
	

Imaging Unmitigated ALMA Cubes
NAASC Memo #121

Authors: Amanda A. Kepley, Felipe Madsen, James Robnett, and K. Scott
Rowe

Date: 15th August 2023

ABSTRACT
ALMA is capable of producing cubes that are extremely challenging to image using the ALMA
Imaging Pipeline and CASA, its underlying data processing software. These cubes are currently
mitigated, or reduced in size, in operations to successfully process and deliver this data to
principle investigators (PIs). This memo investigates the performance of the ALMA Imaging
Pipeline and CASA when fully imaging these large cubes. We find that the performance of the
Imaging Pipeline does not always scale with increasing parallelization breadth. The performance
of the CASA tclean task, however, largely scales with increasing parallelization breadth up to a
breadth of 17. Increasing the parallelization breadth by running jobs across multiple nodes did not
yield any improvements due to a high overhead associated with file locking. A detailed
investigation of a representative stage of the Imaging Pipeline -- findcont -- revealed that the
run time of this stage is dominated by the CASA tasks immoments, imstat, and ia.getprofile,
not by the time required for tclean to create the dirty cube. We find that the performance of
tclean scales with number of channels, number of pointings, and number of measurement sets
(i.e. execution blocks), largely as expected for these cubes, although we did encounter failures in
the minor cycle of tclean for our largest cubes. In most cases, the minor cycle run time
dominated over the major cycle run time with 60-80% of the minor cycle time spent
automatically masking the emission. Finally, we have found that in some cases the use of Non-
Volatile Memory Express (NVMe) devices reduces the imaging time by 30-53%. These results
will inform improvements to CASA and the ALMA Imaging Pipeline needed to handle the order
of magnitude increase in number of channels per spectral window that will be produced by the
ALMA Wideband Sensitivity Upgrade.

NAASC Memo 121

Imaging Unmitigated ALMA Cubes

Amanda A. Kepley,1 Felipe Madsen,2 James Robnett,2 and K. Scott Rowe2

1National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903
2National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801-0387

(Received May 12, 2023; Published August 15, 2023)

ABSTRACT

ALMA is capable of producing cubes that are extremely challenging to image using the ALMA

Imaging Pipeline and CASA, its underlying data processing software. These cubes are currently

mitigated, or reduced in size, in operations to successfully process and deliver this data to principle

investigators (PIs). This memo investigates the performance of the ALMA Imaging Pipeline and

CASA when fully imaging these large cubes. We find that the performance of the Imaging Pipeline

does not always scale with increasing parallelization breadth. The performance of the CASA tclean

task, however, largely scales with increasing parallelization breadth up to a breadth of 17. Increasing

the parallelization breadth by running jobs across multiple nodes did not yield any improvements due

to a high overhead associated with file locking. A detailed investigation of a representative stage of

the Imaging Pipeline – findcont – revealed that the run time of this stage is dominated by the CASA

tasks immoments, imstat, and ia.getprofile, not by the time required for tclean to create the dirty

cube. We find that the performance of tclean scales with number of channels, number of pointings,

and number of measurement sets (i.e. execution blocks), largely as expected for these cubes, although

we did encounter failures in the minor cycle of tclean for our largest cubes. In most cases, the minor

cycle run time dominated over the major cycle run time with 60-80% of the minor cycle time spent

automatically masking the emission. Finally, we have found that in some cases the use of Non-Volatile

Memory Express (NVMe) devices reduces the imaging time by 30-53%. These results will inform

improvements to CASA and the ALMA Imaging Pipeline needed to handle the 1.5 order of magnitude

increase in number of channels per spectral window that will be produced by the ALMA Wideband

Sensitivity Upgrade.

1. INTRODUCTION

The largest cubes produced by ALMA are extremely

challenging to image because of their size, which can be

up to 13k by 13k pixels with 7680 channels (∼5 TB).

Attempting to image cubes this large often leads to un-

predictable failures and would lead to ALMA Imaging

Pipeline run times on the order of months to years. To

successfully process and deliver the data to principle in-

vestigators (PIs), the ALMA Imaging Pipeline (Hunter

et al. 2023) mitigates, or reduces, the size of cubes pro-

duced down to a maximum of 60 GB by averaging two

channels together, reducing the imaged area, and/or re-

ducing the number of pixels per restoring beam. It

also reduces the number of sources and spectral win-

dows imaged to reduce the total product size below

500 GB. These empirically derived heuristics allow Com-

mon Astronomy Software Applications (CASA; THE

CASA TEAM et al. 2022), the processing software un-

derlying the ALMA Pipeline (hereafter referred to as the

Pipeline), to be able to successfully image these cubes.

Mitigation affects a significant amount of the ALMA

data processed today. In Cycle 7, 19% of 12-m mem-

ber observation unit sets (MOUSes) were mitigated; the

largest impacts were for baselines greater than 1 km (Ke-

pley et al. 2023). Cube imaging will become even more

challenging with the upcoming ALMA Wideband Sen-

sitivity Upgrade (WSU; Carpenter et al. 2022)1. The

goal of the WSU project is to increase the correlated

bandwidth of ALMA by a factor of two to four, which

will lead to an increase in the maximum number of chan-

nels per spectral window by approximately 1.5 orders of

magnitude (Kepley et al. in prep).

The goal of this memo is to investigate the perfor-

mance of the current ALMA Imaging Pipeline, and its

underlying data processing software CASA, when imag-

ing the largest cubes ALMA is currently able to produce

to guide future CASA and ALMA Imaging Pipeline de-

velopment for WSU. We begin by giving an overview of

1 https://science.nrao.edu/facilities/alma/facilities/alma/
science sustainability/wideband-sensitivity-upgrade

https://science.nrao.edu/facilities/alma/facilities/alma/science_sustainability/wideband-sensitivity-upgrade
https://science.nrao.edu/facilities/alma/facilities/alma/science_sustainability/wideband-sensitivity-upgrade

2

the ALMA Imaging Pipeline and the key CASA tasks

used in the Pipeline in Section 2. We describe our test-

ing methodology in Section 3, including our test samples

(§3.1) and testing setup (§3.2). Our results are detailed

in Section 4. We start by exploring the performance of

the Imaging Pipeline and the underlying tclean task

used for image reconstruction as a function of paral-

lelization breadth (§4.1). Then we look in detail at the

performance of a representative stage of the Imaging

Pipeline: findcont (§4.2). In Section 4.3, we investi-

gate how the performance of tclean scales with three

key data set parameters: number of channels, number

of mosaic pointings, and number of execution blocks.

Next we compare the relative performance of the major

and minor cycles in the scaling tests in Section 4.4. Fi-

nally, we compare the performance using Non-Volatile

Memory Express (NVMe) devices for data storage dur-

ing processing compared to Lustre (§ 4.5). We summa-

rize our findings and note some possible directions for

future work in Section 5.

2. OVERVIEW OF THE ALMA IMAGING

PIPELINE

The ALMA Pipeline is a layer of Python-based heuris-

tics on top of CASA, a general package for processing

interferometer data. It is split into two parts: a Calibra-

tion Pipeline and an Imaging Pipeline. Here we focus

on the functionality of the Imaging Pipeline since this

is the more time and processing intensive portion of the

Pipeline.

As a general purpose package, CASA has a wide range

of functionality, only a subset of which is used by the

ALMA Imaging Pipeline. The primary CASA task used

by the ALMA Imaging Pipeline is tclean, which is used

to image and deconvolve the data. Within tclean,

the auto-multithresh algorithm is used to automat-

ically mask emission in all images (Kepley et al. 2020).

The Imaging Pipeline also uses several CASA tasks and

tools related to image analysis including imstat (calcu-

late image statistics), immoments (calculate image mo-

ments), and ia.getprofile (calculate spectral profile

within a mask).

Below we provide an overview of the key steps in the

Imaging Pipeline. We refer to each step by its stage

name in the current Pipeline for convenience. For de-

tailed information, please consult the current ALMA

Pipeline User’s Guide (ALMA Pipeline Team 2022) and

Hunter et al. (2023). There are several planned future

improvements to the Pipeline that may alter the heuris-

tics outlined below including the combination of data

from different array configurations and the inclusion of

automated self-calibration.

The Cycle 9 Imaging Pipeline (PL2022) stages are the

following:

1. imageprecheck: chooses a robust value for imag-

ing so that the resulting synthesized beam most

closely matches the PI-requested resolution. To do

this, it uses CASA synthesis imager tools to cal-

culate the synthesized beam for robust values be-

tween 0 and 2. For mosaics, only the central point-

ings are used to estimate the synthesized beam to

reduce processing time.

2. checkproductsize: This stage determines

whether the imaging products will be mitigated

and how to mitigate them. The detailed heuris-

tic is given in Appendix A and the mitigation

parameters used are given below.

3. makeimlist (mfs): determines the imaging pa-

rameters to use for subsequent continuum images

(imsize, etc).

