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Abstract

In this memo we analyze the size-of-computing (SofC) for imaging of representative use-cases
for the ngVLA. The primary goals of this exercise are to develop theoretical scaling models for
the compute load, establish procedures for measuring the performance of the existing implemen-
tation of the required algorithms, and verify the theoretical scaling laws. Based on the scienti�c
requirements for the various science cases, we derive the required imaging algorithms and their
parameters, and develop parameterized models for the computing and I/O load. These models are
veri�ed against the implementation in the production CASA package. While SofC estimates are
also made, since full scale tests were not possible in a reasonable time (due to resource limitations),
these estimates are by extrapolation and necessarily approximate.

1 Introduction

The ngVLA telescope is being designed to improve the collecting area and angular resolution of the
existing VLA by orders of magnitude. To achieve this, the ngVLA will have 244 18m-diameter anten-
nas, with the longest baseline of order 104 km. The antennas are arranged in four distinct arrays: the
core array, with 94 antennas and 1.3 km maximum baseline; the plains array, with 74 antennas and
36.5 km maximum baseline; a mid-range array, with 46 antennas and 103 km maximum baseline; and
a long baseline array, with the rest of the antennas and 104 km maximum baseline. More antennas and
longer baseline length increase the raw data rates from the telescope required to achieve the various
Key Science Goals (KSG). The size of computing (SofC) for imaging with the ngVLA is therefore
signi�cantly higher compared to existing telescopes in terms of the necessary raw computing, I/O load
and computer resources.

Estimating the SofC associated with the ngVLA science drivers is necessary to ensure a viable
end-to-end telescope design. The primary purpose of this memo is therefore to establish a procedure
for estimating the SofC for the ngVLA based on measuring the single-core computational e�ciency of
the necessary algorithms. For this, we establish the computational e�ciency of the particular software
implementation of the imaging algorithms used here for running on a single core, and measure its
scaling with the data volume. These measures are then used to make an order-of-magnitude estimate
of the ngVLA SofC.

It is undoubtedly necessary for ngVLA image processing to use parallel processing for perfor-
mance. Although CASA imaging tasks support the use of multi-threading and/or multi-processing,
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the ability to scale to large numbers of CPUs and/or GPUs is strongly implementation dependent. As
a follow-up to this memo, we intend to derive scaling curves for the current CASA parallel processing
implementation. The scaling laws derived in this memo provide a baseline against which to compare
the e�ciency of any parallel code implementation.

The SofC estimates require a (theoretical) model for the cost of computing of various algorithms,
and a way to verify the model. Ideally this veri�cation should be done via measurements of I/O
and computing loads using simulated data to scale. However, full simulation of the relevant ngVLA
use-cases is currently out of scope due to resource limitations (in terms of available time and required
computing resources). We therefore verify the models via imaging of a�ordable simulations and make
reasonable extrapolations of the parameterized scaling laws to arrive at the SofC estimates. These esti-
mates are therefore necessarily approximate and should be used as only order-of-magnitude estimates.
The estimates are based on the particular implementation of the algorithms in the CASA package. For
a reliable extrapolation of the measured scaling to the full-scale estimate of the SofC, it is necessary
to establish that the computational e�ciency of the implementation is reasonable. We therefore also
estimate the computing e�ciency of this implementation as a ratio of the theoretical estimate of the
required FLOPs to the measured FLOPs including overheads (Sec. 5). Comparison of the measured
code e�ciency with the practically expected single-core e�ciency allows us to normalize the e�ects of
the particular implementation used to measure the scaling.

1.1 Assumptions and Scope

1. It is assumed that the computing load is dominated heavily by the gridding/degridding opera-
tions. The cost of the minor cycle depends on a number of hard to quantify parameters, like the
complexity of the brightness distribution and the required imaging dynamic range. The costs
also typically scales as the number of pixels with signi�cant emission (not as the total number of
pixels) and the complexity of emission in these pixels . It is however possible that in some cases,
like wide area surveys made from many snapshots, processing time for minor cycle could end up
dominating the computational costs. Subsequent memos will examine more closely the validity
of this assumption, in relation with the required science cases for the ngVLA.

2. An important aspect of the cost of computing is the amount of computer memory required by
the algorithms. This can impose limits on the level of parallelization that it is possible to achieve
with speci�c implementations, as only a limited number of computing cores (either in CPUs or
GPUs) can be used in a machine before exhausting the available memory. Memory usage and
bandwidth are recognized as critical aspects for ngVLA, but the current memo only performs
some preliminary measurements on memory usage. The subject will be dealt with in a subsequent
memo.

3. Pulsar modes will be characterized in a subsequent memo. This memo only covers synthesis
imaging science cases.

4. The estimation of required computing resources is based on the notional Reference Observing
Program[6], which de�nes a collection of observations based on the project's Key Science Goal
(KSG) requirements. The computing load derived from these science cases may not be completely
representative of the average load once the telescope is in steady operations and most of the
observations are PI-driven. Subsequent documents will re�ne the estimations, including the
Envelope Observing Program[7], which is intended to be an upper envelope on the resources
demanded by the facility in a typical year of PI-driven observations.

5. This memo is intended to de�ne a framework to analyze the computing performance require-
ments, provide initial measurements and estimations, and identify areas that require additional
research and which will be treated in subsequent memos. It is recognized that ngVLA will require
massive parallelization, but this subject is only touched cursorily in this document, by means of
de�ning the speedup ratio and the parallelization e�ciency parameters. Currently there are no
implementations that would allow us to measure these parameters at the scale needed, so the

2



estimations provided in this document should be considered only as order-of-magnitude guesses.
An important goal for the next activities in this regard is to prototype parallel implementations
of the required algorithms and measure these parameters.

6. This memo only considers the CLEAN algorithm, along with A and W projection algorithms.
Other algorithms, like w-stacking and baseline dependent averaging will be treated in subsequent
memos.

7. Operational concerns such as whether the processing will be performed in one super-computing
center or distributed in multiple collaborating facilities, in the cloud, or in a hybrid system,
are not treated in this memo either. This subject�although important�depends on possible
collaborations with other organizations, decisions about the location of the ngVLA facilities,
economic and technological factors, etc. At this point it is still too early to advance the design
in this regard.

8. The intent of this memo is to perform a computing performance analysis of the synthesis imaging
algorithms. A cost derivation is not included. This should be part of project's cost model.

1.2 The dominant driver for the SofC

For the purpose of SofC estimates, the end-to-end processing of the data can be divided into two
distinct steps: (1) data calibration and �agging, and (2) imaging. The cost of data calibration is
relatively small, and the overall cost of end-to-end scienti�c computing is dominated by imaging. We
therefore focus on the SofC for imaging only.

