
Software Requirements for RFI Management
ngVLA Computing Memo #3

R. Amestica, R. Hiriart, P. Brandt

August 4, 2021

Contents

1 Introduction 2

2 Digital Backend Stage 3

3 Central Signal Processor Stage 6

3.1 Pre-correlation RFI detector/flagger . 7

3.2 Post-correlation flagging . 10

3.3 Time and spectral resolution . 10

3.4 Pulsar Engine . 12

4 Correlator Backend Stage 12

5 Post-processing Stage 15

6 RFI Manager and Database 15

7 RFI Occupancy Data Stream 17

8 Algorithms Version Management 17

9 Conclusions 18

1

1 Introduction

In the present note we elaborate on Computing and Software (CSW) features that are necessary to
implement the RFI mitigation plan as described in the ngVLA General memo #71 [1]. Emphasis is
given to the different RFI stages through the signal path, highlighting the necessary software interfaces
and communication channels. The purpose is to highlight what communication interfaces have to be
defined between sub-systems, and what sort of computing capacity is required in real-time and during
post-processing.

In [1] there are three types of RFI mitigation strategies:

• Avoidance,

• Detection and Flagging, and

• Modeling and Subtraction.

We will identify to what extent each strategy is implemented in software, what parameters are to be
transmitted between sub-systems and the frequency at which those parameters have to be updated.

Also in [1] (see Figure 5), different types of algorithms are associated to the different strategies listed
above. Pointing out where exactly through the signal path each mitigation action takes place; which
help clarify how to allocate tasks among different ngVLA sub-systems. The following is our summary of
the information in memo #71 [1] most pertinent for the present note:

1. Outlier detection on the time series data: the Digital Back End (DBE) in each antenna should be
able to reliably detect outliers and flag the event.

2. Outlier detection on the real-time spectrum: after the spectral channelizer in the CBF (low reso-
lution tied-array or proper pre-correlator channelizer), or some RFI specialized channelizer.

3. Automatic flagging on the visibilities at high time/frequency resolution: where high resolution
relates to the data environment within the CBF before results towards the Correlator Backend
(CBE) are time averaged or/and spectral averaged. NRC’s initial approach is based on a "simple
power threshold flagging" (e.g. spectral Kurtosis, sliding window power, look-ahead RFI flagging),
with the possibility for more sophisticated approaches in the future (see NRC [2] section 7.11).

4. Interference modeling and subtraction: provided that time and/or spectral resolution are suitable
for image domain or subspace projection algorithms, the interferer contribution could be filtered
out [1]. The CBE is considered the right place for the implementation of these algorithms (before
averaging for archiving purposes).

5. RFI avoidance in the observation scheduler: based on the real-time RFI detection generated by the
system (RFI manager) and the historical record of RFI occupancy (sky direction, frequency and
time), observations could be scheduled such that known RFI sources are avoided. That is, specific
observations could be moved around in time such that they do not collide with known interferers.

6. Post-processing data analysis: current VLA and ALMA practices provide well understood flagging
algorithms. Algorithms like rflag and tfcrop [3] already exist in CASA and it is expected that the
RFI database will serve as an additional tunable parameter space for that type of algorithms.

2

In the listing above, different types of RFI mitigation strategies are associated to different ngVLA
sub-systems. In the following sections, actions within each of those sub-systems are analyzed and linked
to operations of sub-systems upstream and downstream, highlighting the relation between RFI mitigation
strategies across sub-systems and addressing interface requirements between those sub-systems.

Given that some acronyms are frequently used for different ngVLA subsystems, the following list
provides some functional context for each one of them:

• Computing and Software (CSW): the ngVLA collection of subsystems that provide support from
low level monitor and control functions, up to the proposal management of observations.

• Digital Backend (DBE): a component in each antenna that receives RF broadband ADC samples,
formats them and stream them out to the Central Signal Processor (CSP),

• Central Signal Processor (CSP): the component that receives signals from all antennas, and process
them according to a configurable functional mode (interferometry, VLBI, pulsar timing and search),

• Correlator and Beamformer (CBF): the component in the CSP that implements the cross-correlator
sub-element, and a beamformer VLBI and pulsar functional modes,

• Very Coarse Channelizer (VCC): in the NRC’s Frequency Slice Architecture design (FSA) [2],
the VCC is a CSP sub-element that converts DBE broadband sample streams down to FPGA
manageable sub-bands (Frequency Slices). In that design, the implementation of the VCC and
CBF are collocated and the LRU technology applied to each one is the same (TALON modules).

• Pulsar Engine (PE): a CSP part that receives beam-channels from the CBF and process them into
average pulsar profiles.

• Dynamic Scheduler: a CSW sub-system that decides what to observe next and what to observe in
parallel. It reacts to current configuration and conditions (e.g. array configuration, weather, etc.)
and previously generated knowledge (e.g. project ranking, periodic RFI interferers.)

Also, note that data flagging and data masking in the present note are given the following meaning:

1. Flagging: the action of qualifying the data by aggregating metadata to it, and

2. Masking: based on RFI algorithm parameters take action on the current data (e.g. drop samples or
replace with a synthetic value) and flag the data accordingly, to report the actual masking action
that took place.

Flag values generated in one stage are essential for the next one across the data path. At the end
of this chain, the CBE qualifies each product item with a flag value within the project standard format
sent to the archive.

2 Digital Backend Stage

The DBE is the first place in the system where antenna samples can be inspected and flagged accordingly.
Basic algorithms rely on detecting abnormal voltage levels [3].

