect the fact of choosing r small [11], does not necessitate 

the reduction of a large number of records. Further, if having r large indeed re

duces the amplitude of the receiver output, it must be remembered that the effect 

is not of importance since the standard deviation is reduced in the same proportion. 

In the same way, the distortion to which the signal is submitted by the filter is not, 

theoretically at least, a limiting factor, to the extent that it is always possible to 

restore the signal as it was before filtering. 

Actually, the considerations which lead to the choice of an •optimum" time con

stant are mainly considerations of convenience: for instance, easiness in inter

preting a record directly, or limitation of the degree of computation required, or 

still technical reasons like the effects of a large time constant on transients 

(receiver instabilities or interferences). 

An example of such a determination of an optimum time constant is given in the 

following. Since the choice of the filter is of little importance, provided that 
$ 

sampling and computing are made accordingly, we consider the case of the simplet 

one, the resistance capacity filter. 

VI. Application to a concrete case. 

We have applied the preceeding results to the problem of the digitalization 

of the output of a 20-channel extragalactic receiver [14] to be used with the 300-foot 

telescope whose construction at the NRAO is to be finished [15], 

Being designed for observations at 21 cm and above, this instrument has a maximum 

spatial frequency cut-off equal to: 

and since the apparent angular velocity, expressed in solar time, of a source at a 



declination 6 is: 

^ 7.29 x 10 ~5 x cos 6 rad/sec 

the frequency cut-off of the filter equivalent to the antenna is: 

vo = 435 x 7.29 - 10~5 cos 6 - 0.0317 cos 6 cps 

Whatever the frequency of observation (1420 Mcs or below) and the declination of 

the source the highest possible frequency cut-off is therefore: 

vQ  = 0.032 cps 

So far as the signal only is concerned, and for such a frequency bandwidth, the sam

pling interval must be: 

© < ~~ = 15.6 sec 
s -  2vQ  

In the present case, the determination of an optimum rate of sampling was par

ticularly useful since we wished to simplify as much as possible the receiver out

put system by using only one digitalization channel scanning the 20 analog outputs 

between two consectuive transit recording porats [16], and we also desired to reduce 

to an acceptable minimum the quantity of data to be computed afterwards. 

According to a previous remark, the low pass filter chosen is of the resistance 

capacity type. The rd ative increase of the standard deviation on a given signal 

frequency component v has been computed as a function of v, of the filter time 

constant T and of the sampling interval 0, in the following way. From equation 

(19), the noise energy which affects the frequency component ^ ^ of the signal 

is: 

a2 = A J°° g2 (v). g2(v)  dv 
m o o ms w 

where A0 is the noise power density before filtering, g2 (v)  the power gain of the 
ms 

sampling equivalent filter, and g2(v) the power gain of the RC filter. The last 

mentioned is: 

^' I + (W 



where r = RC is the filter time constant. 

Using equation (20), and taking into account that the area of a lobe is we can 

approximate the hatched area which represents cr^ (fig. 5) by: 

00 A A 
2 « Q ± __0 

°m 7 T 1 + (27TTV )2 + T k«l 
m 1 + [2tt(tp + k ~)]2 

1 + [27t(-tv +k~) 2 (24) 
m © m © 

since the width of a lobe at zero points, is small compared to ~ and — . 
4 1 © T 

The first term in equ. (24) represents the minimum unavoidable noise energy 

a
mo 

on the component (which would correspond to a sampling interval tending 

to zero). 

The excess standard deviation on v therefore is: 
m 

_ m mo ^ /k=l 1 + [2v(tv +kr/©)l 1 + [27t(-tv +kr/©)l R = = \ / m m 
m cr 

mo 

1 * [2tttv Y 
m 

and is plotted in Fig. 8 as a function of the parameter of the family of curves 

being - . 

The second significant parameter is OvQ. For different values of this parameter, 
T 

tables ly 2y and 3 show the variations of R with — for three frequencies v = 0 ,  
' * me m 

%/%• ** v 
They suggest the few following remarks: 

For the DC component of the signal, R0 does not depend on the absolute values of 

the time constant and of the sampling interval, but only on their ratio. The influence 

of the value of ©v on RV increases toward the high frequency components, and 
o m l 1 

for instance, Ry is about five times bigger for 0 = than for © = , and 

1 ° 1 r ° 
about three time and a half bigger for © = than for © = (with — = 3). 