The quality of a raw image is typically limited by instrumental artifacts, and deriving an artifact-
free model of the sky fundamentally requires iterative algorithms. This process itself can be divided
into two broad steps:

1. Derivative computation: The required number of computations is the same as computing a
residual image, which requires the evaluation of forward and reverse transforms (i.e., gridding
and de-gridding1) and two FFTs. This combined process is often referred to as the �major cycle�.
As these algorithms operate on visibility data, their computational complexity necessarily scales
with total data volume, but also depends on a speci�c imaging algorithm and its parameter
values.

2. Model update: This step (a.k.a. �deconvolution�) involves making a wide-band model of the
sky emission given the raw residual image and the telescope point spread function (PSF). This
step itself is also iterative in nature, and is often referred to as the �minor cycle�. The algorithms
for this step are image-domain algorithms. The computational complexity of this step scales
with the size of the image, and is independent of the raw data volume.

A typical end-to-end imaging requires a number of evaluations of the derivative. For each evalu-
ation of the derivative, iterative sky-model update algorithms are triggered. The �nal cost of imaging
is a function of the number of times the derivative is computed and the cost of the model update algo-
rithms. The computational complexity of the forward and reverse transforms scales with the number
of visibilities and the size of the Convolution Functions (CF) used (Sec. 3). The cost of model-update
algorithms is relatively low and scales with the image size. For the ngVLA, the raw data volume is
typically several orders of magnitude larger than the image size, and as the computational complexity
of the model update algorithms is independent of the data volume, the total cost of imaging is dom-
inated by the cost of evaluating the derivative. Therefore, in this memo we focus on the derivative
computation step only. We develop scaling laws for the algorithms for forward and reverse transforms
parameterized by the data volume and the parameters of the required algorithm (see Section 3). Com-
putational overheads in practical implementations of these algorithms is included via coe�cients in the

1�Gridding� refers to the operation of interpolating the visibilities, which occur at any point in the uv-space, into a

regular grid. �De-gridding� refers to the inverse operation.
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equations. In order to make SofC estimates, these coe�cients are measured by running the imaging
implementation in the CASA package using simulated Measurement Sets (MS) for a selected set of
KSGs, which together cover the full range of the required algorithms.

It is illustrative to plot the number of �oating point operations per second in an execution of
the CASA imaging task, tclean to understand the relative importance of these steps. An example,
using the proto-planetary model to simulate visibility data is shown in Figure 1. The proto-planetary
model (ppmodel_image_93GHz.fits.gz) is one of the examples available in the ngVLA Simulation
CASA Guide[1]. The speci�c model image used in this example is not important for visualizing the
pro�le of the �oating point operations versus time � similar pro�les are observed with other model
images. The high-value spikes correspond to the FFT and inverse FFT. In between these spikes, the
model-update step is performed with computations done in single-precision. The length of this step is
variable, depending on the stopping criteria for the model update algorithm setup. Typically, imaging
starts with a stopping criteria that triggers relatively fewer iterations. As the model improves and the
residuals become progressively smaller, it takes more and more model update iterations to converge.
This is readily apparent in the example plot. In between the FFT and model-update operations,
gridding and de-gridding are performed for each visibility read from the data base. Since the length
of this step depends on the number of visibilities, they appear as regular intervals in the plot, with
gridding being performed in double precision and de-gridding in single-precision. The �rst interval in
the plot corresponds to the calculation of the PSF, and the last intervals of the plot correspond to
saving the model column and restoring the image. This example was executed over a modest data
set (0.5 GB, 5.4M rows). As the size of the data set grows to the scales expected for typical ngVLA
observations, the task will spend most of the time on the gridding/de-gridding step, as the runtime
of these steps is directly proportional to the number of visibilities in the dataset. The runtime of the
steps that are performed in image-space, on the other hand, becomes much smaller in comparison for
typical image sizes.

The overall computational complexity for imaging varies signi�cantly with the choice of algorithms,
and consequently the associated SofC varies from easily a�ordable to nearly una�ordable. However,
not all algorithmic combinations may be necessary, and observing parameters can be adjusted for
the particular scienti�c goals to optimize the data volume and computing load. The ngVLA project
de�nes a list of 24 science cases derived from the KSGs, with associated sensitivity, angular resolution
and imaging performance requirements, as shown in Table 1. For the purpose of estimating SofC
for the ngVLA, we therefore �rst determine the observing parameters for each of the science cases,
and then determine the required combination of the algorithms for the forward/reverse transform
(standard, W-Projection, A-Projection, AW-Projection) and image modeling step (Multi-Scale, Multi-
Term, Multi-Scale Multi-Term). The computational e�ciency of these algorithms and their scaling
with data volume was then measured and used to estimate the SofC for a representative set of science
cases.

1.3 Comparison with the SKA

The SKA Project has made a similar assessment for the SKA SofC. Given the scale of computing and
data volumes involved for the ngVLA, it is instructive to compare with the SKA requirements and
understand the salient di�erences.

While both telescopes can be classi�ed as large-N telescopes (having relatively large number of
antennas in the arrays), an important di�erence that impacts the SofC estimates is the operating
frequency range. Broadly, the SKA is a low-frequency telescope operating in the 100s of MHz to
several GHz range. The ngVLA, on the other hand, is a high-frequency telescope operating in the few
GHz to about 100 GHz range. This frequency di�erence leads to some important di�erences in SofC
estimates.

The antenna �eld of view (FoV) for the SKA is larger � primarily due to the lower operating
frequency range. The FoV for the SKA-low (array of dipole elements) is even larger compared to
SKA-mid (array of antennas). This FoV requires imaging of a larger part of the sky per correlator
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Figure 1: Floating point operations per second for an example tclean execution. The data was
simulated as described in the ngVLA Simulation CASA Guide[1] and the FLOPs/s was measured
using perf. The short peaks correspond to the forward and reverse FFT, and the regular intervals
below 0.5 GFLOPs/s correspond to gridding/degridding. The operations reaching around 1 GFLOPs/s
that start appearing after 250 seconds with progressively longer durations are deconvolution cycles.
As the threshold used in the minor cycle to stop cleaning is decreased in each iteration, the algorithm
cleans more and more.
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phase center. The e�ects of both the w-term and the antenna PB become stronger with the distance
from the phase center. The complexity of the A-Projection algorithms scales with the distance from the
center, and the fractional bandwidth of observations. The complexity of the W-Projection algorithm
scales strongly with the magnitude of the w coordinate, which in turn scales with the maximum baseline
length, the distance from the center, and the imaging FoV. Furthermore, the radio emission from the
sky is typically much stronger and more widely spread at low frequencies. High resolution imaging of
the entire FoV at high imaging dynamic range becomes necessary to achieve many of the scienti�c goals
of the SKA, which necessarily requires the use of the AW-Projection algorithm. The cost of imaging
with the SKA is therefore signi�cantly higher due to a combination of larger FoV, longer baseline, and
need for high imaging dynamic range.