3

If the functionality of the ngVLA Very Coarse Channelizer (see next section), is moved to the DBE in
each antenna (see ngVLA Electronic memo [4]), then, flagging information will need to be carried over
to the CSP from each antenna, including those antennas connected through the public network. Related
Frequency Slice Processors (FSP) in the CSP process the oversampled sub-bands as usual, attaching the
effective integration time value (needed by the CBE for further processing and metadata aggregation.)

The corresponding interface between DBE and CSP defines how the flagging data is transmitted
through the network from DBE to CSP. The CSW would normally not need to know in detail how that
interface works. Except that if some of that flagging information must be preserved after applied at
run-time by the CSP, then, a software interface will be required to let DBE or/and CSP to publish that
flagging information while the observation continues normally.

We understand that any element capable of flagging the data stream before the VCC (which implies
the fastest sample rate in the system), does so by clipping or replacing samples with some predefined
values (e.g. noise). The corresponding flagging information is then used by the CSP to act accordingly
on the saturated/replaced data. The CSP should provide for a configuration parameter to enable or
disable such action. This is a generalization to NRC’s [2] requirement L3-1988.

Memo #71 [1] also foresees some capability at this level to remove/replace samples that contain RFI
(i.e. voltage clipped.) Plus a means to monitor these events at a convenient frequency, and ingest them
to the RFI database. From an Monitor and Control (M&C) point of view, we assume a simple interface
like that depicted in Fig. 1. M&C function calls provided to configure the mechanism are supported by
data structures like those in the following pseudo-code example:

enum class DetectionType
{

DISABLED,
SPECTRAL_KURTOSIS,
SPECTRAL_PEAK

};

enum class ActionType
{

LEAVE_SAMPLE_ALONE,
REMOVE_SAMPLE, /* if actually possible */
REPLACE_WITH_SYNTHETIC_NOISE

};

struct DetectionEvent
{

AntennaId antenna;
Time timestamp;
Duration duration;
float centerFrequency;
float bandwidth;

};

int setDetection(DetectionType typ, ActionType action);

A DetectionEvent structure is expected through the M&C data stream every time that the algorithm

4

has triggered a detection. Temporal and frequency data members in the structure help characterize the
temporal and frequency occupancy characteristics of the interferer. Implicit are any parameters needed
to tune the detection algorithm and any additional metric that the detection might produce. Their exact
definition will happen with the corresponding DBE ICD documentation.

DBE
• RFI detection algo-

rithm

Antenna Supervisor

• Coodinate high level
commands

set detection
params

M&C Ethernet
PubSub

Figure 1: simplified M&C view to parametrize RF broadband RFI detection algorithms that have access
to raw ADC samples. A publish/subscribe mechanism transports detection events to the higher level
software environment for ingestion into a permanent database and for real-time monitoring feedback.

A priori, a publish/subscribe mechanism seems appropriate to move detection events from each
antenna to the supervisory environment in the control building, and from there to the RFI database.
Based on the exact M&C technology in place, the DBE will certainly have access to a publish/subscribe
mechanism (e.g. OPC UA PubSub) to communicate data to the antenna supervisor computer. Or
better, the DBE RFI algorithm might skip the antenna supervisor all together and publish detection
events directly to the M&C bus, to be consumed by other subsystems downstream (e.g. RFI Manager.)

Alternative to a publish/subscribe mechanism, there is also the option to attach flagging information
to the data itself. In that case, the design must pay attention to how to accommodate the payload
without interfering with the science data and the execution of the next component downstream.

To avoid overloading and saturating the M&C bus, reporting of detection events at different levels
must be equalized down when the RFI condition is permanent. In that case, the detection algorithms
might need to be disabled automatically or by an explicit command, and the data of that antenna flagged
or discarded permanently during that observation. Before archiving the science data, the CBE will always
flag data that was partially averaged (in time and frequency), but only at the archiving resolution (seconds
and megahertz.)

Also related to data-rates streamed through the system, memo #71 [1] suggests a capability to
snapshot the RF broadband signal per antenna and transport the result through the M&C bus. If we
assume that all IRD modules are sampled at 8-bits (including band #6 [5]), then, each IRD module
will sample 7 GHz of RF signal (let’s not consider here the reduction due to alias filtering), physically
represented as two streams (I-Q) of data sampled at 7GS s−1 each.

A one second snapshot of a single IRD module would then amount to a total of:

2× 7GS s−1 × 1 s× 1B ≈ 13.04GiB

A corresponding RAM buffer has to be accommodated within the DBE/DTS Module, and FPGA
logic to access the buffer and stream out its content. Let’s say that a conservative number for the speed
at which the snapshot is streamed out is 10MiB s−1. In that case, it will take approximately 22 minutes
to transmit the buffer.

That is, to snapshot a single bandwidth slice of 7GHz (single polarization) requires a RAM module
of 13.04GiB in the DBE and 22 minutes of ’waiting’ time to complete its transmission to a receiving end.

5

To scale up to a larger bandwidth simply multiply by the actual number of IRD modules to be snapshot.

These notional figures are provided just as a draft idea of the required DBE effort to implement a
one second RF snapshot capability. From a CSW point of view, the relevant parameter is the maximum
data-rate at which data is transferred and, therefore, the maximum expected wait time. A corresponding
CSW requirement must be provided to limit the maximum data-rate and, therefore, avoid interfering
with other M&C activity through the network.

3 Central Signal Processor Stage

The CSP implements a number of functional modes:

• interferometry (fully connected correlator, including auto-correlations),

• VLBI phased-array,

• pulsar timing, and

• pulsar search.

Interferometry and VLBI modes directly produce data products that are consumed by sub-systems
downstream (e.g. CBE and VLBI recorders). On the other hand, beams for pulsar modes are instead
consumed by the Pulsar Engine (a CSP sub-element) that in turn produces pulsar profiles as end CSP
products.

