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ABSTRACT 
We derive some basic considerations relating combining synthesis observations made with different arrays, 
and their relation to single dish imaging. The goal is to make clear and explicit a method by which ALMA7-
meter array and the ALMA total power array integration times can be chosen for a given ALMA 12-meterarray 
integration time. We posit two complementary matching criteria, apply them to the M100 Science Verification 
(SV) data as a sanity check, and use them to calculate the needed 7m-array integration times for the four 
relevant ALMA Cycle 1 configurations (assuming 32 12-m antennas, 9 7-m antennas, and 2 total power 12-m 
antennas). Adopting the least stringent of the criteria, we find required 7m-array integration times of 1.3 
(configuration 4) to 6.3 times (configuration 1, most compact) the 12m-array integration time. We extend this to 
the single-dish/total power case, finding cycle 1 12m total power array integration times that are 2.0 times the 
7m-array integration times, or 2.6 to 13 times the 12m interferometric array integration time. Full results are in 
Table 1. 
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1 Executive Summary

We derive some basic considerations relating combining synthesis observations made with different arrays,
and their relation to single dish imaging. The goal is to make clear and explicit a method by which ALMA
7-meter array and the ALMA total power array integration times can be chosen for a given ALMA 12-meter
array integration time. We posit two complementary matching criteria, apply them to the M100 Science
Verification (SV) data as a sanity check, and use them to calculate the needed 7m-array integration times
for the four relevant ALMA Cycle 1 configurations (assuming 32 12-m antennas, 9 7-m antennas, and 2 total
power 12-m antennas). Adopting the least stringent of the criteria, we find required 7m-array integration
times of 1.3 (configuration 4) to 6.3 times (configuration 1, most compact) the 12m-array integration time.
We extend this to the single-dish/total power case, finding cycle 1 12m total power array integration times
that are 2.0 times the 7m-array integration times, or 2.6 to 13 times the 12m interferometric array integration
time. Full results are in Table 1.

Config. t7m/t12m ttp/t12m

1 6.3 13
2 2.8 5.6
3 1.8 3.6
4 1.3 2.6

Table 1: Minimum required 7m-array total integration times, and 12m single dish (“total power”) integration
times, both relative to 12-m interferometric total integration time, for ALMA Cycle 1. Number of assumed
antennas: 32× 12m; 9× 7m; and 2× single dishes.

If the number of antennas differs from what was assumed in these calculations, then the nominal integra-
tion time ratios given in Table 1 can be approximately rescaled as

t7m

t12m
∝

(
N12m

32

)2

×
(

9
N7m

)2

(1)

and
ttp

t12m
∝

(
N12m

32

)2

×
(

2
NSD

)
(2)

The single dish integration times do not include an allowance for frequency or position switching, which
would further increase the required single dish integration times.
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2 Relative Mosaic Sensitivities for Different Interferometer Arrays

2.1 Basic Relationships

Suppose we image a given area of sky (total area Ω Sr) with two independent synthesis arrays labeled 1 and 2.
Assume that an equal integration time τ1 is spent on each pointing in the mosaic. As derived in Thompson,
Moran & Swenson (2001, eq. 6.56) — and also in Taylor, Carilli & Perley (1999, Chapter 9) whose notation
we roughly follow— the single-field sensitivity at the center of each pointing of array 1 is

∆Im,1 =

√∑
T 2

1,kW 2
1,kω2

1,k∆S2
1,k∑

T1,kW1,kω1,k
(3)

=

√∑
T 2

1,kW 2
1,kω1,k∑

T1,kW1,kω1,k
(4)

where the second step assumes that the data “signal to noise” weight ω1,k = 1/(∆S2
1,k). Table 2 summarizes

our notation. For natural weighting (W1,k = 1) and no uv taper (T1,k = 1), this becomes

∆Im,1 =
1√∑
ω1,k

(5)

The noise ∆S1,k on a measurement on a single baseline k involving antennas i and j, is:

∆S1,k→(i,j) =
2kB

A1ηQ,1

√
Tsys,1,iTsys,1,j

ηa,1,iηa,1,j∆ντ1
(6)

assuming all antennas, receivers and measurements in array 1 are identical, the image noise (Eq. 5) becomes

∆Im,1 =
2kB

ηQ,1A1ηa,1

Tsys,1√
2Nbas,1∆ντ1

(7)