The imaging FoV requirement for the ngVLA is smaller for a signi�cant fraction of the KSGs.
The KSGs which require relatively larger FoV tend to have lower resolution, lower imaging dynamic
range, and smaller expected observing fractions, allowing the conclusion that these KSGs weakly a�ect
the overall SofC. Due to the physics of the emission mechanism, the radio emission from the sky in the
ngVLA frequency range is also weaker and not as widely distributed in the FoV. As a result, many of
the science goals with the ngVLA can be achieved with a narrower imaging FoV and lower dynamic
range. Indeed, for many of the KSGs it is su�cient to image a small fraction of the antenna FoV. In
combination with a lower fraction bandwidth, the e�ects of the w-term and the antenna PB is also
signi�cantly lower. Most of the KSGs therefore do not require the use of the W-Projection algorithm,
which is more expensive compared to the A-Projection algorithm. The A-Projection algorithm is
required for many of the KSGs; although, due to relatively smaller imaging FoV and lower fractional
bandwidth, the cost of A-Projection for the ngVLA is also comparatively lower.

Another factor that contributes more strongly to a higher SofC for the SKA is the higher rate of
change of the direction dependent (DD) gains for the SKA. The ionospheric plasma interacts with the
incoming wave-front and adds signi�cant distortions to it at radio frequencies in the SKA bands. For
achieving the desired imaging performance, the e�ects of the resulting time-dependent DD complex
gains must be corrected. SKA-low is also a dipole array with either electronic beam-forming and
steering, or a very large FoV, both of which lead to time-varying forward gain. Correction for the
e�ects of time-varying ionospheric gains and PB gains requires re-computing the convolution functions
(CF) used by the forward and reverse transforms at a signi�cantly faster rate than the ngVLA. This
re-computation of the CFs contributes signi�cantly to the already higher computational load for the
SKA.

At higher frequencies, the incident radio wave-front interacts (very) weakly with the ionosphere.
This decision is re�ected in the column titled �Ionospheric correction� in Table 3. The ngVLA is
an antenna array with a much better de�ned and mechanically steered antenna PB. With a narrower
imaging FoV requirement for the ngVLA KSGs, the rate of change of the DD gains is much slower (and
the magnitude of the resulting artifacts much smaller). The CFs therefore need not be re-computed
often � for most cases, the CFs may even be pre-computed and cached. The additional computational
load for the ngVLA is therefore thought to be insigni�cant. With the ngVLA, CF re-computation
may be necessary to correct for the e�ects of distortions due to the troposphere, but only for those
KSGs that require wide-�eld imaging at high frequencies, which will therefore not signi�cantly a�ect
the SofC.

SKA estimates a computing processing capacity[4] of 100 PFLOPs/s in order to deliver its science
cases. However, this �gure doesn't incorporate performance e�ciencies. They estimate that 10-
times more computing power may be needed if a general super-computer is used (measured by its
Linpack performance), in opposition to building a custom-made super-computer which may deliver
higher e�ciency, see page 8). This is indeed much higher than our estimates for ngVLA, where (see
Section 6) we estimate the need for a 50 PFLOPs/s system for all KSGs (or only 6 PFLOPs/s if the
few more stringent KSGs are processed externally or de-scoped).
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2 ngVLA Reference Observing Program

The ngVLA Reference Observing Program (ROP) quanti�es the technical and observational needs of
the driving use cases of the KSGs identi�ed in the ngVLA Science Requirements [6]. The requirements
for each of the use cases are shown in Table 1. The table shows both the driving and supporting
use cases, although at this time only the driving use cases have been assigned a non-zero fraction of
observation time. Both interferometric and pulsar search/timing use cases are included, although only
the interferometric cases are considered for estimating the imaging computational load. The ROP
cases, along with their observing fractions, are taken as representative of the types of observations
that will be scheduled for observation in the �rst years of the ngVLA. A separate collection of science
cases that should be closer to the typical use of the telescope (the Expected Observing Program, or
EOP) is being prepared and will be used to update the SofC estimations when it becomes available.

Table 2 shows the subset of use cases considered in this memo, along with several derived pa-
rameters. Bandwidth and time averaging smearing constrain the maximum channel width and dump
duration that can be used to observe without unacceptable loss of sensitivity. These constraints are
taken into account to calculate the �e�ective� channel widths and dump duration [2]. To avoid a pro-
hibitively large number of channels, the angular resolution used in these calculations is the required
resolution from Table 1, not the resolution obtained by using the maximum baseline in the sub-array
(λ/bmax). It is assumed that the synthesized beam can be �sculpted� to the required resolution [5].
It is readily apparent that KSG2-type cases (UC 3-5) are signi�cantly more expensive than the rest,
given their high Vis/Hour rate. These cases require a very large number of spectral channels, given
the need to perform blind searches for molecular gas with high spectral resolution.

2.1 Algorithmic requirements

As mentioned earlier, the SofC for ngVLA is dominated by the derivative computation step (major
cycle), which is itself dominated by the gridding and de-gridding operations. The ngVLA KSGs
collectively require one the following gridding/de-gridding algorithms:

1. Standard gridding: This is the traditional gridding used when no correction of direction
dependent (DD) terms in the measurement equation is necessary. This is typically used for
narrow �eld or shallow imaging (or both), where the e�ects of the antenna PB and non co-
planarity of the array are not signi�cant (compared to the target image-plane noise).

2. W-Projection: This algorithm corrects for the DD e�ects of the non co-planarity of the array
during the imaging process. Non co-planarity of the array is measured by Nw given by

Nw =
Bmax [FoV ]

2

λ
(1)

where Bmax is the longest baseline used, λ is the wavelength of the observing setup (both in
meters), with the FoV in radians.

When Nw > 1, the W-Projection algorithm is required for imaging. This typically happens when
imaging relatively larger fraction of the antenna FoV at high resolution (long baselines).

3. A-Projection: This algorithm corrects for the DD e�ects of the antenna PB in time, frequency
and polarization. This is typically required for imaging large FoV (greater than 0.5λ/D where
D is the antenna diameter), including mosaic imaging, at resolution such that Nw ≤ 1. For large
FoV imaging where Nw is also greater than one, AW-Projection is required.

The algorithms required for the various KSGs, determined on the basis of the above considerations,
is in Table 3. The two algorithms for the image modeling step that may impact SofC are Multi-
Scale algorithm (a.k.a. MSClean), required for narrow-band modeling of morphologically complex
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Table 2: Derived parameters for the use cases to be considered in the computing sizing estimation for interfer-
ometric imaging.