The correlation functionality needed for interferometry and beamforming are both implemented in
the CSP by means of highly reconfigurable hardware modules. The collection of these hardware modules
creates what is called the Correlator and Beamforming (CBF) sub-element in the CSP.

In summary, there are four functional parts within the CSP:

• Very Coarse Channelizer (VCC): receives wideband sample streams from each antenna, and pro-
duces narrower oversampled sub-band streams,

• Beamformer: a number of complex true-delay or phase delay beams, channelized with a coarse
resolution of up to 4k channels,

• Correlator: generates visibilities at a spectral resolution of 16k channels, or only 1k/4k channels as
a so called tied-array to support the calibration of beamforming modes, and

• Pulsar Engine: it processes true-delay and phase-delay beams into pulse profiles.

CSP functional parts are concerned about RFI in different ways. But as presented in the CSP
Reference Design (Fig. #5) [6], their commonality is to detect and flag RFI artifacts right before the
antenna samples are further channelized in frequency. NRC’s design encapsulates such functionality as a
pre-correlation threshold detector/flagger FPGA IP block [2] (section 7.11); which should not preclude
adding post-correlation RFI functionality to the CSP design in the future (for example, see block B-5
description in NRC [2].)

In the following subsections we overview the RFI detection functionality in the CSP and how that
capability must be supported by the online software. This overview is not exhaustive but it helps weighting
the CSW effort to establish the necessary interfaces with the CSP.

6

3.1 Pre-correlation RFI detector/flagger

The detector’s logic inspects antenna samples (at their wideband and sub-band sampling rate) and flag
those that do not match a predefined metric. Flagging information associated to each sub-band is then
conveyed to all involved Frequency Slice Processors (FSP) downstream. Involved FSPs detect flagged
samples and avoid them from further integration. At the end of an integration, the effective integration
time is reported accordingly to the CBE.

During real-time execution, access to a detector’s functional statistics (e.g. event’s time stamp,
duration) are available through the M&C bus. The following NRC design requirement [2] is an example
of such functionality:

• L3-1889: communicate applied time-dependent receptor weights When commanded, CSPMid.CBF
shall communicate to CSPMid.LMC all time-dependent receptor weights calculated and applied
internally to any tied-array beam sum, with at least the temporal resolution of the currently
configured subarray visibility integration time (or 1.4 seconds if none are currently being produced),
and with the frequency resolution of the beamformed or channelized bandwidth of each beam.

The convenience to regularly monitor RFI detection events and the algorithm’s performance, before
metadata has been collected downstream in the system, is appreciated as a system feature useful to
optimize the telescope operation as soon as a certain condition is detected (e.g. switching to an alternative
source in the sky when excessive flagging is occurring). See additional arguments at the end of the next
subsection.

We explore now how the NRC design [2] characterizes run-time RFI events by means of specific
parameters, and how these parameters are measured (tuned) to the current conditions. This is useful to
appreciate how the M&C subsystem must accommodate RFI calibrations and mitigation actions during
an observation.

The FSA design concept [2] includes the following related specifications to deal with RFI detection
before correlation and beamforming (reproduced here verbatim from [2]):

• L3-1832: RFI detection and flagging When commanded, CSPMid.CBF shall automatically detect
RFI in the processed bandwidth for any Band and, when detected, flag data to prevent corruption
of any downstream data products. Conformance to this requirement shall be determined by testing
of all SKAO-mandated RFI use cases.

• L3-1833: RFI masking When commanded, CSPMid.CBF shall flag real-time (pre-visibility integration
and pre-beamforming summing) data streams at all available channel resolutions according to a
pre-selected RFI Mask, in accordance with the CSP LMC to CSP Sub-elements ICD.

That is, NRC’s approach consists on a calibration procedure to quantitatively characterize the current
RFI occupancy, and to translate that information as parameters to the algorithms that detect RFI and
act accordingly on the data. The parameters, or RFI mask as defined in NRC [2], is valid only during
the interval associated to that calibration. Encapsulating the parameters in a custom data structure
and storing them in a permanent database makes possible to analyze them at a later point and discover
repetitive patterns among the different calibrations (e.g. time of the day, geographic direction.) Basically,
a data-mining operation to extract new information from previously measured RFI occupancy data points.

NRC’s design includes different RFI detector/flagger blocks through the signal path. Thus, providing
mechanisms to address RFI contamination at different temporal and frequency resolutions in the system

7

RFI detector/flagger
• RFI flagging levels

LMC

• CSP Local M&C

• RFI detector/flagger tun-
ing

CSP Supervisor

• Tuning procedure control

• RFI manager updates

Online calibration bufferRFI Manager

create detector/flagger params object
aggregate metadata to detector/flagger params

tuning cmds.

power levels

flagging level

start tuning

set/get params

flagging level

push/get

store RFI detectr/flagger params

Figure 2: a feedback loop to get the RFI flagging level settings for each receptor “about right”, for optimal
end-user data quality [2].

(raw samples or sub-bands). For a correct operation, some parameters have to be tuned to the current
power levels of the RFI interferer and science signals. One specific tuning procedure is described in NRC
[2] (section 8.2.5) and a schematic overview is shown here in Fig. #2.

From the description in NRC’s [2], it is clear that a proper implementation of the calibration procedure
will require some experimentation. Providing best-guess default values for the parameters (e.g. ’dwell’
times, power levels, etc.) is critical to integrate the procedure early during system verification and
commissioning.

On every successful iteration, the tuning procedure will produce a set of parameters applicable to the
current observing conditions. These parameter values are part of the larger instrument calibration as a
whole. Individual instances of a calibration object must be accessible from a buffer for online reuse. At
the same time, they must be stored in the permanent RFI database together with pertinent metadata
for its future offline analysis (e.g. observation time stamp, sky direction, frequency, etc.) The logic is
that a history of RFI calibration parameters and metadata should help characterize RFI occupancy as a
function of operational conditions.

