
High performance gridding
ngVLA Computing Memo #5

Martin Pokorny

31 August 2021

We describe the design of a high performance gridding and degridding implementation
for imaging codes capable of running on CPU and GPU architectures. An algorithm for
the computational kernel of the convolutional resampling and summation of values on a
fine regular grid onto a coarse regular grid, also known in aperture synthesis imaging as
gridding, is described. An algorithm for the inverse operation, degridding, which is also
required for imaging codes, is described as well. Both algorithms have been designed for a
high degree of parallelism, as well as efficient access to arrays required by the algorithms,
on both CPU and GPU architectures. The optimization of algorithm design parameters
for different architectures is described. The performance of an implementation of the
computational kernels in a new software library on various processors is presented, and
is also compared with the performance of equivalent kernels derived from current CASA
code. Scaling of algorithm performance with application or data-dependent parameters
is measured.

Introduction

For image reconstruction (Rao et al. 2009), in every step of the iterative algorithm’s outer loop
(ormajor cycle), the raw visibility data in the UV plane are resampled onto a regular grid. Once the
data have been resampled onto the grid, several iterations of the algorithm’s inner loop (or minor
cycle), which operates only on the resampled data, are executed. After a minor cycle completes, the
gridded visibility data are then degridded, and another iteration of the major cycle may begin. While
the shares of the total work of imaging that are done by the major cycle and the minor cycle may
differ significantly for various imaging tasks, in many cases, the sheer difference in quantity of data
managed by the major and minor cycles determines that the bulk of the work is done in the major
cycle, and that work is itself dominated by the work of gridding. As an example, for typical VLA or
ALMA imaging, the number of raw visibilities is roughly on the order 1010, while the size of the grid

1



(i.e, image) summed over all channels and polarizations is on the order 108.1 The work done by the
major cycle in gridding will often dominate the work done by the minor cycle in these cases. For
ngVLA, data sizes and image sizes both will be significantly larger on average, but it is expected
that the computational work of gridding will continue to be the dominant share of computation
required for imaging (Bhatnagar, Hiriart, and Pokorny 2021).

In this memo, we describe the design and implementation of a code library for gridding and degridding
that is capable of running efficiently on both CPU and GPU processors, and which supports all
functionality needed for use by a full imaging code (e.g, CASA tclean (“Synthesis Imaging Using
CASA tclean” n.d.)). The library provides support for full Stokes imaging, sparse Mueller matrices,
and access to residual and predicted visibility products. The gridding code has been implemented in
a library accessible to client codes executing on CPU hosts, with a high-level interface that manages
(potentially) asynchronous communication and computation with accelerator processors (GPUs).

Performance of the library using several different processor types over a wide range of imaging
parameter space was measured, and also compared with the equivalent code that currently exists in
CASA. Finally, we summarize the current state of the effort to integrate the GPU implementation of
the gridding code with CASA imaging code, and provide a preliminary assessment of the potential
impact of the current implementation on the estimated cost of the ngVLA imaging pipeline computing
infrastructure.

Gridding kernel

In describing the algorithm for the gridding kernel below, we generalize the data types and context
somewhat, to bring focus to the algorithm and not its application. The input to the gridding kernel
comprises a measured data set of some quantity measured at points on a two-dimensional fine grid,
and a convolution function kernel (on R2) with bounded support. The output comprises a resampled
data set of the same quantity defined on points of a coarse grid, where the linear size of the coarse
grid divides the linear size of the fine grid by an integer oversampling factor in each dimension2.

To be precise, we define the following. Let the size of the coarse grid G in either dimension be DG,
and let Q be the oversampling factor. We then define the fine grid GQ to be the grid with a size in
each dimension of QDG.

Next, let NV be the number of points in the measured data set. Each element of the measured
data set comprises a scalar v in some field F , and a point x on the fine grid. The elements in the
resampled data set S will comprise a single value in F for every point on the coarse grid G.

Finally, let DC be the maximum size over all dimensions of the convolution function kernel support on
the fine grid. Without loss of generality, we assume Q divides DC

3. Thus we define the convolution
kernel on the fine grid by its values C(x, y).

1Values for number of visibilities and pixels in images may vary widely; examples are representative of only some
common cases.