UC Fraction E�. Dump Time E�. Max. Channel Nchan Img. Linear Size N Baseline Vis/Hour
1 0.09 1.0 90.0 MHz 223 1500 22791 73.19 GVis
2 0.04 1.0 20.5 MHz 659 1500 22791 216.28 GVis
3 0.04 1.0 13.5 kHz 296297 1800 22791 97241.83 GVis
4 0.01 2.0 9.1 kHz 439561 1800 22791 72129.85 GVis
5 0.01 2.0 5.5 kHz 727273 1800 22791 119342.01 GVis
6 0.04 1.0 675.0 kHz 29630 345 14028 5985.35 GVis
7 0.01 2.0 455.0 kHz 29671 512 14028 2996.82 GVis
8 0.01 2.0 273.3 kHz 30004 855 14028 3030.45 GVis
9 0.02 1.0 7.2 MHz 34 150 22791 11.16 GVis
10 0.01 1.0 3.6 MHz 34 150 22791 11.16 GVis
11 0.01 2.0 2.8 MHz 34 150 22791 5.58 GVis
12 0.07 1.0 375.0 kHz 16000 960 14028 3232.05 GVis
13 0.11 2.0 4.7 kHz 1480 7421 14028 149.48 GVis
14 0.13 2.0 47.3 kHz 148 124 4371 4.66 GVis
15 0.07 0.5 205.5 kHz 11194 8760 22791 7347.53 GVis
16 0.07 0.5 5.0 MHz 2700 512 14028 1090.82 GVis
17 0.04 0.5 1.7 MHz 5035 3003 14028 2034.17 GVis
19 0.24 2.0 6.2 MHz 1334 3000 435 4.18 GVis

Table 3: Table of decisions for the imaging and image-modeling algorithmic requirements. The science cases
requiring AW-projection are highlighted.

UC Name W PB Ionospheric Multi-scale Multi-term
correction correction correction

1 KSG1 Driving Cont Band 6 eg Taurus disk No No No Yes Yes
2 KSG1 Driving Cont Band 4 eg Taurus disk No No No Yes No
3 KSG2 Driving Line Band 5 eg Sgr B2(N) No Yes No Yes No
4 KSG2 Driving Line Band 4 eg Sgr B2(N) No Yes No Yes No
5 KSG2 Driving Line Band 3 eg Sgr B2(N) No Yes No Yes No
6 KSG3 Driving Line Band 5 eg COSMOS No Yes No Yes No
7 KSG3 Driving Line Band 4 eg COSMOS No Yes No Yes No
8 KSG3 Driving Line Band 3 eg COSMOS No Yes No Yes No
9 KSG3 Driving Line Band 6 eg Spiderweb galaxy No Yes No Yes No
10 KSG3 Driving Line Band 5 eg Spiderweb galaxy No Yes No Yes No
11 KSG3 Driving Line Band 4 eg Spiderweb galaxy No Yes No Yes No
12 KSG3 Driving Line Band 6 eg Virgo Cluster No Yes No Yes No
13 KSG3 Driving Line Band 1 eg M81 Group Yes Yes Yes Yes No
14 KSG3 Driving Line Band 1 eg M81 Group No Yes Yes Yes No

15

KSG5 Driving Cont Band 1 OTF Find LIGO event

(QL) No(Yes) No(Yes) No(Yes) Yes Yes

16

KSG5 Driving Cont Band 4 OTF Find LISA event

(QL) No No(Yes) No Yes Yes

17

KSG5+4 Driving Cont Band 2 OTF Find BHs

+PossiblePulsars (QL?) Yes Yes No Yes Yes
18 KSG5 Driving Cont eg Band 2 Followup from OTF No No No Yes Yes
20 KSG3 Supporting Cont Band 6 eg Virgo Cluster No Yes No Yes Yes
21 KSG3 Supporting Cont Band 5 eg Virgo Cluster No Yes No Yes Yes
22 KSG3 Supporting Cont Band 4 eg Virgo Cluster No Yes No Yes Yes
23 KSG3 Supporting Cont Band 3 eg Virgo Cluster No Yes No Yes Yes
24 KSG3 Supporting Cont Band 2 eg Virgo Cluster Yes Yes No Yes Yes
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brightness distributions, and Multi-Term Multi-Scale algorithm (a.k.a. MTMFS), required for wide-
band modeling of morphologically complex brightness distributions. These decisions are listed in the
last two columns named �Multi-scale� and �Multi-term�, respectively, in Table 3. As a rule, fractional
imaging bandwidth greater than 30% requires wide-band imaging. Ionospheric corrections are required
at lower frequencies when imaging wide �elds of view at relatively high dynamic ranges (in the order
of 5000 or more). This binary decision is listed in the column named �Ionospheric correction�.

Decisions on the use of A-Projection to correct for the e�ects of the antenna PB, determined by
the required FoV, are in the column named �PB correction�. KSGs requiring FoV greater than about
0.5λ/D are listed as requiring A-Projection.

Decisions on the use of algorithms to correct for the e�ects of the w-term are listed in the column
named �W correction�. KSGs where Nw > 1 (Eq. 1) require corrections for the w-term. The severity
of the e�ects of the w-term can be gauged by the magnitude of Nw. UC 13 (KSG3 Driving Line Band 1

e.g. M81 Group) and UC 15 (KSG5 Driving Cont Band 1 OTF Find LIGO event), with Nw = 25 and 10
respectively, will have the most severe w-term e�ects. UC 14, 17 and 24 each have Nw ≈ 2. UC 15

(LIGO events) requires only Quick Look (QL) imaging, used for triggering data recording for imaging
at a later time. QL imaging can therefore be done without use of expensive algorithms like A- and
W-Projection, as is indicated in Table 3. The decision for algorithms required for production (non-QL)
imaging is indicated within brackets.

The algorithm of choice for w-term correction is the W-Projection algorithm. As discussed in
Sec. 3, the computing cost of the W-Projection algorithm scales with the size of the CFs (which
are binned in w-values), and the distribution of the number of visibilities per w-bin. We used a
representative data set that measures the compute load for the most severely a�ected KSG (see Sec. 4).
The W-Projection algorithm was set up (within resource constraints) to measure the performance for
what we expect to be required by the relevant KSGs.

3 Algorithms for forward/reverse transform and scaling laws

The SoC for various imaging algorithms vary by large factors in general. Standard imaging that does
not require correction for direction-dependent (DD) e�ects has a relatively small size of computing
than algorithms that have DD corrections, such as W-Projection (for correcting w-term e�ects only),
A-Projection (for correction of primary beam (PB) e�ects only) or AW-Projection (for correction of
both the w-term and PB e�ects). In order to determine the optimal combination of imaging and
deconvolution algorithms needed for each KSG, based on the required imaging dynamic range and
FoV, the imaging requirements were broadly classi�ed as

1. narrow-�eld imaging,

2. wide-�eld imaging including single pointing imaging of full antenna FoV and mosaic imaging,
and

3. spectral cube imaging.

Algorithmic requirements for these categories further di�er depending on the frequency of observa-
tions. For example, a single pointing wide-�eld (or mosaic) image at frequencies where the array can
be considered to be co-planar will require a PB correction (the A-Projection algorithm) but not a
correction for the w-term. Similarly, wide-�eld imaging at lower frequencies may need corrections for
the w-term and PB e�ects, requiring the use of the more expensive AW-Projection algorithm.