The following are the suggested RFI detector/flagger calibration parameters in NRC [2]:

• flagging ON/OFF,

• non-RFI level establishment integration time,

• non-RFI level setting (optional, overrides internal level determination),

• RFI trigger algorithm (Power, Kurtosis),

• RFI trigger detect integration time,

• flagging trigger level, and

• flagging dwell time or "Auto".

8

The information shown above works as input parameters for the proper functioning of the RFI
detector/flagger during an ongoing observation. But it will only be after aggregating metadata to
those parameters, that their history in the RFI database makes possible to analyze and deduce the
interferers characteristics (e.g. power level, position coordinates, frequency of occurrence, etc.), as part
of a continuous RFI data mining process.

A priori, the following is the basic information that should be aggregated as metadata to each
detector/flagger parameters:

• time interval during which the parameters were applied by each antenna,

• sub-array description (i.e. set of antennas),

• antenna in the subarray to which the parameters correspond to,

• antenna pointing position when parameters were measured,

• frequency selection (implies what sub-bands were in use),

Once RFI flagging is turned on, monitoring the level of RFI detection and flagging will play an
important role. It allows operators or some software automatism in the dynamic scheduling logic to take
immediate corrective actions to improve how the telescope resources are being used at that moment.
For example, if the flagging level is too high across a large fraction of the array, then, it might be better
to switch the telescope to an alternative observation project.

As prescribed by L3-1889 in NRC [2] (see above), the CSP will allow for the periodic monitoring of
pertinent RFI detection and flagging statistics. As for the basic estimation of the data-rate produced by
an RFI detector, let’s assume that a detection event must contains the following information:

• timestamp (4 bytes),

• antenna identifier (2 bytes),

• RFI detector stage in the antenna (1 byte),

• calibration unique identifier (8 bytes),

• power level measurement (4 bytes), and

• detection counts during the dwell-time (4 bytes)

that’s a total of 23 bytes per event. If an RFI detector block is located before the first channelization
(output samples of each IRD module in the band) and one for each subband (~200 MHz) then a notional
figure for the total RFI monitoring data-rate per antenna is:

23× 2×
(
8 +

28GHz

200MHz

)
× 1

1 s
≈ 6.7KiB s−1

where it is assumed that both polarization streams report independently, the maximum number of
IRD modules is 8 in band #6, samples are 8-bit, the maximum bandwidth is processed (28 GHz) and an
average time of one second is used to report the current RFI detection level. If we scale up to include

9

263 antennas in the array, then, the total RFI monitor data rate (pre-correlation) reaches a value of
1.7MiB s−1.

It is probably unlikely that the whole array would detect and report RFI activity at the same time,
and simultaneously across the whole 28GHz processed bandwidth. The above figures are presented just
as a notional worst case scenario at a reporting rate of one event per second.

3.2 Post-correlation flagging

Visibilities produced by the CSP must be accompanied with a flag value that informs of any RFI condition
that affected each datum. The CBE downstream could then take specific actions based on the flag value,
and aggregate that information to the final data product sent to the archive to enable post processing
decisions based on the reported data quality.

One aspect to consider is that the extra flagging information must be accommodated seamlessly
through the communication channel between CSP and CBE. For that, it is interesting to consider the
total payload binary increase. Because the specification for the switched interconnect hardware between
CSP and CBE is based on the total rate of bits per unit time transported.

The most apparent approach for flagging is to add information to each visibility datum. That is,
each visibility (single precision floating-point complex value, 64 bits) is extended with a 1-bit flag, that
qualifies whether RFI is present or not. In this case, the extra binary information to be transported
amounts to ∼1.6%. If additional flagging qualification is required, then, extra bits are added to the flag
value with the corresponding data rate increase.

On the other hand, a different flagging mechanism can be envisioned in which a range of visibility
channels are assigned the same flag value. This optimizes the flagging information transported, and
minimizes the fractional data-rate increase. This could prove useful only if a large variety of RFI occupancy
conditions fits a range-based flagging scheme.

For example, DME transmissions in [3] are characterized as as 0.1MHz frequency occupancy slices
spaced 1MHz apart ((\190MHz(\) total bandwidth). In a 16k channels subband, two 14-bit integer
values can represent the start and end channels of each detected RFI bandwidth slice, leaving 4 bits
to represent a flag value (8 different values) in a 32-bit flag word. For an anti-aliased subband of
200MHz and correlated at 16k spectral channels, then, the fractional payload increase (full subband
DME occupancy) is:

d200MHz
1.1MHz e × 32B

16× 1024× 64B
≈ 0.56%

Both approaches are to be compared based on the cost associated to a fractional data rate increase,
any requirement to qualify the visibilities with more than 1-bit of information, and firmware and software
complexity to implement one or the other scheme. A final conclusion should translate into a CBE
requirement to specify how the online software has to extract and interpret flag values from visibility
data streams.

3.3 Time and spectral resolution

The integration duration and the spectral channel bandwidth in interferometry mode are parameters
that make possible to control the total data rate and data volume. As such, they are usually applied

10

to constrain an observation to the minimum system resources that accomplish its science goal. The
parameters also have an influence on the RFI detection algorithms [1].

The following two CSP requirements define both parameters [7]:

• CSP0221: The channel bandwidth shall be selectable within the range from 1 kHz to 7.2 MHz in
steps less than or equal to one octave.

• CSP0225: The CSP shall support visibility integration times ranging from 2 ms to 10 s, configurable
in steps smaller than or equal to one octave.