Let the area Ω be covered by array 1 in some number of pointings, Nptg,1, which for a Gaussian primary
beam is given by:

Nptg,1 = α
Ω

Ωbeam,1
= α

Ω
2πσ2

beam,1

(8)

Here Ωbeam is the primary beam volume, which for a Gaussian primary beam is Ωbeam = 2πσ2
beam (with

σbeam = θFWHM/
√

8 ln(2)). α is a number of order unity that depends on the mosaicking strategy. For
instance, for a hexagonal mosaic with spacing between pointings of 0.5085×θfwhm we can show that α ∼ 4.18.
This yields an approximately uniform image domain sensitivity over the mosaic of

∆Itot,1 = β∆Im,1 (9)

where β is also a factor of order unity that depends on the mosaicking strategy (for the same hexagonal
mosaic, β ∼ 1/1.59). Assuming the same strategy is used for both arrays, the numerical values of α and β
do not matter for determining the ratio of integration time which is needed. The total time used in array 1
is then

ttot,1 = Nptg,1 × τ1 (10)

and the total weight of the mosaic dataset is

ωtot,1 = Nptg,1

∑
k

ω1,k (11)

assuming, as we do throughout, that the weights for each mosaic pointing are the same. In practice this
may not be the case since weather conditions can vary through the course of a project. Our analysis also
assumes in effect that each pointing is a “snapshot” observation of arbitrary depth, a single long integration
of duration τ . Although the effects of the projected baselines changing over a track are of great practical
importance they should be a minor effect in this sensitivity calculation. In the context of this approximation,
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Symbol Explanation
A1 geometric area, array 1
D1 dish diameter, array 1
σbeam,1 Gaussian σ of primary beam, array 1
ηa,1,i aperture efficiency, antenna i, array 1
Tsys,1,i system temperature, atenna i, array 1
ηQ,1 array 1 sampling or quantization efficiency
ttot,1 total mosaic integration time, array 1
Nbas,1 # complex baselines measured per ptg, array 1
τ1 integration time per pointing, array 1
Nptg,1 Number of pointings in mosaic, array 1
ω1,k per baseline noise variance weight, array 1, baseline k
ωtot,1 total mosaic dataset weight, array 1
T1,k taper weight, array 1, baseline k
W1,k uv weight, array 1, baseline k
∆Im,1 array 1 single-field sensitivity (field center)
∆Itot,1 array 1 mosaicked sensitivity
∆S1,k noise in baseline k, array 1
Ω solid angle of area to be mosaicked

Table 2: Notation.

the number of complex visibilities associated with one array’s observation of a single pointing in the mosaic
is equal to the number of baselines.

In order to combine observations from the two arrays, we require the total mosaic image noise from each,
on similar or identical spatial scales, to be comparable, such that the noise from neither array is dominant.
Assuming identical mosaicking strategies, this in turn implies∑

k

ω1,k =
∑

k

ω2,k (12)

i.e. the single pointing total weights must be equal for the two arrays. This summation of weights holds only
over some subset of baselines which sample common spatial scales between the two interferometers. For the
simple case (identical measurements within an array; no taper; etc) this implies

τ2

τ1
=

(
T2A1ηa,1

T1A2ηa,2

)2
Nbas,1

Nbas,2
(13)

Note that, again, the Nbas factors refer to the number of baselines (visibilities) in the overlap region of uv
space under consideration here. If all of the system temperatures and aperture efficiencies are equal, then
the ratio (one array to the other) of the integration time per pointing in the mosaic becomes:

τ2

τ1
=

(
D1

D2

)4
Nbas,1

Nbas,2
(14)

The assumptions made here of equal system temperatures and aperture efficiencies are not unreasonable since
ALMA specifications call for the system temperatures and aperture efficiencies of the 7m and 12m antennas
to be similar to within a nominal tolerance. Multiplying by the number of pointings in the mosaic, the ratio
of total integration time is

ttot,2

ttot,1
=

Nptg,2 τ2

Nptg,1 τ1
(15)

If we assume identical mosaicking strategies, identical areas covered Ω, and Gaussian beams with widths
proportional to the dish diameter, then

Nptg,2

Nptg,1
=

(
D2

D1

)2

(16)
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and it follows that the ratio of total integration times for two arrays’ coverage of the mosaic is:

ttot,2

ttot,1
=

(
D1

D2

)2
Nbas,1

Nbas,2
(17)

Note that the D4 factors in Eq. 14 for the per-pointing integration time ratio have become D2 factors in this
equation for the total mosaic integration time ratio.