For the purpose of sizing the computing load, the cost of the derivative computation step (major
cycle) is dominated by, and proportional to, the support size of the convolution functions (CF) (the
number of pixels of the CF used during gridding). For standard imaging (no DD corrections), the CF
support size is 7 × 7 pixels and remains constant as a function of time, frequency and polarization.
The CF support for A-Projection starts at about 10×10 pixels at the lower-frequency end of the band
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and increases approximately linearly with frequency. The CF size for W-Projection increases as w2,
starting with 7 × 7 pixels for w = 0. For AW-Projection, the CF size increases both with frequency
and w.

The scaling law for standard imaging where the CF size does not change is simply

CStandard = [12 FLOP ]×N◦
vis × S2 (2)

where N◦
vis is the total number of visibilities gridded, S is the size along one axis of the CF. The

CF for standard gridding is real-valued. Each visibility is multiplied by a weight (2 multiplications),
multiplied by the CF (2 multiplications as the CF is real), and accumulated (2 adds). For Stokes-I
imaging it is necessary to grid 2 visibilities, so the number of operations is 2× (2+ 2+2) = 12. When
the CF is complex multiplying it by the weighted visibility takes 6 operations (4 multiplications and
2 additions), so the number of operations is 2× (2 + 6 + 2) = 20.

In general, the CF for A-Projection is complex valued. For e�ciency the data is partition into
blocks of frequency ranges across which a single CF is valid. In the implementation used here this
block of frequency range is referred to as the Spectral Window (SPW). A single CF is used per SPW,
with the linear size of the CF scaling approximately linearly with frequency. The number of visibilities
per SPW is also the same. With Nvis(i) and S(i) as the number of visibilities and linear size of the
CF for the ith SPW, the scaling law for A-Projection becomes

CAP = [20 FLOP ]×
Nspw−1∑

i=0

Nvis(i)× S2(i) (3)

= [20 FLOP ]×
Nspw−1∑

i=0

N◦
vis

Nspw
× S2

◦

[
νi
ν◦

]2
(4)

where νi is the reference frequency of the ith SPW at which the corresponding CF is computed, and
ν◦ and S◦ refer to the frequency and linear size of the CF for the reference SPW respectively. The
total bandwidth used for imaging is divided equally into Nspw SPWs and N◦

vis corresponds to the total
(un-partitioned) visibilities.

The scaling law for W-Projection is similar to Eq. 3:

CWP = [20 FLOP ]×
WMax−1∑

w=0

Nvis(w)× S2(w) (5)

= [20 FLOP ]×
WMax−1∑

w=0

Nvis(w)× S2(w = 0)
[
αw2 + 1

]2
where Nvis(w) correspond to the fraction of the total visibilities where the CF with a support size of
S(w) is valid. WMax is the largest w-value in the problem for which an independent CF is required. α
depends on the distribution of the w-coordinate. This in turn depends on the array geometry, which
is best measured from the data used. Figure 2 shows the distribution of the number of visibilities
as a function of the magnitude of the W co-ordinate, the resulting FLOP and the cumulative FLOP
(
∫ w

0
Nvis(w)S

2(w)dw) as a function W for KSG5. The ngVLA has a centrally condensed uv-coverage.
The longer baselines for which the FLOPs are higher are signi�cantly fewer in number. As a result,
the required FLOPs increase by an order of magnitude across about two orders of magnitude in W
values.

Note that the distribution of the w-coordinate as a function of w-bins will be di�erent for other
KSGs. However, as mentioned before, while the run-time for full simulation and imaging is resource-
limited, we believe that the SofC estimates based on the measured scaling with number of visibilities
and w-value is reliable at the accuracy required at this stage. The total number of FLOPs can be
seen as the total number of visibilities multiplied by the average of the squared support function

(C = No
vis ·

∫ w

0
Nvis(w)
No

vis
S2(w)dw = No

vis · ⟨S2(w)⟩ for W-Projection, and similarly for A-Projection
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although in this case the distribution of visibilities is over the frequency). The average depends on
the speci�c distribution of the visibilities over w (or over the frequency in case of A-Projection), an
example of which is shown in Figure 2. We assume that the values measured are representative of all
KSGs. A more careful measurement would need to use a representative model for each KSG.

Figure 2: Left: Distribution of the number of visibilities as a function of W bins in meters for KSG5.
Right: The blue curve shows the FLOP as a function of W and the green curve shows the cumulative FLOPs
as a function of W (

∫ w

0
Nvis(w)S2(w)dw). The �uctuations in the blue curve follow the �uctuations in the

distribution of visibilities in each W-bin. This in turn depends on the antenna con�guration in the array.

3.1 Extrapolation Methodology

This section explains the methodology by which measurements of a single gridding cycle can be ex-
trapolated to estimate the required system computing size.

The computing load for one gridding cycle can be written as

CLgridding =
Visibilities

second
· FLOPs

Visibility
(6)

As explained above, the number of FLOPs per visibility depends on the size of the convolution ker-
nel used during gridding, which has been measured for the standard gridding, A-projection and W-
projection.

The total computing load generated by imaging a dataset is proportional to the load generated
by the calibration, gridding and deconvolution steps, and can be expressed as

CL = k · (CLgridding + CLdeconv) + l · CLcalibration (7)

The CLcalibration term is proportional to the number of visibilities acquired during the calibration
scans (and target source scans in the case of self-calibration), while CLdeconv is roughly dependent on
the size of the image. It is assumed that the calibration and deconvolution terms are much smaller
than the gridding term and therefore as a �rst approximation the computing load is only proportional
to CLgridding:

CL = k · CLgridding (8)

The use of multi-term imaging is e�ectively the repetition of standard imaging multiple times, so it
can be modeled by an additional factor for the cases where its required. The overhead introduced by
the multi-scale algorithm a�ects only deconvolution term, to they are ignored in this memo.

In order to avoid an unbounded system bu�er capacity for accumulating visibilities, on average
the system's throughput needs to match the load.
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We de�ne the observed computing performance of a single core as:

CP (obs,sc) =
FLOPs

Exec. time for a single core
, (9)

measured by executing test runs. Similarly, the observed computing performance of a parallel execution
is

CP (obs,par) =
FLOPs

Exec. time for parallel system

= CP (obs,sc) · Exec. time for a single core

Exec time for parallel system

= CP (obs,sc) · Sp(Nc) (10)

where Sp(Nc) is the speedup.

The observed core performance di�ers from the nominal core performance by the core e�ciency
ϵc factor

CP (sc,obs) = ϵcCP (sc), (11)

The nominal performance CP (sc) is what gets reported in the core speci�cations. Achieving that
performance would require only doing �oating point operations (without accessing memory) using
SIMD instructions, and with an insigni�cant level of branch prediction failures. This parameter is the
maximum performance shown in the roo�ine model in Figure 3. The core e�ciency can be estimated
from Figure 1 and Figure 3. For this example, the observed core performance is ≈ 0.675 GFLOPs/s
and the nominal performance is 13 GFLOPs/s, which gives a core e�ciency of 0.05.