As a function of the RFI conditions during an observation, it should be possible to tune these two
parameters and thus optimize how efficiently the RFI is detected and later excised post-correlation by
the CBE. It is then advisable to design in a mechanism to adapt their values dynamically during an
observation [1]. That is, adapt the averaging to not dilute the RFI signal below the detector thresholds
and into the science data. This capability should be provided through the dynamic scheduling subsystem
and it should make use of the CSP parameters listed above, plus their equivalent counterparts used by
the CBE to average CSP results before archiving.

The merits of such a scheduling capability depend on the reliability to monitor RFI conditions through
the M&C system (e.g. detector/flagger statistics) and the observational margin available for the obser-
vation’s science goals. A higher resolution from CSP to CBE implies a higher data rate that the system
must allocate together with other sub-arrays at that moment. If that’s not a concern at a given moment,
then, the resolution could be increased giving the CBE a chance to excise data at a finer level that better
matches the interferer’s characteristics.

Altering the CSP resolution parameters at run time requires a reconfiguration of the specific observing
mode, which is a proper CSP feature. A priori, there are two aspects that complicate the implementation
of this feature:

• reconfiguration of the CSP hardware takes some time to complete before the observation can
continue (typically a few seconds [2]), and

• it is also necessary to define how the actual CSP resolution is reported together with other metadata
in the final data products.

Note that in [1] only the temporal resolution is listed as a desirable feature. But provided that
controlling both CSP resolutions (temporal and spectral) follow similar implementation requirements,
then, we suggest designing in both options. However, it must be noted that adapting the spectral
resolution to the current RFI condition, necessarily requires increasing the resolution of the final product
sent to the archive; which in most cases will not be actually possible due to CBE to archive data-rates
constraints.

The above description informs about the software effort necessary to implement a capability mentioned
in [1]. Real-time RFI monitoring and a dynamic scheduler are features that make this implementation
possible, as a very organic feature of the system (the second bullet above requires some additional
discussion, though.) If further analysis validates the value of a variable CSP integration time, then a
formal CSW requirement should be derived from that.

11

3.4 Pulsar Engine

As per the current CSP reference design [6], the area of interest are the pulsar timing modes (sparse
and dense.) That is, those pulsar modes that require the Pulsar Engine to process and produce a pulsar
profile for each beam. Pulsar Search mode products are instead, the subject of the offline processing
stage.

In Pulsar Timing mode, the pulsar time period is already known and the processing expedient in the
PE consists of the following actions per sub-band and beam:

• remove de-dispersion delay by means of coherent de-dispersion,

• stitch sub-bands results, and

• add many pulses together (time folding)

It is during the coherent de-dispersion step that RFI mitigation actions take place (see Lorimer &
Kramer [8]). The actual example in section 7.5 [8] points to the following parameters for an excision
algorithm:

• level of individual samples above median,

• in a sample, level that a number of bins exceed over the median,

• level above running median exceeded by a block of bins.

The actual levels are parameterized as a factor of the input signal level. The description in Lorimer [8]
is emphatic on pointing out that tuning the parameters will require experimentation. From a CSW point
of view, the critical aspect is to make sure that the parameters are part of the instrument calibration
process and, therefore, that their values could be tuned and changed as often as a calibration observation
takes place.

If data samples are excised due to the signal level constrains listed above, then, the effective folding
time duration should be attached to the averaged output profile. The CBE downstream takes this
information and retrofits such information to the Metadata Capture component. Thus, completely
qualifying the data product for later offline processing.

4 Correlator Backend Stage

The experimental status and the complexity of RFI modeling and subtraction algorithms makes of the
CBE a convenient place to deploy them in the system [1]. This is because visibilities are handled here at
a few tens of milliseconds and kilohertz (before averaging down to archive rates), and also because the
CBE computing capability can be expanded in the future by means of readily available COTS compute
nodes, as needed to adapt to evolving algorithms.

The basic functions associated to the CBE are the following (see CSW reference design [9]):

• collect array visibilities, average them in time and frequency as configured, pack them in an obser-
vatory standard format and stream them out to the Science Data Archive,

12

• collect pulsar timing profiles (Pulsar Timing mode) in the PSRFITS format and stream them to
the Science Data Archive,

• collect beam-channels (Pulsar Search mode) in the PSRFITS format and stream them to the
Science Data Archive, and

• collect VLBI beam-channels in the standard VDIF data format and record them on a collocated
specialized hardware (a.k.a. VLBI recorders).

Beside its basic functionality, the CBE must also be aware of RFI flagging and weights from the CSP
upstream, and it should also accommodate algorithms to detect and remove RFI artifacts. That is:

• take action on already flagged data products, and decide to extract or retain the datum for further
integration, maintaining the associated flag,

• adjust the weight or integration time based on the action taken in the previous point, and

• detect the presence of RFI artifacts and mitigate their effect by means of real-time imaging and/or
subspace projection methods to detect and characterize the interferer’s signal.

RealFast [10] and VLITE-Fast [11] are science experiments capable of real-time imaging (real-time
visibilities) to study astronomical transient signals [3]. Given the transient nature of some RFI interferers,
it results interesting to consider similar approaches for RFI detection and mitigation efforts at CBE level.

However, hardware and software platforms required for real-time imaging and subspace projection
excision, like those cited above, are currently an active research area. Therefore, as a best design effort
the CSW should consider enough CBE flexibility to execute RFI algorithms on the data stream, and
software interfaces to facilitate the commissioning and actual development of those algorithms.

A priori, an additional set of compute nodes to execute the algorithms, or designing the CBE cluster
itself with hardware plugins (e.g. PCI boards) on which those algorithms can be accelerated. Let’s call
this conceptual CBE element the CBE co-processor.