4. findcont: identifies line-free regions in the data to

use for continuum subtraction. To do this, a dirty

image is created using tclean for all sources/spec-

tral windows (spws). Then a spectrum is gener-

ated from a masked region constructed from the

integrated intensity and peak intensity images.

The initial mask is amended to yield improved

regions if necessary. This stage makes extensive

use of the CASA tasks immoments, imstat, and

ia.getprofile.

5. uvcontfit and uvcontsub: performs the contin-

uum subtraction of the data using regions iden-

tified using findcont. This is done in uv-space

with no phase shifting to account for continuum

emission at the edge of the field of view. Prior

to PL2023, this stage used a combination of the

CASA tasks gaincal and applycal to fit and

subtract the spectrum, but will transition to the

uvcontsub task for PL2023. The numerical results

are identical to machine precision between the two

methods.

6. makeimages (mfs): generates cleaned continuum

images for each source/spectral window (spw) us-

ing the imaging parameters derived in the earlier

makeimlist stage and tclean.

7. makeimages (cont): generates aggregate contin-

uum images for each source including all spectral

windows using tclean.

8. makeimlist (cube): determines the cube imag-

ing parameters to use for subsequent cube images.

3

Unless the cube is mitigated, all channels are im-

aged.

9. makeimages(cube): generates continuum-

subtracted line cubes for each source/spw combi-

nation using tclean. This stage includes heuris-

tics using integrated intensity (moment 0) and

peak intensity (moment 8) images to assess the

quality of the continuum subtraction.

10. makeimlist (cube repBW): determines image pa-

rameters for the representative source and spectral

window at the PI requested spectral resolution if

the requested spectral resolution is greater than 4

times larger than the correlator channel width.

11. makeimages (cube repBW): generates a cube for

the representative spectral window and source at

the PI requested spectral resolution using tclean.

The current ALMA Pipeline mitigation limits are

given below:

• maxcubesize – 40 GB. Cubes greater than this

size will trigger the cube mitigation (averaging

channels, reducing the imaged area, and/or reduc-

ing the number of pixels per beam).

• maxcubelimit – 60 GB. If the final mitigated cube

is larger than this size, the Imaging Pipeline will

stop with the error message “mitigation failed”.

This parameter also controls the total number of

large cubes produced.

• maxproductsize – 500 GB. This is the total prod-

uct size at which the number of science targets

imaged is reduced. The cubes will be mitigated if

necessary.

Depending on the ALMA Regional Center (ARC) that

data is being processed at, the default mitigation limits

may be lifted to avoid manual processing.

In operations, the Pipeline is generally run at the Joint

ALMA Observatory (JAO). The Pipeline is launched

via another piece of software called ADAPT, which has

multiple subcomponents. CASA is configured to run in

parallel using a wrapper script for the Message Pass-

ing Interface (MPI) executor that comes packaged with

CASA. See Section 2.4 of THE CASA TEAM et al.

(2022) for more details. Typical runs are configured to

use 8 cores and 256 GB of memory. Data is processed

per MOUS, which is a collection of executions of the

same scheduling block. A MOUS has the same sources

and spectral setup for every execution and the number

of executions can range from 1 to many tens (more for

Total Power and 7-m data).

3. TESTING METHODOLOGY

3.1. Samples

3.1.1. Initial Sample Selection

Our initial sample was chosen from the ALMA

Pipeline benchmark, which is a set of MOUSes that were

chosen to exercise a broad range of ALMA use cases to

validate the ALMA Pipeline for use in operations. Fig-

ure 1 shows how the unmitigated properties of the se-

lected data sets compare with those of 12-m data from

Cycle 7 as a whole. The MOUSes that were selected

for testing included some of the longer running bench-

mark projects and included examples of MOUSes with

mosaics as well as those with multiple targets and exe-

cution blocks. Some of the selected MOUSes had their

sizes mitigated in operations and we used the mitigated

versions of these data sets for our testing. The detailed

properties of the selected MOUSes in the initial sample

are given in Table 1 and the mitigations that were used

are given in Table 2.

3.1.2. Extended Sample Selection

Since data sets in the benchmark are used for

Pipeline validation and testing, they are weighted to-

wards MOUSes that have relatively short run times with

the longest running cases taking two to three days. In

operations, however, some Pipeline jobs can take up to

a month to run. The longest running Pipeline jobs have

had their run times limited by reducing the size of the

imaging products through a process called mitigation.

Without mitigation, the estimated Pipeline imaging run

times could be as long as 1.7 years (Kepley et al. 2023).

To test these cases, we decided to expand our sample

beyond the ALMA Pipeline benchmark to include more

MOUSes with extreme image sizes and larger numbers

of channels.

To identify a sample of suitably challenging cubes, we

identified all 2019 12-m MOUSes that had some QA2

pass data taken for them by the end of Cycle 7, ex-

cluding solar, total power projects, and solar system

projects. Solar and total power MOUSes were excluded

because they follow different data reduction pathways,

while solar system MOUSes were excluded because the

archive gives their fields of view (FOV) as the FOV over

which the object was observed on the sky rather than

the imaged FOV. We then downloaded high level infor-

mation about these MOUSes from the ALMA Archive

including FOV, angular resolution, array, spectral win-

dow information (frequency, bandwidth, spectral reso-

4

Figure 1. Number of channels as a function of resolution elements per field of view for all ALMA Cycle 7 12-m data. The
orange line indicates the mitigation threshold, above which the Pipeline begins to mitigate cube sizes. The red dotted line
indicates the mitigation limit, or maximum cube size permitted by the Pipeline, when channels cannot be binned because they
have already been binned in the correlator. The red solid line indicates the mitigation limit when the channels can be binned
by a factor of 2 because they have not been binned in the correlator. The data sets selected as part of our initial sample are
indicated by colored symbols. Single fields are indicated by squares and mosaics by triangles.

lution, and polarization), and number of targets. This

information is determined from the Scheduling Block

properties and other public meta-data in the Archive

rather than that derived by the Pipeline and thus rep-

resents what the observations would have achieved had

they not been mitigated during processing. Since the

spectral window information in the archive had been

transformed to match International Virtual Observa-

tory Alliance (IVOA) standards, we converted the spec-

tral window parameters from wavelengths to frequencies

and reverse engineered the resulting instrumental prop-

erties like number of channels based on information in

the ALMA Technical Handbook (Cortes et al. 2022).

From the resulting database, we selected two sets

of MOUSes: one set close to the mitigation thresh-

old (project codes: 2019.1.00876.S, 2019.1.00915.S, and

2019.1.00263.S X3477) and the rest close to or at

the mitigation limits (project codes: 2019.1.00877.S,

2019.1.00263.S X3465, 2019.1.01425.S, 2019.1.01463.S,

5

Table 1. Initial Sample

Proposal MOUS Nebs Nptngs Nsrcs Points Npol Mitigated? Mitigated Mitigated

Code per FOV imsize max Nchan
a

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

2019.1.00092.S uid://A001/X1465/X3a33 1 1 1 1,428 2 N [450, 450] 3840

2019.1.00195.L uid://A001/X146c/Xd8 1 1 28 517 2 N [192, 192] 3840

2018.1.00566.S uid://A001/X133d/X2067 6 1 1 901,816 2 Y [6250, 6250] 240 (240)

2018.A.00031.T uid://A001/X13b3/Xdc 1 1 1 327,800 2 Y [1440, 1440] 1920 (1920)

2017.1.00884.S uid://A001/X1296/X7b1 1 1 1 1,018,995 2 Y [1600,1600] 1920 (3840)

2017.1.00983.S uid://A001/X12a3/X3be 3 27 2 14,268 2 N [750, 800] 3840

aUnmitigated maximum Nchan given in parenthesis if applicable.

Note—Column (1): Proposal Code. Column (2): MOUS. Column (3): Number of execution blocks (EBs). Column (4): Number of
pointings (> 1 pointing indicates a mosaic). Column (5): Number of sources. Column (6): Number of resolution elements per field of
view. This is a frequency-independent quantity proportional to the image size in pixels. Column (7): Number of polarizations. Column
(8): whether or not the data was mitigated by the Pipeline in operations. Column (9): The mitigated image size in pixels. Column
(10): The mitigated number of channels in a spectral window (maximum over all spectral windows).

Table 2. Pipeline Mitigations for Initial Sample

Proposal MOUS nbins hm imsize hm cell field spw

(1) (2) (3) (4) (5) (6) (7)

2018.1.00566.S uid://A001/X133d/X2067 · · · 0.25pb · · · · · · 21, 23, 25

2018.A.00031.T uid://A001/X13b3/Xdc 31:2,25:2,33:1,27:2,35:1,29:2 0.7pb 3ppb · · · · · ·
2017.1.00884.S uid://A001/X1296/X7b1 25:2,27:2,23:1,19:1 0.7pb 3.25pb · · · · · ·

Note—Column (1): Proposal Code. Column (2): MOUS. Column (3): number of channels binned per spectral window,
represented as a spw:nbin in a comma separated list. A null value means that no channels were binned by the Pipeline
in any spectral windows (although they may have been binned in the correlator). Column (4): fraction of the primary
beam imaged. Column (5): The number of pixels per beam. A null value means that the default value (five pixels
per beam) was used. Column (6): The fields included in imaging. A null value means all fields were imaged. Column
(7): The spectral windows imaged. A null value means that all spectral windows were imaged.