Referring back to Equations 11 and 12, we find that the ratio of the total weights for the datasets will be

ωtot,2

ωtot,1
=

Nptg,2

Nptg,1
. (18)

Although the per-pointing weights for array 1 and array 2 must be equal to achieve equal noise in the map,
the total weight for the array with the larger aperture will be higher since it will have done more pointings
to cover the same sky area. Again, for this equality to hold assuming the matching criteria we posit here,
these weight sums should be done only over the “matched” baseline ranges.

2.2 Application to ALMA

If the number of visibilities is equal, then the ratio of total time required for the 7m-array and the 12m-array

ttot,7m−array

ttot,12m−array
=

(
D12m

D7m

)2

= (12/7)2 ∼ 2.93 (19)

In fact the number of baselines measuring similar angular scales will rarely be equal for 12m and 7m arrays—
Figure 1 shows the distribution of baseline lengths for ALMA Cycle 1, configurations 1 through 41, and the
7m-array. We are faced with the task of counting how many baselines are comparable for each 12m-array
configuration.

Figure 1: Baseline lengths for the ALMA Cycle 1 12m-array configurations 1 through 4 and the 7m-array.

In order to combine 12m-array and 7m-array data, one would ideally like equal noise in maps made with
comparable uv ranges. Precisely how to count these “comparable” baselines is somewhat a matter of taste
– similar to asking: what is the exactly optimal array configuration? Guiding principles are to avoid holes
in the uv plane and to keep the (single field) weight distribution continuous. Two reasonable approaches

17m-array data are not acquired with Cycle 1 configurations 5 or 6.
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to the counting problem would be: i) count the number of baselines in the range of uv space where both
arrays have coverage; ii) to count the number of baselines in the larger array from the minimum baseline up
to that plus ∆q, where ∆q is the total range in uv radius q =

√
u2 + v2 covered by the smaller array. We

have applied these two criteria to calculate the ratio of 7m-array time to 12m-array time for each legal cycle
1 ALMA configuration using Eq. 17, with results shown in Table 3.

ALMA Overlap Criterion ∆q Criterion
config. N12m baselines N7m baselines t7m/t12m N12m baselines N7m baselines t7m/t12m

1 52 22 6.92 77 36 6.27
2 23 21 3.21 35 36 2.85
3 6 11 1.60 22 36 1.79
4 4 11 1.06 16 36 1.30

Table 3: Ratio of 7m-array total observing time to 12m-array total observing time required for the four
different Cycle 1 configurations which include the 7m antennas, computed according to the two alternate
criteria discussed in the text. These ratios use Eq. 17, which assumes equal system temperatures, aperture
efficiencies, and identical areas covered by each interferometer. The Cycle 1 ALMA configurations used have
32× 12m antennas and 9× 7m antennas.

With 36× 12-m antennas and 12× 7-m antennas the Cycle 2 integration times for the 7-m array— relative
to the 12-m integration times for Cycle 2, and assuming similar baseline distributions as for Cycle 1— will
be a factor of ∼ 0.7 lower. This should be more precisely calculated for each Cycle 2 configuration once the
projected antenna locations are reasonably known.

2.3 Practical Aspects

Several practical considerations present themselves:

1. Since the telescope primary beams can be large compared to the size of the fields being covered, and
they differ for 12m and 7m, we must take into account the fact that the two arrays may cover slightly
different areas Ω. This turns out not to matter much, because:

2. What is of practical importance in planning an actual observation is the integration time required per
pointing. The integration time required per 7m pointing can be calculated by multiplying the 12m
integration time per pointing by the total time ratios in Table 3, and multiplying by an extra factor
of (D12m/D7m)2 = 2.93 (c.f. eq. 14 vs . eq. 17). This does not depend on the areas covered being
identical, and is equivalent to using Eq. 14 to determine the per pointing 7m-array integration time.

3. The number of pointings required for each array will have been predetermined by the PI’s choice of
mosaicking strategy and field size. This number (for each array) times the per field integration time
calculated as above, determines the total observing time.