Mapping a subarray to CBE resources involves several compute nodes in the CBE cluster. Channeling
data from all those CBE nodes to the co-processor is a design challenge for such a system implementation.
However, one should also take into account parameters that reduce the stress on that system. Like for
example, those associated to the subspace projection algorithms investigated in memo #38 [12]:

• Integration time: over which the interferer signature is assumed constant, and

• Sub-array partitioning: based on baseline lengths, partition the sub-array in a few subsets.

That makes possible to limit how often visibility data has to be sent and results retrieve from the co-
processor, and how much data is there to transport; which helps limiting the complexity and performance
at which memory is shared between the CBE cluster and its co-processor. For example, the subspace
projection method in [12] requires looking at all the visibilities but grouped in smaller baseline subsets.
These smaller subsets could then be processed in parallel in the co-processor for eigenvector decomposition
(TBD: simulate how big a subset of visibilities could actually be).

As a quantitative metric, consider that a sub-array containing all the 263 antennas, at an arbitrary
integration time of 50 milliseconds (STI in [12]) and 16 × 1024 spectral channels per sub-band, then,

13

transporting single precision floating-point visibilities implies a data rate of ∼85GB s−1 per subband and
polarization product. If compared with the current PCI Express bandwidths then it becomes clear that
this data rate is too fast. It is only with specialized interconnect solutions (e.g. PCI-Ex 6.0, Infiniband)
that transporting data at 85 GB/sec is theoretically possible.

Another CBE functionality to consider while commissioning RFI algorithms, is the ability to compare
the modified and unmodified results during offline analysis. Accordingly, [1] takes note of this aspect and
suggests to output two streams of data: uncorrected (raw) and RFI corrected data products. Now, to
stay within limits of what the CBE can actually deliver to the archive, this feature is in general constrained
to only half the size of the otherwise normal data products. A similar functionality was used in ALMA
to validate WVR phase correction algorithms.

In summary, the notional interpretation given to a CBE co-processor and RFI corrected/uncorrected
data streams are depicted in Fig. 3. The exact technology for the co-processor hardware is to be discussed
beyond the scope of the present note. To summarize these features:

• CBE co-processor: a set of hardware nodes where the CBE cluster can offload compute execution to
accelerate RFI related algorithms, before or during further data integration and spectral averaging,
and

• parallel UNCORRECTED and CORRECTED output streams, where a flag in the scheduling block
is used by the CBE to enable a given RFI mitigation algorithm, and stream out its output in parallel
with the raw data. Possible values for the flag are: UNCORRECTED (algorithm not executed),
CORRECTED, and UNCORRECTED+CORRECTED.

CSP
• Correlator and beam-

former

• Pulsar engine

Processing cluster

CBE

Co-processor

Archive

• Permanent storage

• Offline RFI mitigation

visibilities
pulsar profiles

RFI CORRECTED
UNCORRECTED

algorithm data

temporal/spectral averaging

data streams (SB param)

RFI algorithm type (SB param)

Figure 3: the notional depiction of a CBE that incorporates a co-processor hardware to accelerate
the execution of heavily parallelizable RFI mitigation algorithms (e.g. matrix operations for subspace
projection) and a software feature to simultaneoulsy output corrected and uncorrected data, to help
develop and commission the related RFI algorithms.

14

5 Post-processing Stage

As described in [1], auto-flagging algorithms like ’rflag’ and ’tfcrop’ in CASA, are examples of how current
pipelines automate detection of RFI in already archived science data (typically with a ~1 second and ~1
MHz time and spectral resolutions, respectively.) In the same memo, Fig. #2 shows different stages in
the ALMA data analysis pipeline. Emphasis is made about the need for some expert supervision of the
pipeline results.

For ngVLA the aim is to enable the aggregation of the online flagging information produced by each
online component (DBE, CSP and CBE); plus the information in the RFI database. All this together
informs the post-processing auto-flagging algorithms, such that the pipeline reliability is improved. The
CSW sub-system just needs to create the interface necessary for the post-processing pipeline environment
to access flags created online and to query the RFI database.

Online flags are expected to be kept together with the science data products themselves, as entries
in the corresponding data container (e.g. CASA measurement set); which is the standard assumption
when thinking about the products created in the CBE and sent to the archive subsystem. However, note
that these products are generated at a temporal and spectral resolution compatible with the archiving
metrics.

On the other hand, DBE and CSP are also expected to produce flagging and RFI occupancy informa-
tion, and at a higher resolution. This aspect and provisions for accessing the RFI database are discussed
in the next section of the present memo.

6 RFI Manager and Database

The concept of an RFI manager and its associated database is a key aspect to how ngVLA plans to
address its RFI challenges. The unavoidable evolution of RFI sources (e.g. Low Earth Orbit satellites)
and the remote location of a number of antennas in the array, will certainly challenge every RFI mitigation
strategy put in place.

The RFI Manager component [1] makes possible to conceptualize the hardware and software interfaces
that are necessary to aggregate and shared RFI related information between sub-systems. That is, between
sub-systems that generate RFI related information (e.g. flags) and others that require tuned parameter
values to flag and remove RFI artifacts. All this during the real-time execution of individual observations
and during data post-processing stages.

An RFI Manager is the entry point for every involved ngVLA sub-system to either inform the detection
of RFI events, to input events that are of a predictable nature (e.g. satellite ephemeris) and to access that
information whenever required to tune algorithm parameters (e.g. real-time flagging, clever scheduling,
etc.) This makes evident two distinct aspects for an effective RFI manager:

• data ingestion and query: as part of the M&C implementation plan, proper mechanisms to transport
data to the RFI manager and to retrieve information back, must be identified as a standard
mechanisms within that particular M&C solution (i.e. remote method invocations and data packets
across the network.) At the same time, specific data volumes and associated data rates would
impose requirements to the M&C solution at play, or/and restrict how much RFI information could
actually travel at any moment across the ngVLA system.