2019.1.01074.S, and 2019.1.00592.S, 2019.1.00796.S).2

Figure 2 provides an overview of the unmitigated prop-
erties of the selected 12-m MOUSes compared to 12-m

data from Cycle 7 as a whole. We included mosaics

and single fields since these use different gridding op-

tions in tclean. The extended sample also includes a

single polarization case (2019.1.00592.S) which has the

largest possible number of channels that the ALMA 64-

Input Correlator (also known as the Baseline Correlator

or BLC) can produce today: 7680. The properties for

the extended test data sets are given in Table 3 and the

mitigations used in operations to process the data are

given in Table 4.

2 We note that two of our data sets come from the same project
(2019.1.00263.S), so we distinguish them by appending the last
section of their MOUS identifier to the proposal code.

3.2. Testing Setup

Initial testing was done using a combination of nodes

from the ALMA Pipeline Working Group (PLWG) at

the North American ALMA Science Center (NAASC)

as well as general processing (nmpost) nodes at Pete

V. Domenici Science Operations Center (DSOC) and

VLASS nodes at both DSOC and New Mexico Tech

(NMT). Our tests on the extended sample used the

PLWG nodes exclusively. All nodes had identical spec-

ifications – dual 12-core, 3 GHz processors (Intel Xeon

Gold 6136) and either 512 GB or 768 GB of memory –

and similar levels of achieved performance. Tests were

run exclusively, meaning no other processing was run-

ning on the node during each test. The initial perfor-

mance tests described in Section 4.1 used 250 GB for

6

Figure 2. Number of channels as a function of resolution elements per field of view for all ALMA Cycle 7 12-m data. The
orange line indicates mitigation threshold, above which the Pipeline begins to mitigate cubes sizes. The red dotted line indicates
the mitigation limit, or maximum cube size permitted by the Pipeline, when channels cannot be binned (nbin=1) and the red
solid line indicates the mitigation limit permitted by the Pipeline when channels can be binned (nbin=2). The data sets in our
extended sample indicated by colored symbols. Single fields are indicated by squares and mosaics by triangles. The pentagon
indicates the single polarization case.

parallelization breadths of 8 and 9, either 250 GB or

500 GB for a parallelization breadth of 17, and 500 GB

for a parallelization breadth of 25. Our extended sample

testing used either 500 GB or 745 GB of memory.

Unless specified otherwise, we used Lustre, a dis-

tributed parallel file system, as the file system for our

tests. Benchmarks of the NAASC Lustre filesystem,

which is associated with the PLWG nodes, using a

single, 500 GB file show sequential reads averaging

693 MB/s and sequential writes averaging 860 MB/s.

The AOC Lustre filesystem, which is associated with the

nmpost and VLASS nodes, shows slightly better perfor-

mance with sequential reads averaging 743 MB/s and se-

quential writes averaging 892 MB/s. The large 500 GB

file was used for these tests to prevent the operating sys-

tem from caching the file. Thus these benchmarks rep-

resent the average minimum speed of each Lustre filesys-

tem to read and write a single file. With smaller files,

caching starts to become significant. For example using

a single, 10 GB file on NAASC Lustre shows much faster

sequential reads and writes averaging 2,428 MB/s and

1,167 MB/s, respectively. Finally, because each node

has a 40 Gb/s connection to Lustre, the theoretical effec-

7

Table 3. Extended Sample

Proposal MOUS Nebs Nptngs Nsrcs Points Npol Mitigated? Unmitigated Unmitigated

Code per FOV imsize max Nchan

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

2019.1.00263.S uid://A001/X1465/X3477 3 19 1 259,946 2 Ya [1440, 3072] 1920

2019.1.00263.S uid://A001/X1465/X3465 2 53 1 384,414 2 Y [3200, 3000] 1920

2019.1.00592.S uid://A001/X1465/X2a84 1 1 1 635,935 1 Y [8640, 8640] 7680

2019.1.00796.S uid://A001/X1471/X317 4 3 1 757,052 2 Y [7776,7776] 1920

2019.1.00876.S uid://A001/X1465/X20d0 2 7 1 55,089 2 N [1728, 1728] 1920

2019.1.00877.S uid://A001/X1465/X20c1 3 7 1 271,030 2 Y [3600, 3840] 3840

2019.1.00915.S uid://A001/X1465/X2009 1 27 5 7,965 2 N [600, 640] 3840

2019.1.01074.S uid://A001/X1465/X1ac2 2 1 1 1,772,044 2 Y [12960, 12960] 3840

2019.1.01425.S uid://A001/X1465/Xd63 3 1 7 868,489 2 Y [12800, 12800] 3840

2019.1.01463.S uid://A001/X1465/Xc05 6 1 1 1,100,957 2 Y [11250, 11250] 3840

aThis MOUS was mitigated in PL2021, but not in PL2020.

Note—Column (1): Proposal Code. Column (2): MOUS. Column (3): number of execution blocks (EBs). Column (4): Number of
pointings (> 1 pointing indicates a mosaic). Column (5): Number of sources. Column (6): Number of resolution elements per field of
view. This is a frequency-independent quantity proportional to the image size in pixels. Column (7): Number of polarizations. Column
(8): whether or not the data was mitigated by the Pipeline in operations. Column (9): The unmitigated image size in pixels. Column
(10): The unmitigatednumber of channels in a spectral window (maximum over all spectral windows).

Table 4. Pipeline Mitigations for Extended Sample

Project MOUS nbins hm imsize hm cell field spw

(1) (2) (3) (4) (5) (6) (7)

2019.1.00263.S uid://A0001/X1465/X3477 · · · · · · · · · · · · 25a

2019.1.00263.S uid://A001/X1465/X3465 · · · 0.44pb 3ppb · · · · · ·
2019.1.00592.S uid://A001/X1465/X2a84 · · · 0.7pb 3ppb · · · 25

2019.1.00796.S uid://A001/X1465/X317 · · · 0.68pb 3ppb · · · 25

2019.1.00877.S uid://A001/X1465/X20c1 23:2,27:2,29:2,25:2 0.57pb 3ppb · · · 23

2019.1.01074.S uid://A001/X1465/X1ac2 23:2,21:2,27:2,25:2 0.7pb 3ppb · · · 23

2019.1.01425.S uid://A001/X1465/Xd63 37:2,27:2,33:2,35:1,29:2,25:2,31:2 0.7pb 3ppb NGC1333IRAS2A 25,27,29,31,37

2019.1.01463.S uid://A001/X1465/Xc05 29:2,27:2,31:2,25:2 0.7pb 3ppb · · · · · ·

aThis MOUS was mitigated in PL2021, but not in PL2020.

Note—Column (1): Proposal Code. Column (2): MOUS. Column (3): number of channels binned per spectral window, represented as a
spw:nbin in a comma separated list. A null value means that no channels were binned by the Pipeline in any spectral windows (although
they may have been binned in the correlator). Column (4): fraction of the primary beam imaged. Column (5): The number of pixels per
beam. A null value means that the default value (five pixels per beam) was used. Column (6): The fields included in imaging. A null value
means all fields were imaged. Column (7): The spectral windows imaged. A null value means that all spectral windows were imaged.

tive throughput, or digital bandwidth limit, of a single

node is about 4,800 MB/s.

We also explored using NVMe devices as our file

system for some of our tests. An NVMe is a solid

state drive connected to a PCIe bus, providing a faster

drive closer to the CPU than a traditional hard disk

drive. Our initial NVMe testing used a combination of

NVMes on the VLASS nodes at NMT and the DSOC,

while our NVMe tests on the extended sample used a

PLWG node (cvpost127). The VLASS nodes at NMT

(nmpost{091..120}) have Western Digital Ultrastar DC

SN640, 3.85 TB NVMe drives. Published specifications

show sequential reads at 3,300 MB/s and sequential

writes at 2,040 MB/s. Multi-process, multi-file bench-

marks done on site confirm these values. Single-process

benchmarks using a single 500 GB file found sequential

reads averaging 859 MB/s and sequential writes aver-

aging 1,369 MB/s. The VLASS nodes at DSOC (nm-

8

post{061..090}) and cvpost127 have Samsung PM1735,

6.4 TB NVMe drives. Published specifications show

sequential reads at 8,000 MB/s and sequential writes

at 3,800 MB/s. Multi-process, multi-file benchmarks

done on site confirmed sequential write values but found

slightly lower sequential read values of 7,010 MB/s.

Single-process benchmarks using a single 500 GB file

found sequential reads averaging 1,694 MB/s and se-

quential writes averaging 2,068 MB/s.