2In general, both the coarse and fine grids will have multiple planes (i.e, channels, polarizations, etc). Although in
this memo we only consider the case of a single plane for both measured and resampled data, the generalization of
the algorithm to multiple planes is straightforward.

3Otherwise, extend the convolution kernel with zero values to a domain of size dDC/QeQ.

2



With these definitions, we can define the gridding calculation as

S(A, B) =
∑

(v,(x,y))∈V

vC(QA− x, QB − y) (1)

Using the coordinates of points in the measured data set, we partition the data set according to
the value of q ≡ x mod Q ≡ (x mod Q, y mod Q). We define the minor grid GQ as those points in Z2

with coordinates in [0, Q)2, and then the subset Vq of V as Vq ≡ {(v, x) ∈ V : x mod Q = q}. With
this partitioning, equation 1 becomes

S(A, B) =
∑

q∈GQ

∑
(v,(x,y))∈Vq

vC(QA−Qbx/Qc − q0, QB −Qby/Qc − q1) (2)

Finally, the above equation suggests the definition of a family of convolution kernels on the coarse grid:
for (q0, q1) ∈ GQ, let ĈQ

(q0,q1)(X, Y ) ≡ C(QX − q0, QY − q1). Which leads to the final formulation of
the gridding algorithm:

S(A, B) =
∑

q∈GQ

∑
(v,(x,y))∈Vq

vĈQ
q (A− bx/Qc, B − by/Qc) (3)

Algorithm design

To convert equation 3 into executable code, it is important to realize that all the values in the family
of convolution kernels on all grid points in G can be indexed by a four dimensional array. The
arguments to the functions ĈQ

q in equation 3 all lie on points on the coarse grid, and all function
values must be identically zero on all points outside of the support of the convolution kernel on
the coarse grid, or [0, DC/Q)2. Using an ordered index corresponding to the values coarse-grid-X,
minor-grid-x, coarse-grid-Y, minor-grid-y, the values of the entire family of convolution kernels can
be stored in a four-dimensional array of size K ∗Q ∗K ∗Q, where K ≡ DC/Q.

With this transformation, the algorithm to compute equation 3 may be written in pseudo-code as

1 int G; // grid size
2 int N; // measured data set size
3 int K; // convolution function kernel support size (coarse)
4 int Q; // oversampling factor
5 T v[N]; // measured data values
6 int x[N], y[N]; // measured data locations (fine)
7 T g[G, G]; // resampled data values
8 T c[K, Q, K, Q]; // convolution function kernel values (fine)
9 for (int i = 0; i < N; ++i)

10 for (int X = 0; X < K; ++X)
11 for (int Y = 0; Y < K; ++Y)
12 g[X + x[i] / Q, Y + y[i] / Q] +=
13 v[i] * c[X, x[i] % Q, Y, y[i] % Q];

3



Memory access analysis

Referring to the previous pseudo-code algorithm, it is seen that every iteration of the innermost
loop (line 11) requires one multiplication (of a measured data value and convolution kernel value),
and one addition (to a resampled value). The total number of floating point operations is thus two
or eight, depending on whether F is the field of real numbers4 or complex numbers5, respectively.

The number of memory accesses required for every iteration of the innermost loop of the pseudo-code
algorithm amounts to three reads of scalar data values, one write of a scalar data value, and two
reads of position index values. To make a rough estimate of whether this algorithm will be memory-
or compute-bandwidth bound, we will ignore the access to index values. For simplicity, we will also
assume that each measured data value will be read only once, in the outermost loop (line 9), and
not in every iteration of the innermost loop6. Given these assumptions, the ratio of floating point
operations to accessed floating point values over all loop iterations is 2NV K2/[NV (3K2 + 1)] or
8NV K2/[NV (6K2 +2)], depending on whether F is the field of real or complex numbers, respectively.
Assuming that all floating point values are single precision (four bytes), we find that, for large values
of NK , the arithmetic intensity of the algorithm is approximately 0.17 or 0.33 (FLOPs per byte).
These values of arithmetic intensity are far below the typical machine balance7, suggesting that the
algorithm will be memory-bandwidth limited. Note also that for many applications, the resampled
data will have double precision, which will only drive the arithmetic intensity lower.