4. If tapering or weighting of the final map has been specified, the time requirements can be calculated
from the requirement that the single-pointing image noises be equal, and the full forms given (i.e. Eqs. 3
and 6).

2.4 Trial Application: ALMA Science Verification M100 Observation

ALMA Science Verification data were obtained on M100, comprising 12m interferometric observations, 7m
interferometric observations, and 12m total power observations. Basic properties of the interferometric data
are:

• The 12m mosaic consists of 48 pointings, with 101.8 minutes total integration time, or about 2 minutes
per pointing.

• The number of 12m antennas varied from 12 to 13– assume on average 12.5 antennas.

• The 7m mosaic consisted of 24 pointings, with 207.65 minutes of total integration time, or about 8.7
minutes per pointing.
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• The number of 7m antennas varied between 7 and 8– assume on average 7.5 antennas.

It has been established that once the CASA weights are correctly2 set, the combination of the 7m-array and
12m-array data give a qualitatively good image.

As a sanity check, we can see what we predict the 7m-array integration time should be to get a good
result. The critical figure of merit is weight (therefore to zeroth order, integration time) per mosaic pointing
for each array. From eq. 14

τ7m

τ12m
=

(
12
7

)4

× N12m baselines

N7m baselines
(20)

The 12m-array data for M100 were acquired in a compact configuration with a baseline distribution similar
to Cycle 1 Configuration 1. However, Cycle 1 targets 32 12m antennas instead of the 12 or 13 present in
the SV data. Similarly Cycle 1 targets 9 7m antennas, vs the 7 or 8 present in the SV data. We adopt
the ∆q criterion and refer to the baseline overlap counts in Table 3, correcting them by N2

ant, a reasonable
approximation since the ALMA uv coverage is fairly uniform and centrally condensed. This gives an estimate
of the ratio of per mosaic pointing integration times:

τ7m

τ12m
=

(
12
7

)4

× 77× (12.5/32)2

36× (7.5/9)2
∼ 4.1 (21)

So indeed the factor of four in integration time per pointing between 7m and 12m arrays is about right for
these observations.

3 Total Power Single Dish Data

Suppose a single dish maps the same area Ω with an identical “mosaicking” strategy as a synthesis array,
and we wish to combine these data together. The sensitivity at the center of each pointing of the single dish
map is

∆Isd =
2kB

ηQ,sdAsdηsd

Tsys,sd√
∆ντsd

(22)

for an integration of duration τsd on each pointing in the map. Suppose further that we have Nsd identical
“single dishes” observing this area in parallel (2 for ALMA cycle 2, 4 for final ALMA). As before, the details
of the mosaicking strategy do not matter if they are consistent. We require the Jy/beam noise for this single
dish map to be equal to the noise in the synthesis map with which it is to be combined, when the synthesis
map is made with a relevant selection of baselines Nbas. Equating Eq. 22 with Eq. 6 and assuming equal
system temperatures etc., we derive the required ratio of single dish to interferometer integration time per
pointing of

τsd

τinterf.
=

(
Dinterf.

Dsd

)4 2Nbas

Nsd
(23)

The ratio of total integration times, by the same argument as in § 2.1 is

ttot,sd

ttot,interf.
=

(
Dinterf.

Dsd

)2 2Nbas

Nsd
(24)

We are again faced with the somewhat subjective choice of which baselines are relevant for comparison
with the noise in the single dish map, and propose three criteria: i) select those baselines which fall within
the range of spatial frequencies measured by the single dish; ii) as before, select the shortest baselines of the
synthesis array that give the same range ∆q as the range of spatial frequencies measured by the single dish;
or iii) select baselines which have any spatial frequency overlap at all between interferometer and single dish,
considering the full range of spatial frequencies measured by each. Criterion (iii) is similar to criterion (i),
but also allows for the range in spatial frequencies due to the interferometer’s primary beam. These criteria
are illustrated for the Cycle 1 7m-array configuration in Figure 2. The ratios of single dish to 7m-array
integration times for Cycle 1 and for the full ALMA Compact Array, given these criteria, are shown in
Table 4.