o o 



Table 1. 0 = -— 
2v 

o 

r/e j 0.25 0. 50 0.75 1. 00 1.25 1. 50 2.00 3.00 

R 
o 

32% 7.0% 3.5% 2.0% 1.5% l.Wo 1.0% 0.5% 

RV2 50% 24. 5% 17.5% 14. 5% 13.0% 12.0% 12. 0% 11.0% 

k v 
o 

75% 5.5% 5.0% 5755% 5®. 5% 56. 5% 56. 5% 56. 5% 

Table 2. © =/ -p— 
4v 

o 

0.25 0.50 0.75 1.00 1.25 1.50 2.00 3.00 

|R 
[ o 

32% 7.0% 3.5% 2.0% 1.5% 
II 

I.I% 1.0% 0.5% 

RVo/a 
41% 14. 5% 8.5% 6.5% 5.0% 4.0% 3.5% 3.0% 

R v 
o 

50% 24. 5% 1755% 14. 5% 13.0% 12.0% 12. 0% 11.0% } if 

Table 3. e = 8T 
o 

R 
o 

0.25 0.50 0.75 1. 00 1.25 1.50 2.00 3.00 

R 
o 

32% 7.0% 3.5% 2.0% 1.5% l.Wo 1.0% 0.5% 

R"O/2 36 7 MX 2 ,57  0.% V 

R k 
O 

41% 14. 5% 8.5% 6.5% 5.0% 4.0% 3.5% 3.0% j 

Lastly, and perhaps the most interesting point, there is little to |?e gained by 

aving r > ©• whatever the values of Ov and of v . & * o m 
Therefore, after the length © of the sampling interval has been chosen as a function 

of v and of the excess standard deviations Rv , considered as acceptable, an 
o m 



optimum value of r is defined from it by the relation: r = ©. 

This result is useful to the extent that it is generally desirable to use rather short 

time constants. One reason is, for instance, that the length of short transients, 

due either to receiver instabilities or to interferences, is comparable to the 

filter time constant. 

Another reason is that, the larger the time constant the more difficult the direct 

interpretation of a record becomes (actually, as it has been seen, this consideration 

applies only when it is desired to avoid further computation). 

In figure 9 are plotted R0, R P0 /2 and RvQ as a function of ©vQ for ^ = 1. Consider

ing the present example of application, we have: 

v = 0 . 0 3 2  c p s  
o 

to which corresponds, for the signal alone, the optimum sampling interval: 

© = r~ = 15.6 sec 
s 2v 

o 

If now an actual record of signal and noise is sampled every © = 10 sec. the RC 

filter time constant being r = © = 10 sec, the standard deviation on the signal com

ponents is increased by a factor varying from 2% for the DC component to 22% for 

the cut-off frequency. 

Choosing © = 5 sec, and r = © = 5 sec, would imply a range of 2% to 8%. 

The distortion effects caused by an RC filter on the output signal of a parabolic 
Z 

antenna have been studied, both by Mezzger [If] and by William Howard HI, [13]. 

They can be represented by the following three quantities of the output function re

lative to the input function: 1) reduction in amplitude, 2) delay in reaching the 

maximum and 3) increase of the width at half intensity points. 

In reference [13], the values of these parameters have been computed in the case 

where both input function and antenna beam are Gaussian. 

Considering, in the present example, a source narrow compared to the antenna beam, 

and assimilating what would be the beam of the uniformly illuminated 300 foot para

bolic antenna to the Gaussian curve having same width at half intensity points, we 

havei 



1. For r - 10 sec. 

Reduction of amplitude: 25% 

Delay of the output function maximum: 6.7 sec. 

Increase of the width at half intensity points: 28%. 

2* For T * 5 sec. 

Reduction of amplitude: 18% 

Delay of the output function maximum: 4.2 sec. 

Increase of the width at half intensity points: 12%. 

Actually, these effects of the low pass filter on the output function can be eliminated 

in a restoration program which would correct together the filtering effects of the 

antenna and of the RC filter. 



References 

1. Shannon^ C. E., 1949 "Communication in the presence of noise", PIRE, 37, 
10-21. — 

2. Goldman, S., 1955 "Information Theory", Prentice Hall, N. Y., 67-71. 

3. Middleton, D., 1960 "An Introduction to statistical communication theory", 
McGraw Hill, 211. 

4. Bracewell, R.N. and Roberts, J. A., 1954 "Aerial smoothing in radio astron
omy", Astr. Journal of Physics, 7, 621. 

Arsac, J. -Ref. 10-, 245-250. 

Lo Y.  T. ,  1961 "On the theoretical  l imitat ion of  a  radio telescope in determining 
the sky temperature distribution", J. Appl. Physics, 32, 2052-2054. 

5. Angot, A., 1961. "Complements de Mathematiques", Ed. Revue d'Optique, 
729-731. 

6. Angot, A. -Ref. 5-, 67. 

7. Blum, E. J., 1959 "Sensibilite des radiotelescopes et recepteurs a correlation", 
Ann. d'Astrophysique, 22, 152. 

8. Lee, Y.W., 1960 "Statistical theory of communication", Wiley, 333. 

Angot, A. -Ref. 5-, 666. 

9. Vinokur, M. 1959, Thesis, Paris, 41-55. 

10. Arsac, J., 1961 "Transformation de Fourier et theorie des distributions", 
Dunod, 309-311. 

11. Arsac, J. -Ref. 10-, 326-330. 

12. Mezger, P. G., 1959 "Technische und astronomische Messungen mit dem Bonner 
25-m-Radiotelescop" Mitteilungen der Universitats-Sternwarte Bonn, 25, 19. 

13. Howard, III, W. E., "Effects of antenna scan rate and radiometer time constant 
on receiver output" Astronom. Journal 66, 521-523. 

14. Orhaug, T., 1961 "Progress report on the multichannel receiver", NRAO in
ternal publication. 

15. Findlay, J. W. 

16. Vinokur, M., 1961 "Output system for a filter multichannel receiver", NRAO 
internal publication. 