• data mining: the main idea behind the RFI database is to let the system learn characteristics of

15

the RFI environment. This suggests the need for algorithms (e.g. AI algorithms to type and auto-
classify RFI events) to match the information collected in real-time together with data already
in the longer term storage, and to tune parameters used elsewhere in the system (real-time or
post-processing) to flag and/or excise RFI corrupted data. Mining for information in the database
must be an automatic algorithm and also a process supervised by an expert user.

As shown in Fig. 4, collected and aggregated RFI information (online and offline) is continuously
processed for classification purposes and pattern discovery. This process is meant to happen all the
time as an automatic data-mining operation; which depends on custom algorithms developed to explore
the database. The RFI Manager sub-system must grant a seamlessly access to the database for both,
automatic online algorithms and human experts whose work create new algorithms or improve already
existing ones.

RFI manager
• Query interface

• Concurrent db access

• Database maintenance

RFI master database

• Well known ephemeris

• Detections history

• Data analysis equations

RFI replica database

RFI AI researcher

• ML training

• Update analysis equa-
tions

RFI casual researcher

• Database browsing

algorithmic data mining

store

retrieve

db language

db replication

db language

Figure 4: the RFI manager provides an online interface to ingest and retrieve information in/from the
permanent RFI database. Data mining algorithms will routinely process new fields in the database to
improve RFI occupancy models.

Now, from a database implementation point of view, the RFI detector/flagger parameters described
earlier and satellite ephemeris are the only information to be stored in the database. But in order to
grow from already available experience at NRAO, it is interesting to note the type of information and
actual tables described in A. Erickson [13] about the database implemented for the JVLA instrument.
That experience should be retrofitted to the implementation of an ngVLA specific RFI Management
component.

16

7 RFI Occupancy Data Stream

The idea of a data stream for flags is briefly mentioned in [1] (section 5.2.1). The concept is of relevance
as a transport mechanism for input parameters to RFI algorithms, and as a mechanism to enable the
periodic monitoring of the current RFI environment. However, we make here a difference between both.
That is, between flags and the information used to describe the RFI occupancy.

On one hand, flags flow together with the data to let the receiving component take specific action
based on flags values. The actual action that a given flag value informs, is specific to the interface
between the producer and the receiving parts in that segment of the signal path. The CBE is at the
end of this chain and it populates the final data product with flag values as seen at that stage (e.g.
integration contains clipped values or reduced integration time due to dropped samples.) Therefore,
their time and spectral resolution is not finer than that used for archiving purposes.

On the other hand, every time an RFI algorithm detects a condition, then, the online monitoring of
those events is necessary for the system to automatically or manually adapt to the current RFI occupancy
conditions. For example, under a high occupancy condition the dynamic scheduler might decide to switch
to a different observation all together.

From a software point of view, a publish/subscribe mechanism through the M&C bus seems like a
promising alternative to transmit RFI information encapsulated as RFI occupancy data structures. In the
sense that establishing and handling connections between senders and receivers is left to a middle-ware
entity; which helps reduce software implementation complexities in senders and receivers across different
hardware and software sub-systems.

On the other hand, at a hardware centric level, like the interconnect between DBE and CSP, trans-
porting flags metadata from each antenna to the RFI detector/flagger in the CSP, can be chosen to
fit hardware specific requirements eventually bypassing the M&C bus. But still, we realize that in or-
der to grow the ’intelligence’ accumulated in the RFI database, the detected events should always be
summarized and transmitted to the RFI Manager from the respective hardware and software part.

In Figure 5 the idea of a flags stream is shown relaying on the M&C bus as a backbone to interconnect
senders and receivers. Detection algorithm generate flags and occupancy statistics associated to the
respective data products, and receivers consume them to inform other algorithms or to aggregate the
observation’s metadata as a whole.

CSP specific figures shown earlier in this note, give a draft idea of the involved volume of data to
transport per time unit.

8 Algorithms Version Management

System requirement SYS0606 establishes a functionality to upload different versions of the online software,
to control different sub-arrays at the same time. In a similar way, there should also be a requirement to
upload different versions of individual RFI algorithms [1] to the operational system.

Note that when referring to algorithms implemented in hardware components (e.g DBE and CSP),
SYS0606 is necessarily addressing FPGA personalities and embedded software at the same time. In both
cases, it should be possible to upload the new bitstream through the M&C network interface.

We now extend that idea to the CSW components within the CBE that implement RFI related
algorithms. That is, a CSW specific requirement that departs from SYS0606 in that only CBE modules

17

DBE
• Outliers detection

• Outliers flagging/excision

CSP

• RFI detector/flagger

CBE

• Model and subtract

• Averaging

flagged samples flagged visibilities

M&C Ethernet

publish RFI occupancy publish RFI occupancy publish RFI occupancy

voltage visibilities
pulsar profiles

VLBI

RFI Manager

• Database interface

Metadata Capture

• Aggregate to observation

subscribe to RFI occupancy subscribe to RFI occupancy

Figure 5: in this representation of a flags stream, the interconnect between the hardware modules DBE
and CSP, and between CSP and CBE (blue), transports not only the data products (voltage samples,
visibilities) but flagging information as well; which contains the information needed by the pertinent RFI
algorithms in the receiving part. However, for online monitoring and RFI database ingestion, the current
RFI occupancy information must also be communicated to other software sub-systems through an ad-hoc
mechanism over the M&C bus (green). For that purpose, an optional direct tapping onto the M&C bus
by the DBE and CSP is also depicted on this diagram.

are updated with a different version, and not the CSW software version at large.