Our initial tests used an early version of PL2021

casa-6.2.1-4-pipeline-2021.2.0.69, but we switched to

the final, released PL2021 version casa-6.2.1-7-pipeline-

2021.2.0.128 for our tests with the extended sample.

The differences between the early version and the final

release were minor. A custom version of the Pipeline

was used to perform so-called dry runs of tclean calls

for unmitigated continuum subtracted data, issuing the

tclean commands to generate unmitigated cubes. Fi-

nally, in some cases, gridding failed in our default ver-

sion of CASA due to a known issue with file locking,

which is documented in the CASA development ticket

CAS-13609 on Jira. In that case, we attempted to use

casa-6.4.1-12, where this problem was fixed, to image

this data. However, these attempts also failed due to ad-

ditional memory issues with auto-multithresh in the

minor cycle.

Profiling information for Pipeline executions was ob-

tained by using the Pipeline profiling framework3 that

has been used in previous ALMA Pipeline profiling work

done by a subset of this group (F. Madsen, J. Robnett,

and K. Rowe). The profiling framework consists of a

suite of python tools and shell scripts to extract de-

tailed performance information from Pipeline executions

at runtime.

Timing information for CASA sessions that did not

use the ALMA Pipeline was obtained by parsing CASA

logs with readImagingLog4: a collection of python class

and function definitions to parse CASA logs contain-

ing imaging tasks (tclean, sdintimaging). A script that

is part of the profiling framework was also used to

retrieve performance plots (memory report, cpu report

and ib bytes in) from ganglia every 4 hours.

4. RESULTS

4.1. Parallelization Breadth Tests

4.1.1. Single Node Parallelization Breadth Tests

3 Available upon request. Internal NRAO link:
https://gitlab.nrao.edu/scg/pipeline metrics

4 Available upon request. Internal NRAO link:
https://gitlab.nrao.edu/scg/readimaginglog

The initial phase of the testing focused on character-

izing the performance of the ALMA Imaging Pipeline as

a whole, and tclean in particular, with increasing par-

allelization breadth. To do this, we used the initial test

sample described in Section 3.1.1 because it was possi-

ble to run these data sets through the ALMA Imaging

Pipeline in a reasonable amount of time (much less than

a month). We ran each MOUS in the initial sample

changing parallelization breadth from 1 (serial) to 25-

way and recorded the resulting run time. We also deter-

mined the run time of just the tclean calls within the

Pipeline, since the majority of the computational work

happens in these calls.

The results of these tests are shown in Figure 3. The

run time of the Pipeline as a function of paralleliza-

tion breadth is shown in the top panel and the run

time of the tclean calls within the Pipeline as a func-

tion of parallelization breadth is shown in the bottom

panel. For the Pipeline as a whole, the behavior of

run time with increasing parallelization breadth varies

widely between different MOUSes. Some MOUSes

(e.g., 2017.1.00983.S) show the expected decrease in run

time with increasing parallelization breadth, while oth-

ers (e.g., 2017.1.00884.S) do not show significant im-

provement beyond 8-way parallelization. In contrast,

for tclean, most MOUSes show improved performance

with increasing parallelization breadths up to a breadth

of 17 with the exception of 2019.1.00195.L. The latter

data set has the smallest field of view by an order of

magnitude compared to the rest of our data sets and

thus is not able to benefit from increased paralleliza-

tion breadth as much as data sets with larger field of

view. From this, we conclude that while the behavior of

tclean scales as expected with increasing parallelization

breadth, the behavior of the ALMA Imaging Pipeline

does not because the overall performance improvement

for the Pipeline is limited by the serial operations such

as imstat, immoments, etc.

4.1.2. Multi-node Parallelization Breadth Tests

The initial testing described in Section 4.1.1 focused

on increasing parallelization breadth up to the number

of cores provided by a single node since, in ALMA oper-

ations, jobs are typically run on a single node. How-

ever, it is possible to run tclean in parallel across

multiple nodes. To test how this performs in prac-

tice, we selected the three smallest data sets from our

extended sample (2019.1.00876.S, 2019.1.00263.2 3477,

and 2019.1.00915.S) and ran them parallelizing across

1, 2, and 3 nodes. Our tests were configured so that in

each node we were using 16 cores and 500GB of RAM.

9

(a)

(b)

Figure 3. Run time of the ALMA Imaging Pipeline including tclean run time (panel a) and run time of the tclean calls within
the ALMA Imaging Pipeline (panel b) as a function of increasing parallelization breadth.

10

Each test was run exclusively with no other jobs running

on the node(s).

Figure 4 shows the Imaging Pipeline run time as a

function of number of nodes used for three test data

sets. Increasing the parallelization breadth to span two

or more nodes does not appear to yield the expected

improvements in performance. All three data sets had

their run time increase when the parallelization breadth

increases from 1 to 2 nodes. The run time for one of the

data sets further increased from 2 to 3 nodes and the

gains between 2-node parallelization and 3-node paral-

lelization appear to be negligible for the two other data

sets. These results are consistent with the results of

tclean performance testing done by the CASA group

while testing possible frameworks for a next generation

CASA5. The lack of improvement in performance ap-

pears to be driven by write-lock and read-lock times.

Table 5 shows the write-lock and read-lock times for our

multi-node tests. The tclean run times are progres-

sively more impacted by lock contention (time waiting

on file read and/or write locks) as the parallelization

breadth increases from 1 to 3 nodes.

4.2. findcont Performance Testing

Based on the initial investigations described in Sec-

tion 4.1, we decided to test the more challenging cubes

found in our extended sample described in Section 3.1.2.

Running the full Imaging Pipeline for these data sets,

however, would be prohibitively time consuming with

estimated run times of up to several years. Running

just the findcont stage, which identifies line-free re-

gions in the data to use for continuum subtraction,

though reduces the overall run time. This stage in-
cludes many CASA tasks used elsewhere in the Imaging

Pipeline including imstat, immoments, ia.getprofile,

and tclean, and thus can be used to assess the impact of

these tasks on the overall Imaging Pipeline performance.

Our first result is that the size of the cubes tested

here appears to trigger errors that are relatively rare for

smaller cubes. During these tests, we noticed a high

frequency of intermittent failures due to issues with file

locking (CAS-13609). The symptom of this bug is a

failed tclean execution with the error message “Task

tclean raised an exception of class RuntimeError with

the following message: Error in running Major Cycle

: One or more of the cube section failed in de/grid-

ding.” and the same tclean command often success-

5 https://cngi-prototype.readthedocs.io/en/latest/benchmarking.html

fully completes when re-run. This bug has been fixed in

CASA 6.4.1-12 (PL2022 version), but was still present

in CASA 6.2.10-7 (PL2021 version). It has been en-

countered in operations, but was seen relatively infre-

quently (20 problem report tickets in Cycle 8 out of all

the MOUSes processed). Previous attempts by one of

the authors (A. Kepley) to reproduce this bug by re-

peatedly re-running cases that failed in operations were

also unsuccessful. We suspect that the larger cube sizes

in our tests may have triggered this issue more consis-

tently. For example, the project 2019.1.01074.S trig-

gered this error repeatedly and we were unable to com-

plete findcont for this data set and thus excluded it

from our sample for subsequent investigations.

Figure 5 compares the findcont run time for the dif-

ferent MOUSes in our sample. Each data set is identified

by its project code (and the last part of its MOUS UID

if necessary). Three different runs were done for each

data set: a mitigated run with 8 mpi (message passing

interface) processes,6 a mitigated run with 25 mpi pro-

cesses, and an unmitigated run with 25 mpi processes.

The total findcont run time was divided into the run

time for the four dominant processes for findcont:

ia.getprofile, imstat, immoments, and tclean. The

task ia.getprofile is used to get the spectral profile

for a masked region within a cube. The task imstat is

used to calculate cube statistics and immoments is used

to calculate moments of the cube (integrated intensity,

peak intensity, etc). Finally, the tclean task is CASA’s

implementation of the well-known CLEAN algorithm.

Other CASA/Pipeline tasks had a negligible contribu-

tion to the total findcont run times.

The first conclusion that can be drawn from Figure 5

is that the unmitigated findcont runs take 3 to 60

times longer than the mitigated runs for runs with the

same memory and number of cores. The longest running

findcont jobs in our sample have run times reaching 60-

80 days! As we describe in Section 2, findcont is only

one stage in the Imaging Pipeline, which also produces

deconvolved mfs and cube images for all source/spw

combinations. This result supports our initial hypothe-

sis that running these data sets through the entire Imag-

ing Pipeline would be prohibitively time consuming.