Matching the load with the parallel system throughput:

CL = ϵcCP (sc)Sp(Nc) (12)

Multiplying and dividing by the number of cores Nc, and de�ning the parallelization e�ciency ϵp =
Sp(Nc)/Nc, the ratio of the real speedup and the ideal speedup:

CL = CP (sc)Ncϵcϵp (13)

The nominal single-core performance times the number of cores is what gets usually reported as the
�system performance� of an HPC system. Let's name this SP = CP (sc) ·Nc.

With this, it is possible to estimate the required system performance as

SP =
k · CLgridding

ϵcϵp
[FLOPs/s] (14)

The following list summarizes the parameters used in these estimations. Parameters k and ϵp are
educated guesses and could be o� by a factor of many. It is our intention to re�ne these estimates
either by direct measurement or by parsing through existing execution logs. The multi-term factor is
determined by the algorithm.

� k = 100: This is a measure of the e�ective number of evaluations of the derivative (major cycles)
required for end-to-end processing.

It typically takes about 10 major cycles for imaging iterations to reach convergence. Manual
processing often requires re-imaging several times before a satisfactory image is produced. The
heuristics (e.g. to re�ne imaging parameters) in imaging pipelines also require multiple full
imaging cycles (e.g. VLASS imaging pipeline). Either way, we estimate that about 10 full
imaging runs will be necessary, each requiring about 10 major cycles. The value of k is therefore
set to 100.
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� Multi-term factor = 3: Multi-term imaging is necessary when the fractional bandwidth for
continuum imaging is greater than 30%. nterm is a parameter of the Multi-term algorithm,
and the number of gridding/de-gridding operations necessary for Multi-term imaging is given by
nterm·(nterm+1)

2 . For Multi-term imaging we use nterm = 2. The value the Multi-term factor is
therefore 3.

� ϵc = 5%: This is the e�ciency of the gridding/de-gridding code on a single core and is the ratio
of the measured FLOPs/s per visibility and the maximum possible FLOPs/s rating for the CPU
used. (SKA uses 6.9% for this parameter, see [4].)

� ϵp = 0.8: This is the parallelization e�ciency � a ratio of the real and the ideal speedup. The
SofC estimate has strong dependency on this parameter and its scalability behavior. For the
purposes of this memo, we assume that the system exhibits weak scalability, meaning that it is
possible to maintain the given e�ciency by increasing the problem size (the number of visibilities)
in proportion to the number of parallel processes. This assumption, which will be veri�ed in a
follow-up memo, is supported by the fact that the SofC is dominated by a few KSGs which
require spectral cube imaging with a large number of spectral channels. In this kind of imaging,
each channel (or a combination of a few channels) can be imaged independently, without the need
to synchronize the parallel processes. In general, we can assume that the problem size will grow
with the number of processes and the time spent in serial operations will be maintained relatively
constant or grow slowly with the problem size. These are required conditions for the speedup
to be characterized by Gustafson's Law [3] instead of Amdahl's Law. Gustafson's model doesn't
su�er from a saturation of the speedup with the number of processes like Amdahl's. While we
haven't yet measured this parameter (also a goal of a follow-up memo), given the characteristics
of cube imaging, we expect that a relatively high e�ciency value should be possible.

4 Measurements

Given the large size of data sets for ngVLA KSGs, the current CASA software, the available NRAO
hardware, and the time available to us for completing these measurements, we perform trials using
smaller size data sets that are nevertheless representative for ngVLA KSGs. The measurements ob-
tained from trials on smaller size data sets are then used to obtain the scaling laws that will allow
estimation of the SoC for ngVLA-sized data sets. The main goal of measuring the performance of
current CASA imaging code is to determine the parameters of the scaling laws we use to estimate the
SofC for ngVLA imaging.

The three primary classes of metrics we measure are �oating point operations (FLOPs), I/O usage
and memory usage, each of which may consist of a variety of speci�c metrics. For example, FLOPs may
be measured for single precision and double precision values separately or together. Possible metrics in
the I/O class are bytes read and bytes written per second, either at the application level or the system
level (which may di�er according to the e�ciency of page cache access). In order to eliminate e�ects of
multi-processing on the metrics, and to establish a baseline for the future evaluation of parallelization
e�ciency, the imaging trials have been run exclusively in serial (i.e., not parallel) processing mode.

The execution time of the trials is also an important metric, which can be used to estimate
the compute e�ciency of current CASA imaging codes. The compute e�ciency is a measure of the
fraction of the theoretical performance available on a CPU the current CASA codes are able to use.
The execution time can also be used to estimate the rate at which visibilities are processed by the
imaging codes running on a single CPU. The visibility processing rate can be a useful measure of the
overall performance of CASA imaging tasks performed either serially or in parallel.

It is undoubtedly necessary for ngVLA image processing to use parallel processing for e�ciency.
Although CASA imaging tasks support the use of multi-threading and/or multi-processing, the ability
to scale to large numbers of CPUs and/or GPUs is strongly implementation dependent. As a follow-
up to this memo, we intend to derive weak and strong scaling curves for the current CASA parallel
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processing implementation. The scaling laws derived in this memo provide a baseline against which to
compare the e�ciency of any parallel code implementation.

4.1 Test methods

We use two primary for gathering test metrics of trial imaging runs: native CASA instrumentation,
and the Score-P infrastructure. The metrics provided by these two tools in combination include all
those we require to develop the scaling laws.

4.1.1 Native CASA instrumentation

Limited code instrumentation is currently built into CASA, the usage of which is controlled by a casarc
variable. As indicated by the name of the casarc variable, synthesis.imager.mempro�le.enable, the
instrumentation is primarily geared toward pro�ling memory usage of the imager codes, and it is
for the measurement of memory usage that we have employed this CASA capability. The native
instrumentation is adequate to the purposes of the present study. Whereas the available alternative of
using the Score-P instrumentation in tracing mode would provide more detailed metrics, that approach
was determined to require too many computer resources to complete all the trials e�ciently.

4.1.2 Score-P instrumentation

Score-P bills itself as the �Scalable Performance Measurement Infrastructure for Parallel Codes�. The
Score-P home page, https://www.vi-hps.org/projects/score-p, states

The Score-P measurement infrastructure is a highly scalable and easy-to-use tool suite for
pro�ling, event tracing, and online analysis of HPC applications.

The Score-P infrastructure supports the collection of code execution metrics by sampling, pro�ling
or tracing. To gather code metrics at run-time, the user code must be instrumented by one or more
varieties of methods. The mode of operation, as well as the selection of metrics, can be speci�ed by
the user at run-time, subject to constraints imposed by the code instrumentation methods.