An important parameter of both these requirements (firmware and software module versions) is how
often an upload is expected to occur. The DBE, CSP and CBE subsystems will most certainly present
different capabilities to upload within a given lapse of time.

During an observation, the obvious moment at which an upload could happen is in between scheduling
blocks and in between scans within a scheduling block. The effort involved to implement one or the other
upload frequency is different, and RFI stakeholders would have to refine these requirements to finally
assess their implementation details and limitations.

9 Conclusions

Based on the project’s available information, we have elaborated on mechanisms to transport RFI related
information and infrastructure to aggregate and exploit that information.

The most salient aspects are the following:

• RFI detector/flagger logic in DBE and CSP have to be periodically tuned to the changing RFI
conditions,

18

• RFI detector/flagger parameters represent the current RFI occupancy and their values must be
stored in the RFI database,

• software and hardware infrastructure (co-processor) within the CBE for accelerating RFI excision
algorithms,

• DBE and M&C infrastructure for a short (1 second) RF snapshot,

• RFI database interface for data ingestion and retrieval,

• RFI database replication for maintenance and algorithms research activities decoupled from the
online system,

• in-database algorithms for RFI data-mining.

The CBE and post-processing pipeline are the CSW components in which RFI algorithms take place.
In both cases, there is already existing experience around those algorithms, coming from other projects
and research (elsewhere and NRAO itself.) Nevertheless, new developments are expected in this area and
the CSW interfaces and infrastructure (e.g. database access) are to be streamlined to facilitate access
to RFI experts.

The information in this memo should help itemize components and requirements to be included in the
CSW conceptual design. Each item will certainly require additional analysis before arriving to an exact
requirement item in the SysML model and its implementation in hardware and software. For example,
prescriptions from RFI algorithm experts to tune specific parameters; which we should finally capture in
the respective ICD, as well.

19

References

[1] Rob Selina et al. RFI Mitigation in the ngVLA System Architecture. Tech. rep. ngVLA Memo #71.
NRAO, Feb. 2020.

[2] Mike Pleasance. SKA1 CSP Mid Correlator and Beamformer Sub- element Detailed Design Doc-
ument. Tech. rep. SKA-TEL-CSP-00000066. NRC, Dec. 2017.

[3] Urvashi Rau, Rob Selina, and Alan Erickson. RFI Mitigation for the ngVLA : A Cost-Benefit
Analysis. Tech. rep. ngVLA Memo #70. NRAO, Dec. 2019.

[4] Omar Yeste Ojeda. Trident 2.1 Concept: Updates to the CSP Reference. Tech. rep. ngVLA Memo
(Electronic) #5. NRAO, Sept. 2020.

[5] R. Selina and O. Yeste Ojeda. Headroom, Dynamic Range, and Quantization Considerations. Tech.
rep. ngVLA Electronics Memo #8. NRAO, Jan. 2021.

[6] Ojeda. Central Signal Processor: Preliminary Reference Design. Tech. rep. 020.40.00.00.00-0002-
DSN-A-CSP_PRELIM_REF_DESIGN. NRAO, July 2019.

[7] Ojeda. Central Signal Processor: Preliminary Technical Requirements. Tech. rep. 020.40.00.00.00-
0001-REQ-A-CSP_PRELIM_TECH_REQS. NRAO, July 2019.

[8] Duncan Lorimer and Michael Kramer. Handbook of Pulsar Astronomy. Cambridge, UK: Cambridge
University Press, 2005.

[9] R. Hiriart, J. Robnett, and M. Pokorny. Computing and Software Architecture: Reference Design.
Tech. rep. 020.50.00.00.01-0002-REP-A-COMPUTING_SOFTWARE_ARCHITECTURE_REF_DSN.
NRAO, July 2019.

[10] C. J. Law et al. “realfast: Real-time, Commensal Fast Transient Surveys with the Very Large Array”.
In: The Astrophysical Journal Supplement Series 236.1 (May 2018), p. 8. doi: 10.3847/1538-
4365/aab77b. url: https://doi.org/10.3847/1538-4365/aab77b.

[11] Suryarao Bethapudi et al. “The First Fast Radio Burst Detected with VLITE-Fast”. In: Research
Notes of the AAS 5.3 (Mar. 2021), p. 46. doi: 10.3847/2515-5172/abea22. url: https:
//doi.org/10.3847/2515-5172/abea22.

[12] Mitchell C. Burnett et al. Subarray Processing for Projection-Based RFI Mitigation in Radio As-
tronomical Interferometers. Tech. rep. ngVLA Memo #38. NRAO, Mar. 2018.

[13] Alan Erickson. RFI Database. Tech. rep. NRAO, Mar. 2017. url: https://gitlab.nrao.edu/
rfi/rfidb/-/tree/master/documents.

20

https://doi.org/10.3847/1538-4365/aab77b
https://doi.org/10.3847/1538-4365/aab77b
https://doi.org/10.3847/1538-4365/aab77b
https://doi.org/10.3847/2515-5172/abea22
https://doi.org/10.3847/2515-5172/abea22
https://doi.org/10.3847/2515-5172/abea22
https://gitlab.nrao.edu/rfi/rfidb/-/tree/master/documents
https://gitlab.nrao.edu/rfi/rfidb/-/tree/master/documents

	Introduction
	Digital Backend Stage
	Central Signal Processor Stage
	Pre-correlation RFI detector/flagger
	Post-correlation flagging
	Time and spectral resolution
	Pulsar Engine

	Correlator Backend Stage
	Post-processing Stage
	RFI Manager and Database
	RFI Occupancy Data Stream
	Algorithms Version Management
	Conclusions