2By default, the weights in CASA 4.0 only account for Tsys– they are not true data variance weights, accounting for antenna
size, channel width, integration time, etc.
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Config. Criterion Nbas Nsd τtp/τ7m ttot,tp/ttot,7m

(per ptg.) (total)
Cycle 1 i: q7m < 12 m 6 2 0.69 2.04
(9x7m, 2x12m TP) ii: ∆q7m < 12 m 24 2 2.78 8.17

iii: q7m < 19 m 22 2 2.55 7.49
Full ACA i: q7m < 12 m 13 4 0.75 2.21
(12x7m, 4x12m TP) ii: ∆q7m < 12 m 40 4 2.32 6.80

iii: q7m < 19 m 35 4 2.03 5.95

Table 4: Estimated ratio of required 12m total power array to 7m interferometeric array integration times
for Cycle 1 and for the full ACA.

We have not considered position or frequency switching. If the single dishes are switching, then in the
simplest instance this will increase the total power array integration time— the total time, including both
ON and OFF/REFERENCE phases— by a factor of four.

Figure 2: Cycle 1 7m-array baseline distribution. The red solid line schematically illustrates the range of
spatial frequencies measured, in principle, by a 12m in total power mode— the “primary beam” in Fourier
space, or more precisely, the autocorrelation of the aperture illumination. The blue dashed line illustrates the
range of spatial frequencies measured in a single pointing of the 7m-array for the longest 7m-array baseline
with any spatial frequency overlap with the 12m single dish. There are 9 elements in the 7m configuration
used. Also illustrated are the three criteria, discussed in the text, for selecting synthesis baselines which
“match” the total power map.

4 Previous Results and Alternative Approaches

For combining two synthesis arrays (§ 2), we have stipulated equal noise (in mJy/bm) on matched uv scales.
The scales are intrinsically not precisely matchable when combining single dish data with synthesis data, so
we have proposed to match noise on similar scales by several criteria (§ 3). An alternative approach in this
case could be to match the signal-to-noise ratio (SNR). For extended sources, this would typically result in
lower required single dish integration times. In practice, however, matching the SNR between a single dish
and a synthesis array is a complicated parameter space— probably too complicated for a user tool— and
requires detailed knowledge of the structure of the source. In most cases this information will not exist prior
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to collection of the data in question.
The question of 12m-array, 7m-array, and total power integration times for ALMA has been investigated

previously by Y. Kurono (“Observing time ratios and imaging performance with the ACA 7-m array”,
February 28, 2012). The criteria in this analysis were image fidelity and total flux recovery for the specific
case of a Gaussian source model with a FWHM roughly one third the 12m primary beam FWHM. For this
case, reasonable results are obtained for (12m : 7m : tp) total time ratios of (1 : 2 : 3). Issues of signal to
noise and relative noise were not specifically considered, although the last figure in this document (“Weight
distribution in the u-v domain”) suggests similar results would be obtained as we have found here.

Kurono et al. (2009) and Koda et al. (2011) present an alternative “pseudo-visibility” formalism for
calculating the required relative weights for combining single dish and interferometric array data. We have
not quantitatively compared the results of our calculation with theirs, but expect that more single dish
integration time would be required since the noise in the single-dish pseudo-visilbities progressively increases
away from

√
u2 + v2 = 0. A quantitative application of this formalism to the observing cases considered here

would be useful.
Rodŕıguez-Fernández, Pety, & Guth (2008) have also investigated the question of the required single-dish

and interferometer integration times in the context of the pseudo-visibility approach. They generally find
very long single-dish integration times are needed. We note that the criterion they adopt for matching the
single dish and interferometer data— requiring an approximately smooth, Gaussian distribution of weights—
is similar to our approach of requiring equal noise on comparable angular scales. Due to the long single
dish integration times inferred, Rodŕıguez-Fernández et al. explore allowing the weights (i.e. noises) to
be matched not only by the intrinsic data noise (set in part by the relative integration times), but also
by manually “up-weighting” the single dish data after the fact. They add a cautionary note that better
combined images are obtained with progressively deeper single dish datasets (less “up-weighting”). Here
again, a detailed numerical application of their results to the observing cases we consider here would be
useful.

A Revision History

• v.28jun2013 - first complete draft

• v.08jul2013 - fix error in single dish uv coverage definition, slight revision to single dish time reqmts;
add third total power matching criterion

• v.08jul2013b - Add brief comparison to Kurono 2012 analysis.

• v.25jul2013 - incorporate referee comments, add to comparison with other results.
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