Of all the classes of metrics that are needed for the present study, measures of FLOPs are the
most challenging to obtain. Modern processors include built-in performance monitoring units, or
PMU s, which may provide the only direct measurement of FLOPs available. PMUs promise access
to various CPU execution metrics, including, for example, L1 cache hits and misses, or �oating point
instructions. However, there are various practical issues that often limit the usability or e�ectiveness
of PMU counters. The foremost practical issue is that PMUs are implemented inconsistently by
manufacturers, and are often largely undocumented features of CPUs. Another signi�cant practical
issue is that available PMU counters often do not quite measure what is most desired by application
developers: for example, CPU speculative execution and branch prediction may render a count of
�oating point operations di�cult to interpret unless counters distinguish issued vs retired �oating
point operations. To address some of the problems of using PMU counters directly, the PAPI library is
available. PAPI presents a higher-level interface to PMU counters, and it attempts to provide a better
API for programmers by abstracting away some architectural di�erences in PMUs. However, these
features of PAPI may make the task of interpreting counter values even more di�cult!

In light of the aforementioned di�culties of obtaining FLOPs metrics, the following method was
used for the present study. First, a toy program was developed for which the expected number of single
and double precision FLOPs could be obtained by calculation. Next, on machines at NRAO of various
CPU micro-architectures, di�erent choices of PAPI metrics, including direct references through PAPI to
PMU counters, were selected through Score-P at run-time, and the results compared to the expected
FLOPs measures. For each of the CPU micro-architectures, for both single and double precision, the
most accurate selection or combination of PAPI metrics was determined, and then applied through

15

https://www.vi-hps.org/projects/score-p


Table 4: Total �oating point operations (FLOPs) for one gridding cycle as a function of the number of visibilities
for standard gridding, A-projection, and W-projection, measured using ptsi. One gridding cycle incorporates
both gridding and de-gridding operations.

Standard Gridding
Number of Visibilities FLOPS
1.4E+7 (14,586,240) 5.41E+10
8.8E+7 (87,517,440) 1.494E+11
8.8E+8 (875,174,400) 1.1796E+12

3.5E+9 (3,500,697,600) 4.628E+12
1.1E+10 (10,502,092,800) 1.3678E+13

A-projection
Number of Visibilities FLOPS
5.8E+7 (58,344,960) 4.41E+11
1.2E+8 (116,689,920) 8.77E+11
2.3E+8 (233,379,840) 1.804E+12

W-projection
Number of Visibilities FLOPS
5.8E+7 (58,344,960) 1.26E+12
1.2E+8 (116,689,920) 2.51E+12
2.3E+8 (233,379,840) 5.02E+12

Score-P at run-time for each of the trials. Based on this method, it is estimated that FLOPs values
are accurate to about 10�20%.

5 Data analysis

The results of measuring the total number of FLOPs performed by the ptsi test program, for data sets
of di�erent sizes and for di�erent types of gridding algorithms are shown in Table 4. The number of
I/O operations as a function of number of visibilities is presented in Table 5. The parameters derived
from the measurements, which are used to calculate the SofC are summarized in Table 6. The rest of
this section explains how these parameters were derived.

The curves show good agreement with the expected theoretical results. For standard gridding the
expected slope is given by Equation 2, multiplied by 2 as the test program performs gridding twice (one
to compute the residual image and one to calculate the PSF): (7× 7)× 2× 12 = 1176. The measured
slope in the plot is 1280.8, the di�erence explained by a few additional unaccounted operations in the
implementation (e.g., FP comparisons). The slopes for A-projection and W-projection are 7472.8 and
21468.4, respectively, introducing factors of 5.8 and 16.76 with respect to standard gridding. They
imply average support sizes for A-projection and W-projection of 16.9 and 28.7 respectively for these
executions.

When two or more convolution kernels need to be combined, the �nal convolution kernel is the
result of convolving the original kernels. If N1 and N2 are the support function sizes of two original
kernels, the support size of the convolved function is N1+N2−1. Given that the measurements above
correspond to the application of A and W-projection combined with the standard Prolate spheroidal
function (which has a support size of 7), the support sizes for the A-projection and W-projection
kernels are 11 and 23, respectively. For the cases that require AW-projection, the convolution of the
three kernels results in a support size of 39 (7+11+23−2). This corresponds to a factor of 31 (392/72)
in the number of operations with respect to the standard gridding case.

The results for the input/output patterns (Table 5 are in good agreement with theory as well.
Writes are relatively constant, corresponding mostly to writing images, with sizes that are independent
of the number of visibilities. The �tted slope for the read curve is 32.16, a good match for 2 complex
numbers for the visibilities (16 bytes) and 2 �oats for the weights (8 bytes). This gives arithmetic
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Table 5: Number of of read/write operations as a function of the number of visibilities in the dataset, for one
gridding/de-gridding cycle using the ptsi test program.

Number of Visibilities Read Ops. Write Ops
1.5E+7 (14,586,240) 1.75E+10 1.55E+10
5.8E+7 (58,344,960) 1.54E+10 7.74E+9
8.8E+7 (87,517,440) 2.07E+10 1.55E+10
1.2E+8 (116,689,920) 2.44E+10 1.04E+10
2.3E+8 (233,379,840) 4.21E+10 1.58E+10
8.8E+8 (875,174,400) 4.32E+10 1.55E+10

3.5E+9 (3,500,697,600) 1.22E+11 1.55E+10
1.1E+10 (10,502,092,800) 3.59E+11 1.55E+10

Table 6: Measured parameter summary.

Algorithm Operations per Visibility (FLOPs/Vis) Arithmetic Intensity (FLOPs/Byte)
Standard Gridding 1280.8 40
A-projection 7472.8 233
W-projection 21768.4 670
AW-projection 39704.8 1240

intensities (ratio of number of operations per byte read) of 40 FLOPs/byte for standard gridding,
233 FLOPs/byte for A-projection, and 670 FLOPs/byte for W-projection. The projected arithmetic
intensity for AW-Project is 1240 FLOPs/byte. These intensities are shown superimposed in the roo�ine
model graph in Figure 3. The execution is CPU-bound (i.e., not I/O limited) for the di�erent levels of
hierarchical memory in the machine. The required �le system bandwidth for the system to continue to
be CPU-bound is 325 MB/s (13 GFLOPs/s / 40 FLOPs/byte). Note that this is the I/O bandwidth
required per core. In order to be able to sustain the high aggregated bandwidth required, strategies
like copying data to fast NVME-based local storage can be applied.

6 Results and discussion

The size of computing estimation for each ROP use case is shown in Table 7. We emphasize the main
result from this table:

ngVLA will require a system capable of sustaining a throughput of 50 PFLOPs/second
in order to process an ensemble of observations that generates a similar load
than the ROP. This places the ngVLA data processing center in the super-
computer class.

The most demanding cases are high data rate spectral line observations with a large number of

Table 7: Require size of computing for each ROP use case.
UC Fraction Data Rate Required System Perf.