Because of the large range in findcont run times,

Figure 6 separates the full sample shown in Figure 5

into three separate plots: panel (a) shows the unmiti-

gated findcont run times greater than 10 days, panel

(b) shows the unmitigated findcont run times greater

than 1 day, and panel (c) shows the findcont run times

6 The parallelization breadth is equal to the number of mpi pro-
cesses.

11

(a) (b)

(c)

Figure 4. ALMA Imaging Pipeline run time as a function of parallelization breadth across nodes for three projects in our
extended sample: (a) 2019.1.00263.S 3477, (b) 2019.1.00876.S, and (c) 2019.1.00915.S. The run time due to tclean is indicated
by the red portion of the bar.

Table 5. Lock Times for Multi-node Tests

MPI Cube tclean Write-lock Read-lock

Project Processes Nodes time (s) time (s) % time (s) %

2019.1.00263.S 17 1 117405 934 0.8 1839 1.6

2019.1.00263.S 32 2 196436 59580 30.3 26355 13.4

2019.1.00263.S 48 3 179508 87864 48.9 21673 12.1

2019.1.00876.S 17 1 37068 60 0.2 35 0.1

2019.1.00876.S 32 2 45511 6992 15.4 1346 3.0

2019.1.00876.S 48 3 44737 13679 30.6 3026 6.8

2019.1.00915.S 17 1 38960 218 0.6 131 0.3

2019.1.00915.S 32 2 56142 6663 11.9 857 1.5

2019.1.00915.S 48 3 60639 15867 26.2 2455 4.0

12

U
nm

iti
ga

te
d

(2
5m

pi
)

M
iti

ga
te

d
(2

5m
pi

)

M
iti

ga
te

d
(8

m
pi

)

U
nm

iti
ga

te
d

(2
5m

pi
)

M
iti

ga
te

d
(2

5m
pi

)

M
iti

ga
te

d
(8

m
pi

)

U
nm

iti
ga

te
d

(2
5m

pi
)

M
iti

ga
te

d
(2

5m
pi

)

M
iti

ga
te

d
(8

m
pi

)

U
nm

iti
ga

te
d

(2
5m

pi
)

M
iti

ga
te

d
(2

5m
pi

)

M
iti

ga
te

d
(8

m
pi

)

U
nm

iti
ga

te
d

(2
5m

pi
)

M
iti

ga
te

d
(2

5m
pi

)

M
iti

ga
te

d
(8

m
pi

)

U
nm

iti
ga

te
d

(2
5m

pi
)

M
iti

ga
te

d
(2

5m
pi

)

M
iti

ga
te

d
(8

m
pi

)

U
nm

iti
ga

te
d

(2
5m

pi
)

M
iti

ga
te

d
(2

5m
pi

)

M
iti

ga
te

d
(8

m
pi

)

U
nm

iti
ga

te
d

(2
5m

pi
)

M
iti

ga
te

d
(2

5m
pi

)

M
iti

ga
te

d
(8

m
pi

)

U
nm

iti
ga

te
d

(2
5m

pi
)

M
iti

ga
te

d
(2

5m
pi

)

M
iti

ga
te

d
(8

m
pi

)

Ti
m

e
(d

ay
s)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

20
19

.1.
01

46
3.S

20
19

.1.
00

59
2.S

20
19

.1.
01

42
5.S

20
19

.1.
00

79
6.S

20
19

.1.
00

87
7.S

20
19

.1.
00

26
3.S

_3
46

5

20
19

.1.
00

26
3.S

_3
47

7

20
19

.1.
00

87
6.S

20
19

.1.
00

91
5.S

ia.getprofile immoments imstat tclean

Run times of hif_findcont

Figure 5. Run times for findcont stage for all MOUS in our sample. Each MOUS has three tests associated with: unmitigated
with 25 mpi processes and 500 GB RAM, mitigated with 25 mpi and 500 GB RAM, and mitigated with 8 mpi processes and
250 GB RAM. The bars are broken down by time spent in four tasks: ia.getprofile (green, top), immoments (yellow, second
from top), imstat (red, third from top), and tclean (blue, bottom.)

13

U
nm

iti
ga

te
d

(2
5m

pi
)

M
iti

ga
te

d
(2

5m
pi

)

M
iti

ga
te

d
(8

m
pi

)

U
nm

iti
ga

te
d

(2
5m

pi
)

M
iti

ga
te

d
(2

5m
pi

)

M
iti

ga
te

d
(8

m
pi

)

U
nm

iti
ga

te
d

(2
5m

pi
)

M
iti

ga
te

d
(2

5m
pi

)

M
iti

ga
te

d
(8

m
pi

)

Ti
m

e
(d

ay
s)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

2019.1.01463.S 2019.1.00592.S 2019.1.01425.S

ia.getprofile immoments imstat tclean

Subset of mitigated projects with longer run times

Run times of hif_findcont

(a)

U
nm

iti
ga

te
d

(2
5m

pi
)

M
iti

ga
te

d
(2

5m
pi

)

M
iti

ga
te

d
(8

m
pi

)

U
nm

iti
ga

te
d

(2
5m

pi
)

M
iti

ga
te

d
(2

5m
pi

)

M
iti

ga
te

d
(8

m
pi

)

U
nm

iti
ga

te
d

(2
5m

pi
)

M
iti

ga
te

d
(2

5m
pi

)

M
iti

ga
te

d
(8

m
pi

)

Ti
m

e
(d

ay
s)

0.00

2.00

4.00

6.00

8.00

10.00

2019.1.00796.S 2019.1.00877.S 2019.1.00263.S_3465

ia.getprofile immoments imstat tclean

Subset of mitigated projects with shorter run times

Run times of hif_findcont

(b)

U
nm

iti
ga

te
d

(2
5m

pi
)

M
iti

ga
te

d
(2

5m
pi

)

M
iti

ga
te

d
(8

m
pi

)

U
nm

iti
ga

te
d

(2
5m

pi
)

M
iti

ga
te

d
(2

5m
pi

)

M
iti

ga
te

d
(8

m
pi

)

U
nm

iti
ga

te
d

(2
5m

pi
)

M
iti

ga
te

d
(2

5m
pi

)

M
iti

ga
te

d
(8

m
pi

)

Ti
m

e
(d

ay
s)

0.00

0.20

0.40

0.60

0.80

2019.1.00263.S_3477 2019.1.00876.S 2019.1.00915.S

ia.getprofile immoments imstat tclean

Subset of projects that were not mitigated

Run times of hif_findcont

(c)

Figure 6. Run times for the findcont stage for the longest running MOUSes (a), the medium long MOUSes (b), and the
MOUSes that were not originally mitigated (c). Each MOUS has three tests associated with it: unmitigated with 25 mpi
processes and 500 GB RAM, mitigated with 25 mpi processes and 500 GB RAM, and mitigated with 8 mpi processes and
250 GB RAM. The bars are broken down by time spent in four tasks: ia.getprofile (green, top), immoments (yellow, second
from top), imstat (red, third from top), and tclean (blue, bottom).

14

for projects that were not originally mitigated in op-

erations. From these plots, we see that the run time

of findcont is not dominated by the creation of a dirty

cube by tclean as one might expect, but by the analysis

tasks ia.getprofile, immoments, and imstat. For the

unmitigated runs, these tasks typically take on order of

60-90% of the total findcont run time. A comparison of

the mitigated run times between the 8 mpi and 25 mpi

cases show that the run time of these tasks does not

decrease as the parallelization breadth increases. This

trend is in agreement with these tasks not making use of

mpi parallelization, and in contrast to the tclean run

time, which does decrease as expected when the paral-

lelization breadth increases.

A subsequent investigation of the immoments task per-

formance for a 425GB cube (dimensions: 7776, 7776,

1914) found that it only uses 3.6 GB of memory at a time

in mpicasa7. Thus, immoments is effectively operating in

serial and only processing less than 1% of the cube at

one time. In serial CASA, it is possible to use multi-

threading to parallelize tasks like immoments. Multi-

threading, however, is turned off in mpicasa by setting

the environment variable OMP NUM THREADS=1 be-

cause it interacts poorly with the mpi processing used

in tclean. The immoments task does not appear to use

multi-threading in serial mode. However, the imstat

task does use multi-threading when calculating statis-

tics over an entire cube in serial mode.

The continuum channel selection produced by

findcont differed between the mitigated and unmiti-

gated runs. However, since the goal of this section was to

evaluate the computational performance of findcont,

we did not investigate whether these differences lead

to scientifically significant differences in the resulting

cubes.

4.3. Scaling results

In this section, we take a closer look at the scaling

performance of tclean with respect to three key quan-

tities: number of channels, number of mosaic pointings,

and the number of input measurement sets. The first

two quantities impact the gridding and deconvolution

in tclean. The latter is interesting because each time

a scheduling block is observed on ALMA it creates a

separate measurement set (often referred to as an Exe-

cution Block or EB). The tclean task then takes a list

of measurement sets that it has to grid together rather

than combining them into a single ms file. This process

has the potential to cause a difference in performance.

7 Private communication from R. Loomis on CASR-678

Since running the full Imaging Pipeline was not fea-

sible for our data sets, we used a special purpose build

of the Pipeline that generates Pipeline-like tclean com-

mands for the continuum subtracted data set, but does

not execute them. We note that not doing continuum

subtraction would potentially result in different decon-

volution performance due to broadband emission in the

cube. The resulting tclean commands did not include

suitable values for niter and threshold because those

heuristics require dirty images and the tclean com-

mands were generated prior to the creation of a dirty

image. To set a reasonable value for these parameters,

we estimated the values for niter and threshold based on

the dirty image from findcont and the ALMA Pipeline

heuristics using the procedure specified in Appendix B.

To determine the imsize for the number of pointings scal-

ing tests, we split off the relevant pointings and used the

Pipeline to determine what the imsize would be for the

split measurement set.

4.3.1. Scaling with Number of Channels

We expect that the scaling for tclean as a whole as

well as the major and minor cycles should increase lin-

early as a function of number of channels. The major

cycle grids the data and this operation depends linearly

on the number of channels, while the minor cycle decon-

volves the resulting cube which again depends linearly

on the number of channels.

To explore how tclean run time scales with numbers

of channels, we selected four different data sets: two mo-

saics (2019.1.00915.S and 2019.1.00263 X3465) and two

single pointings (2019.1.01463.S and 2019.1.00592.S).

We selected mosaics and single pointings because they

use two different gridders within tclean. For each data

set, we started with imaging all the channels and then

decreasing the number of channels imaged by a factor

of 2 for each subsequent tclean run. We included the

brightest line emission region found by tclean in all

cubes, since that will dominate the deconvolution.

Figure 7 shows the relative average total tclean run

time, the average major cycle run time, and the average

minor cycle run time as a function of number of chan-

nels. A linear trend (not a fit) is shown as an orange line.

For 2019.1.01463.S, the tests for 3840 and 1920 channels

repeatedly ran out of memory in the auto-multithresh

portion of the minor cycle and thus are not included in

this plot. This issue has been reported in CAS-13898.

On the whole, the tclean run time and the run times

for the major and minor cycles scale linearly with the

number of channels. The exception is the MOUS with

the largest number of channels, 2019.1.00952.S, where

the tclean run time is twice that expected. The differ-

15

ence is greater for the major cycle (factor of 2.3), but

still present in the minor cycle (factor of 1.7). This

run used a considerable amount of swap and that may

have affected the performance. It may be related to

the large amount of swapping seen in auto-multithresh

(CAS-13898), but the time frames when swapping oc-

curred were not always related to auto-multithresh.

Thus we have reported it separately in CAS-14142.

4.3.2. Scaling with Number of Pointings

Another important aspect of tclean performance to

investigate is the scaling with number of mosaic point-

ings imaged. There are two effects at play here. First,

increasing the number of mosaic pointings will linearly

increase the number of visibilities. Second, it will also

increase the size of the gridding kernel quadratically.

Thus we expect the performance of the gridding as a

function of number of pointings to be quadratic. Since

the deconvolution step depends on the number of pix-

els, we expect that to scale linearly with the number of

pixels.

Figure 8 shows the scaling of the average imag-

ing cycle duration, average major cycle duration and

average minor cycle duration for two test data sets

(2019.1.00263.S 34465 and 2019.1.00263S 3477). The

average major cycle duration displays a quadratic de-

pendence, as expected. The average minor cycle dura-

tion scales linearly with the number of pointings. Fig-

ure 9 shows that the image size scales linearly with the

number of pointings, so this is again as expected. The

trend for the average total imaging cycle duration is then

just a combination of the quadratic major cycle trend

and the linear minor cycle trend.

4.3.3. Scaling with Number of Execution Blocks

In ALMA operations, the scheduling block specifying

the observation requested by the PI is executed one or

more times producing one measurement set for each ex-

ecution, which are referred to as execution blocks (EBs).

The execution blocks are input into tclean as a list and

combined within tclean to produce a single cube con-

taining all the visibility data. Thus we expect that the

run time of the major cycle in tclean, which does the

gridding, to increase linearly with the number of exe-

cution blocks since a linear increase in the number of

execution blocks should linearly increase the number of

visibilities8. The run time of the minor cycle in tclean,

which operates in image cube space should not be af-

fected by an increase in the number of execution blocks.

8 Each execution block will have a similar number of visibilities
since they are all generated from a single scheduling block.

(a)

(b)

(c)

Figure 7. The scaling of tclean run time as a function
of number of channels for the average relative total imaging
cycle duration (panel a), average relative major cycle du-
ration (panel b), and average relative minor cycle duration
(panel c). The data sets are indicated using different sym-
bols and a linear trend (not a fit) is shown as an orange
line. For 2019.1.01463.S, the tests for 3840 and 1920 chan-
nels failed repeated due to running out of memory in the
auto-multithresh step in the minor cycle and thus are not
shown in this plot.

16

(a)

(b)

(c)

Figure 8. The scaling of the tclean run time as a function
of number of pointings for the average relative total imaging
cycle duration (panel a), average relative major cycle du-
ration (panel b), and average relative minor cycle duration
(panel c). The data sets are indicated using different sym-
bols and a quadratic fit to the data is shown as an orange
line.

Figure 9. The imaging area as a function of number of
pointings for the scaling tests with number of pointings. A
linear trend is shown by the blue line.

To test this scaling, we selected data sets from our ex-

tended sample described in Section 3.1.2 that had multi-

ple executions. We then ran these data sets with all ex-

ecution blocks as well as a reduced number of execution

blocks. For the test with reduced numbers of execution

blocks, we scaled the threshold value used for each test

by scaling by the square root of the ratio between the to-

tal number of execution blocks and the current number

of execution blocks.

Figure 10 shows relative run times of our test data sets

as a function of the relative number of execution blocks.

As anticipated, changing the number of execution blocks

does not have a significant effect on the run time of

the minor cycle. The major cycle does display a linear

trend, but the slope is 0.6 which is less than the expected

slope of 1. There also appears to be a constant offset,
suggesting some fixed overhead for each major cycle,

independent of the number of execution blocks.

4.4. Relative performance of the major and minor

cycles

One commonly used assumption in theoretical calcu-

lations of imaging performance is that the major cycle

time, which does the gridding of the visibilities, dom-

inates over the minor cycle, which does the deconvo-

lution. In this section, we compare the run times of

the major and minor cycle to test whether this assump-

tion holds true for the unmitigated ALMA cubes. Fig-

ure 11 shows the ratio of the average major and aver-

age minor cycle as a function of number of channels,

number of pointings, and number of execution blocks.

In most cases, we find that the minor cycle time dom-

inates over the major cycle time with one exception:

17

(a)

(b)

(c)

Figure 10. The relative duration as a function of the rel-
ative number of execution blocks for the entire timing cycle
(panel a), the major cycle (panel b), and the minor cycle
(panel c). Panel (b) includes trend line for the minor cycle
points.

(a)

(b)

(c)

Figure 11. The ratio of the average major cycle run time
to the average minor cycle run time as a function of number
of channels (a), number of pointings (b), and number of ex-
ecutions (c). The error bars indicate the error in the ratio
over all cycles for each data set.

18

(a)

(b)

(c)

Figure 12. The fraction of the minor cycle taken up by the
automated masking done by auto-multithresh as a func-
tion of number of channels (a), number of pointings (b), and
number of execution blocks (c).

2019.1.00263.S 3465. This project is a mosaic with the

largest number of pointings in our sample, although it

does not have the largest image size for a mosaic in our

sample. As the number of pointings increases for this

project, the ratio of the major cycle to the minor cycle

increases to finally reach a value above 1. We note that

the other mosaic test case shows a similar trend with

number of pointings, but does not exceed 1. As the

number of channels increases for 2019.1.00263.S 3465,

the ratio of the major to minor cycle decreases, but is

never below 1.

The underlying reason why the minor cycle domi-

nates over the major cycle for these tests is due to

the auto-multithresh algorithm (Kepley et al. 2020)

used by the ALMA Imaging Pipeline to automatically

mask emission during the minor cycle to enable deeper

cleans. This algorithm identifies significant emission

peaks in the residual image and cascades the mask down

to lower signal to noise level. The mask is recalcu-

lated every minor cycle for every channel, unless a mask

is not found in the first minor cycle for a channel or

the mask changes by less than 10%. The latter be-

havior can be varied by changing an input parameter.

Figure 12 shows the fraction of the minor cycle time

spent on auto-multithresh for the tested data sets.

We find that auto-multithresh is at least 60% of the

minor cycle run time and can take up to 90% of the

minor cycle run time. There is some indication that

the auto-multithresh fraction decreases with increas-

ing number of channels, although we do have one ex-

treme case with 7680 channels where auto-multithresh

took 90% of the minor cycle compared to 70-80% for

smaller number of channels. This case (2019.1.00592.S)

is a large single field mosaic with the anomalously

large imaging cycle duration noted in Section 4.3.1.

There does not appear to be a strong variation in

auto-multithresh time with number of pointings or

number of execution blocks.