1 9% 0.081 GB/s 0.234 PFLOPs/s
2 4% 0.240 GB/s 0.231 PFLOPs/s
3 4% 108.046 GB/s 611.764 PFLOPs/s
4 1% 80.144 GB/s 453.780 PFLOPs/s
5 1% 132.602 GB/s 750.799 PFLOPs/s
6 4% 6.650 GB/s 37.655 PFLOPs/s
7 1% 3.330 GB/s 18.853 PFLOPs/s
8 1% 3.367 GB/s 19.065 PFLOPs/s
9 2% 0.012 GB/s 0.070 PFLOPs/s
10 1% 0.012 GB/s 0.070 PFLOPs/s
11 1% 0.006 GB/s 0.035 PFLOPs/s
12 7% 3.591 GB/s 20.333 PFLOPs/s
13 11% 0.166 GB/s 6.886 PFLOPs/s
14 13% 0.005 GB/s 0.058 PFLOPs/s
15 7% 8.164 GB/s 23.512 PFLOPs/s
16 7% 1.212 GB/s 3.491 PFLOPs/s
17 4% 2.260 GB/s 202.056 PFLOPs/s
19 24% 0.005 GB/s 0.013 PFLOPs/s

Average 7.665 GB/s 49.606 PFLOPs/s
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Figure 3: Roo�ine model with superimposed arithmetic intensities. The roo�ine model was obtained by
using the CS Roo�ine toolkit (https://bitbucket.org/berkeleylab/cs-roofline-toolkit/src/
master/) over the same machine where the example imaging run from Figure 1 was executed. This
plot shows how gridding is CPU-bound when running in this machine, i.e., the arithmetic intensities
are large enough to not intersect the red lines representing the bandwidth of the hierarchical memory
levels. A �le-system bandwidth of 325 MB/s would be necessary for the system to continue being
CPU-bound. Note that if the maximum performance of the system is increased (the blue horizontal
line), then there is a point where the system becomes memory bandwidth constrained. This case is
common in GPU implementations, which have both high processing power in the cores, and relatively
small memory sizes.
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channels (KSG2 cases 3-5). Parallelization for these cases is highly e�cient because each channel
can be imaged independently. The next most demanding use cases are wide-�eld high dynamic range
imaging cases which are not generally time sensitive (e.g. KSG4+5 case 17), and the rest of the cases
demand lower post-processing system performance.

A mitigation strategy for the most demanding low frequency wide �elds would be to reduce the
e�ective imaging dynamic range delivered by the project. This mitigation can be removed later,
with the expectation that the necessary resources will become more a�ordable during operations or
additional resources can be added to the project (like on-demand Cloud computing). Improvements
in algorithms, which sometimes have a dramatic positive e�ect on the required computing cannot be
ruled out.

The time sensitive cases (e.g., LIGO follow-ups) should not demand high computational loads. A
rapid imaging mode has been added to the science requirements to address these cases, allowing for
prioritization of post processing resources for time-sensitive observations. Even with low parallelization
e�ciency, this ensures that there should not be a loss of signi�cant follow up science or scienti�c
viability.

The distribution of the computing processing loads generated by each use case is shown in Figure 4.
The most demanding cases (KSG2 cases 3-5 and KSG4+5 case 17), although comprising only 10% of
all observations, generate roughly a 44 PFLOPs/s load, while all the other observations generate 6
PFLOPs/s. In order to preserve the quality of service for less demanding observations, the computing
resources can be partitioned into a 44 PFLOPs/s cluster that is used exclusively to serve them (or
similar high processing load observations), and a 6 PFLOPs/s cluster that will process the rest of
the observations. Otherwise, computationally simpler observations that have latencies on the order of
minutes or hours would queue behind long-running observations that have latencies in the order of days.
This partitioning is not necessarily static, it can be made dynamic depending on the characteristics of
the pending observations in the processing queue. This is usually taken care by cluster management
middleware.

Of course, most individual days will not match the ROP distribution exactly. While the NRAO
resources will keep up on average, the latency for individual observations will vary. The computing
latency (or processing time) distribution for the reference observing program observations assuming
4-hour duration for each observation is shown in Figure 5. As the computational resources have been
sized to sustain the throughput, the distribution of processing latencies is centered around 4 hours.
However, given the high variance of computing loads in the speci�c science cases in the ROP (5 orders
of magnitude), the latencies are also widely spread.

7 Conclusions

The primary goal of the work described in this memo is to develop a reliable estimate of the ngVLA
size-of-computing (SofC). The necessary pre-requisite for this are: (a) identify the algorithms required
and develop scaling laws, (b) identify the computing hot-spots for an end-to-end data reduction, and
(c) establish a veri�able procedure for measuring the e�ciency of the code.

The computing required for imaging contributes dominantly to the end-to-end ngVLA SofC. The
cost of imaging is in turn dominated by the computation of the derivative (a.k.a. the �major cycle�;
Sec. 1.2). We used simulated data with the data volume in the 107−10 visibilities range. While the
actual ngVLA data size will be signi�cantly larger, due to resource limitations we cannot use full scale
data sets. Instead, we developed theoretical parametric scaling laws (Sec. 3) for the required algorithms
(Sec. 2.1) and �tted them to the measured metric to determine the parameters. We performed our
tests on a single CPU core, which provides a baseline for the performance of parallel execution tests
in the future. For measuring performance, we used a standalone application for the necessary imaging
algorithms implemented in the CASA C++ libraries and instrumented it with Score-P (Secs. 4,4.1.2)
to record various performance metrics. These were then extrapolated to determine the ngVLA SofC for
various representative ngVLA KSGs (Sec. 5). We estimate an error of 10−20% on these measurements.
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Figure 4: Computing load distribution to sustain throughput for the observations in the ROP.

Figure 5: Estimated post-processing latency distribution for the science cases de�ned in the ROP,
assuming that each observation has a duration of 4 hours, and the data is processed by a 50 PFLOPs/s
cluster partitioned in 6 PFLOPs/s to serve less-demanding cases, and 44 PFLOPs/s to serve KSG2
and KSG4+5.
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Due to measurement errors and need to extrapolate, the SofC estimates are necessarily approximate
and should be treated as estimates within a factor of a few. Based on these measurements, we estimate
that the ngVLA will require computing system rated for about 50 PFLOPs/s throughput. A few KSGs
(speci�cally, KSG2s) dominate this overall SofC estimate.

Implementations based on GPUs and FPGAs have the potential to signi�cantly reducing the cost
of the required system. Our research for exploring implementations on GPUs and FPGAs is on-going.
The SofC estimates could also be lower if higher throughput (higher e�ciency) implementation is
demonstrated on these massively parallel systems.

From these estimates, our conclusion is that the ngVLA processing will require parallel processing
at a relatively massive scale. Parallelization e�ciency and it's scaling with parallelization breadth
are key inputs for designing such a system. Developing a procedure and measuring these parameters
is therefore important. Imaging spectral cubes with a large number of spectral channels dominates
the overall SofC estimates. Since this requires independent imaging of each spectral channel (or a
combination of a few channels), the parallelization e�ciency for it can be high. For estimates in this
memo, we used a value of 80% for cube-imaging parallelization e�ciency. Actual measurement of this
parameter is the primary goal of a follow-up memo.
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