4.5. NVMe experiments

In operations, ALMA data processing uses the Lustre

file system for data storage. Lustre is a shared, dis-

tributed file system comprised of dozens of arrays of

drives called OSTs. At NRAO, Lustre is configured

to write one file per OST and each OST has a write-

cache memory. This configuration means that our Lus-

tre file systems are able to write dozens of files in par-

allel. However, most modern high throughput comput-

ing clusters compartmentalize their data by transferring

the relevant data to a drive local to the processing node

rather than having all data accessible to the processing

node all the time (as is the case with Lustre). Many

19

of these clusters use NVMe drives for data storage for

processing. We performed the same single, 500GB file

benchmark tests on a Samsung PM1735 NVMe drive

and saw sequential reads averaging 1,694MB/s and se-

quential writes averaging 2,068MB/s. This is 2.4 times

faster than our NAASC Lustre benchmark tests. There-

fore, reading and writing a large file can be much faster

when done using NVMe instead of Lustre. In addition,

since only a small number of jobs can be run on a node

because of the large memory requirements per job, the

number of jobs trying to access the file system is re-

duced for NVMe compared to Lustre. However, indi-

vidual NVMes are limited in size. The 6.4 TB NVMes

used in our testing represent the mid-range of the stor-

age volumes available on the commercial market with

top-end drives having 15TB of storage at the time of

purchase in early 2022.

In this section, we explore whether using NVMe drives

instead of Lustre as data storage could improve the run

time performance of tclean. Initial tests of NVMe per-

formance were done using three data sets from our initial

sample (see Section 3.1.1) and the NVMe devices asso-

ciated with the VLASS nodes at both NMT and DSOC

(see Section 3.2 for details). The aggregate tclean du-

ration for two different parallelization breadths (8 and 9)

are shown in Figure 13. One data set (2017.1.00983.S)

showed a 30% decrease in run time when using the

NVMe instead of Lustre, but the performance was sim-

ilar between Lustre and NVMe for the two other data

sets (2018.1.00566.S and 2019.1.00092.S).

For our second round of NVMe tests, we used the

unmitigated data sets taken from the extended sample

(see Section 3.1.2) and the NVMe device on the PLWG

node cvpost127 (see Section 3.2). We were restricted

to choosing data sets that would fit on the NVMe de-

vice (≲6.4 TB). Out of these data sets, we selected

two data sets for testing that trigger different gridder

modes: one single pointing (2019.1.00592.S) and one

mosaic (2019.1.00263.S 3465). We then ran the same

tclean commands as in our previous testing using both

the NVMe and Lustre as our data storage. Figure 14

shows the average imaging cycle duration, the average

major cycle duration, and the average minor cycle dura-

tion for two different data sets. The single pointing data

set saw a 53% reduction in run time, but the mosaic

data set showed comparable run times between Lustre

and NVMe.

To explore the lack of improvement in the mosaic data,

we imaged the mosaic data with 1, 4, 13, 37, and 53

pointings and looked at the average imaging cycle du-

ration, the average major cycle time, and the average

minor cycle time. The results are shown in Figure 15.

Figure 13. Aggregate tclean run time for Lustre and
NVMe for two different parallelization breadths (8 and 9).
Shorter bars are better.

For the minor cycle, the NVMe durations are always

shorter than Lustre. For the major cycle, the NVMe

run times are shorter than the Lustre run times for our

tests including up to 13 pointings. Beyond 13 pointings,

the NVMe average major cycle run time is longer than

the Lustre average major cycle run time. This increase

in the major cycle run times for large numbers of point-

ings for the NVMe devices is reflected in the average

total imaging cycle duration.

In CASA 6.2.1, the mosaic gridder was found to be

doing unnecessary IO (CAS-13991) which may have con-

tributed to the relative slowness of the NVMe compared

to Lustre for 2019.1.00263.S 3465. We re-ran our tests

using a CASA build incorporating a fix for the issues

seen in CAS-13991 and found that while both the NVMe

and Lustre run times improved, the ratio of the run

times remained the same. Thus we do not think that

the unnecessary IO for mosaics identified in CAS-13991

is contributing to the results described above.

5. SUMMARY AND FUTURE WORK

In this memo, we have investigated the performance

of the ALMA Imaging Pipeline and its underlying data

processing software, CASA, for the largest cubes that

ALMA can produce. These cubes are currently miti-

gated, or reduced in size, when imaged in operations.

They have their fields of view, number of pixels per

beam, and/or channels binned by 2. Characterizing

the performance of the Pipeline and CASA when fully

imaging these challenging cubes, however, is a key step

towards being able to process cubes produced by the

ALMA WSU. This upgrade will increase the maximum

number of channels per spectral window by approxi-

mately 1.5 orders of magnitude, further increasing the

number of large cubes produced by ALMA.

20

(a)

(b)

(c)

Figure 14. Average total imaging cycle duration (panel a),
average major cycle duration (panel b), and average minor
cycle duration (panel c) for two test data sets using both
Lustre and NVMe for data storage backends. Shorter bars
are better.

We have split our testing into four main parts. First,

we explored the parallelization breadth for the ALMA

Imaging Pipeline and tclean on a single node and across

multiple nodes. For parallelization breadths up to that

provided one node, we found that the Imaging Pipeline

(a)

(b)

(c)

Figure 15. Average total imaging cycle duration (panel a),
average major cycle duration (panel b), and average minor
cycle duration (panel c) for 2019.1.00263.S 3465 as a function
of number of pointings imaged for both Lustre and NVMe.
Shorter bars are better.

21

performance does not scale with parallelization breadth

for all projects, but the performance of tclean largely

does up to a breadth of 17. Neither the Imaging Pipeline

performance nor the tclean performance scales with

parallelization breadths that span two or more nodes.

Second, we investigated the performance of the

findcont stage of the Pipeline, which identifies line-

free regions within a spectra to use for continuum sub-

traction. Since running the full Imaging Pipeline would

have been too time-consuming for our largest cubes, this

stage was selected for detailed testing because it uses

CASA tasks that are used frequently in other portions

of the Imaging Pipeline including imstat, immoments,

ia.getprofile, and tclean. We find that running the

findcont step on unmitigated data takes 3 to 60 times

longer than running it on unmitigated data, with the

largest cube taking up to 80 days. The findcont run

time is dominated by the tasks immoments, imstat, and

ia.getprofile, which take 60-90% of the time, rather

than the creation of the dirty cube by tclean.

Next we transitioned to a detailed investigation of the

scaling of tclean performance with number of channels,

number of pointings, and number of input measurement

sets (i.e., execution blocks). The first two axes were

chosen because they represent fundamental properties

of the data. The number of execution blocks was chosen

because it reflects the total number of visibilities used to

create the cube as well as a key operational ALMA use

case for tclean. We find that the scaling with number

of channels and number of pointing for tclean is as ex-

pected. The performance scales linearly with number of

channels and quadaratically with number of pointings.

For one of our largest cubes, however, we repeatedly

ran out of memory during the automated mask creation

portion of the minor cycle (auto-multithresh). This

issue has been reported in the ticket CAS-13898. The

performance for number of execution blocks appears to

have a constant overhead and scales sub-linearly with

the number of execution blocks.

For each of the scaling tests, we compared the run

times of the major and minor cycles within tclean to

investigate whether the major cycle dominates over the

minor cycle as typically assumed. We found that the

opposite is true: minor cycle run time dominates over

the major cycle run time for most of our unmitigated

imaging runs. The most time-consuming portion of the

minor cycle is the automatic masking of emission done

by the auto-multithresh algorithm with the masking

taking between 60 to 80% of the minor cycle.

Lastly, we investigated whether using NVMe instead

of Lustre for our data storage would improve the per-

formance of tclean. A local NVMe drive can read and

write 2 to 3 times faster than a Lustre OST, but is lim-

ited in size to only a few TB. We found that some of

our test cases experienced 30-53% reductions in overall

run time, but that other showed comparable run times

between NVMe and Lustre. For the mosaic gridder, the

NVMe major cycle run time slowed down compared to

the Lustre major cycle run time as the number of point-

ings imaged increased. For the minor cycle, the NVMe

test run times were always faster than the Lustre test

run times.

These results suggest several avenues for further inves-

tigation for imaging current unmitigated ALMA cubes

and future imaging of the WSU cubes. The first and

most obvious are related to current and upcoming bug

fixes in CASA. We should re-run our number of channel

scaling tests for 2019.1.01463.S once a fix for the memory

issues that caused them to fail is in place (CAS-13898).

In addition, a detailed investigation of NVMe perfor-

mance for mosaics would be useful to understand why

one of our mosaics showed little to no run time improve-

ment when run on an NVMe compared to Lustre.

Some more forward looking investigations would be

to investigate whether it would be possible to paral-

lelize imstat, immoments, and ia.getprofile within

mpicasa. Parallelizing these tasks would significantly

decrease the run time of the findcont stage for large

cubes. CASA does have an interface to manipulate the

number of threads within mpicasa. However, care would

have to be taken that the number of OMP threads is set

to 1 during any tclean executions. These tests could be

done on both the Lustre file system and using an NVMe

device as the data storage.

Finally, we could experiment with increasing the com-

puting throughput of current CASA by running the in-

dividual steps within the larger monolithic tclean task

with appropriately partitioned data. There are proto-

types that could be used for these experiments (e.g.,

htclean developed by F. Madsen)9. Another, simpler,

version of this approach is already being used by some

groups to image large cubes. These groups use the cur-

rent CASA tasks to align the frequency axes of indi-

vidual measurement sets (cvel2 or mstransform), com-

bine the measurement sets into one measurement set

(concat), split off each channel (split or mstransform)

and image it using tclean, and then recombine the

channels into a final cube containing all channels. These

experiments, however, may be more appropriate for the

ngCASA framework.

9 https://open-confluence.nrao.edu/display/SCG/htclean+-+
a+distributed+approach+to+running+tclean+on+high+
throughput+computing+environments

https://open-confluence.nrao.edu/display/SCG/htclean+-+a+distributed+approach+to+running+tclean+on+high+throughput+computing+environments
https://open-confluence.nrao.edu/display/SCG/htclean+-+a+distributed+approach+to+running+tclean+on+high+throughput+computing+environments
https://open-confluence.nrao.edu/display/SCG/htclean+-+a+distributed+approach+to+running+tclean+on+high+throughput+computing+environments

22

We would like to thank the following people: Dirk Mud-

ers for creating a special build of the ALMA Pipeline

that allowed us to extract the tclean commands with-

out having to run a full clean, Ryan Loomis for doing

performance testing of the immoments task, and Crys-

tal Brogan for providing the initial test data set sample.

We would also like to thank the ALMA Pipeline Work-

ing Group for allowing us use of their cluster nodes for

testing.

REFERENCES

ALMA Pipeline Team. 2022, ALMA Science Pipeline User’s

Guide for Release 2022.2, CASA 6.4.1 Interferometric

and Single-Dish Processing, Tech. rep.

http://www.almascience.org.

Carpenter, J., Brogan, C., Iono, D., & Mroczkowski, T.

2022, ALMA Memo Series, 621. https://library.nrao.

edu/public/memos/alma/main/memo621.pdf

Cortes, P. C., Remijan, A., Hales, A., et al. 2022, ALMA

Cycle 9 Technical Handbook. www.almascience.org.

Hunter, T. R., Indebetouw, R., Brogan, C. L., et al. 2023,

Publications of the Astronomical Society of the Pacific,

135, 074501, doi: 10.1088/1538-3873/ace216

Kepley, A. A., Lipnicky, A., Rao Venkata, U., &

Indebetouw, R. 2023, ALMA Memo Series, 263.

https://library.nrao.edu/public/memos/alma/main/

memo623.pdf

Kepley, A. A., Tsutsumi, T., Brogan, C. L., et al. 2020,

Publications of the Astronomical Society of the Pacific,

132, 024505, doi: 10.1088/1538-3873/ab5e14

THE CASA TEAM, Bean, B., Bhatnagar, S., et al. 2022,

PASP, 114501, doi: 10.1088/1538-3873/ac9642

http://www.almascience.org.
https://library.nrao.edu/public/memos/alma/main/memo621.pdf
https://library.nrao.edu/public/memos/alma/main/memo621.pdf
www.almascience.org.
http://doi.org/10.1088/1538-3873/ace216
https://library.nrao.edu/public/memos/alma/main/memo623.pdf
https://library.nrao.edu/public/memos/alma/main/memo623.pdf
http://doi.org/10.1088/1538-3873/ab5e14
http://doi.org/10.1088/1538-3873/ac9642

23

APPENDIX

A. ALMA PIPELINE MITIGATION HEURISTIC

Below we have copied the mitigation heuristic used in the ALMA Pipeline as of PL2022 (Cycle 9 Pipeline) from the

ALMA Pipeline User’s Guide (ALMA Pipeline Team 2022).

Step 1: If cubesize > maxcubesize, for each spw that exceeds maxcubesize:

a. If (nchan == 3840) or (nchan in (1920, 960, 480) AND online channel averaging was NOT already performed),

then set nbin=2.

b. If still too large, then calculate the Gaussian primary beam (PB) response level at which the largest cube size of

all targets is equal to the maximum allowed cube size. The cube sizes are initially calculated at primary beam

power level PB=0.2. For an image of width d, the response level at the edge will be PB=exp(-d2*ln(2)/FWHM2),

the image size d2 ∝ -ln(PB), and the required power level to create an image of size = maxcubesize is:

PB mitigation = exp(ln(0.2) * maxcubesize / current cubesize)

i. Then account for imsize padding: PB mitigation = 1.02 * PB mitigation

ii. Then limit the size reduction to PB=0.7: PB mitigation = min(PB mitigation, 0.7)

iii. Then round to 2 significant digits: PB mitigation = round(PB mitigation, 2)

NOTE: this mitigation cannot be applied to mosaics, only single fields, and the same mitigated FoV is used for

all science target image products.

c. If still too large, change the pixels per beam (cell size) from 5 to 3.25 (if robust=+2) or 3.0 otherwise.

d. If still too large, stop with error, the largest size cube(s) cannot be mitigated.

Step 2: If productsize > maxproductsize

a. If the number of science targets (single fields or mosaics) is greater than 1, reduce the number of targets to be

imaged until productsize < maxproductsize. The representative target is always retained.

b. If productsize still too large, repeat steps 1a, 1b, and 1c, recalculating productsize each time.

c. If productsize is still large, stop with error, the productsize cannot be mitigated.

Step 3: For projects with large cubes that can be mitigated, restrict the number of large cubes that will be cleaned:

a. If there are cubes with sizes greater than 0.5 * maxcubelimit, limit the number of large cubes to be cleaned to

1. The spw encompassing the representative frequency shall always be among the cubes retained.

Step 4: For projects that have many science targets, limit the number to be imaged to 30, the representative target

is always retained in the list. This statement is not consistent which what is actually done in the Pipeline, which is

to issue a warning if there are more than 30 sources and the aggregate number of channels across all spectral windows

is greater than 960.

24

B. ESTIMATING VALUES FOR THE THRESHOLD AND NUMBER OF ITERATIONS

The ALMA Pipeline heuristics use the theoretical RMS and the dynamic range of the dirty image to set the threshold.

We estimated the theoretical RMS by determining the median absolute deviation in the signal-free findcont region

and converting to an RMS by multiplying by 1.4826. The dirty dynamic range was calculated by taking the peak

within the signal findcont region and dividing by the theoretical RMS. The dynamic range corrected threshold was

then calculated using the same heuristics as calculated for the 12-m Array10:

def d r c o r r e c t i o n (thresho ld , d i r ty d r , res idual max , t l im i t) :
n dr max = 2 .5
i f d i r t y d r > 1 5 0 . :

maxSciEDR = 150.0
new thresho ld = max(n dr max ∗ thresho ld , re s idua l max /maxSciEDR ∗ t l im i t)

else :
i f d i r t y d r > 100 . 0 :

n dr = 2 .5
e l i f 50 . < d i r t y d r <= 100 . :

n dr = 2 .0
e l i f 20 . < d i r t y d r <= 50 . :

n dr = 1 .5
e l i f d i r t y d r <= 20 . :

n dr = 1 .0
new thresho ld = thre sho ld ∗ n dr

return new thresho ld

In the above residual max is the peak of the dirty cube and tlimit is set to 2.0 (the Pipeline default). The number of

iterations was calculated using

def n i t e r c o r r e c t i o n (c e l l , ims ize , res idual max , thresho ld , mask f rac rad =0.45) :

kappa = 5
loop ga in =0.1

r mask = mask f rac rad ∗ max(ims i z e [0] , ims i z e [1]) ∗ c e l l
beam = 5.0 ∗ c e l l

n i t e r = int (kappa/ l oop ga in ∗ (r mask/beam)∗∗2 ∗ res idua l max / thre sho ld)

avoid t c l e an ove r f l ow i s s u e
n i t e r = min(n i t e r ,2∗∗31−1)

return n i t e r

We compared the results of the above calculations with the results from several Pipeline runs and in general found

them to be in good agreement.

10 All our test data are 12-m.

	Introduction
	Overview of the ALMA Imaging Pipeline
	Testing Methodology
	Samples
	Initial Sample Selection
	Extended Sample Selection

	Testing Setup

	Results
	Parallelization Breadth Tests
	Single Node Parallelization Breadth Tests
	Multi-node Parallelization Breadth Tests

	findcont Performance Testing
	Scaling results
	Scaling with Number of Channels
	Scaling with Number of Pointings
	Scaling with Number of Execution Blocks

	Relative performance of the major and minor cycles
	NVMe experiments

	Summary and Future Work
	ALMA Pipeline Mitigation Heuristic
	Estimating values for the threshold and number of iterations