The preceding model is incomplete — it does not include degridding, calculations to convert visibility
UV coordinates to grid coordinates, phase screen calculations, or integer index calculations, among
other omissions8 — but the arithmetic intensity is low enough that gridding is unlikely to be shown
to be compute limited in a more complete model. Efforts to optimize the gridding kernel should,
however, be based on measured, not model, values.

Parallel algorithm description

In a typical application of the gridding kernel, the size of the measured data set is significantly larger
than the number of points in the coarse grid. On the basis of that consideration, parallelization
of the outermost loop of the pseudo-code algorithm is highly desirable. On the other hand, the
resampled data values on the coarse grid are accessed many more times than the measured data (by
a factor K2), and the algorithm is memory bandwidth limited, so iteration over the inner loops of
the pseudo-code algorithm should also be parallelized, but in such a manner as to optimize efficient
access to the resampled values on the coarse grid.

4One multiplication and one addition.
5One complex multiplication, requiring four floating point multiplications and two floating point additions, and one
complex addition, requiring two floating point additions.

6The calculation can be repeated for the other cases, but which case occurs in practice will depend on the details of
how the code is written, and what optimizations a compiler applies.

7Published specifications of the NVIDIA V100 PCIe GPU assert double-precision performance of 7 TFLOPS, and
memory bandwidth of 900 GB/sec, which yields an estimate of the machine balance of (7× 1012)/(900× 109/8)/8,
or about 7.8 double precision FLOPS per byte.

8Note that the value of the effective machine balance may change with the memory holding accessed values (register,
L1 cache, L2 cache, main memory, etc), but the arithmetic intensity, being a characteristic of the gridding algorithm,
remains independent of those factors.

4



In many cases, however, the measured data values are not sorted in any regular order on the fine grid,
and this limits the efficiency that might be otherwise achieved by exploiting known access patterns
on the coarse grid. In addition, were there a sort order that could be exploited, parallelization of the
outermost loop would likely destroy that order, resulting in the loss of the potential gain. Any sorting
of the measured data that could provide a boost to coarse grid access efficiency in the presence of
outer loop parallelization would thus likely need to be aware of the degree of parallelization used by
the implementation in the outer loop, potentially complicating the sorting algorithm, or imposing
rigid constraints on the parallelization in the outermost loop.

Given that parallelization over the measured data set in the outer loop of the pseudo-code algorithm
will create updates to resampled data values in an irregular, unpredictable order on the coarse grid,
synchronization among units of execution for updates to the resampled data values is a necessity.
Therefore, given the parallelization of line 9 in the pseudo-code algorithm, the update to the
resampled data value in line 12 must be protected by some form of synchronization.

Optimizing efficient access to the resampled values on the coarse grid within the inner two loops
requires exploiting the relation between array layout order in memory and memory access character-
istics of the target computer architectures, whether CPU or GPU9. The flexibility of the pseudo-code
algorithm with regard to array layout order is critical to achieving this goal. In particular, changing
the domain of the convolution kernel from the “natural” two dimensions to four is an important
characteristic of the algorithm in this regard. Note that given a logical definition of the array
dimensions, the permutation of those dimensions in regard to the layout does not affect the logical
order of those dimensions, which allows for the algorithm implementation logic to remain independent
of layout.

Multi-dimensional array layouts are particularly important to determining the efficiency of access to
array elements in memory within loop constructs. Depending on the computer architecture, the
strategies needed to optimize memory access are significantly different. Controlling array layouts is
an effective method of optimizing memory access for both CPU and GPU architectures. There is a
single general pattern in loop constructs to be followed to achieve efficient memory accesses for each
of typical CPU and GPU architectures. In the case of CPUs, a thread’s access is efficient if logically
sequential accesses to values are also sequential in the memory address space, allowing for optimal
cache memory usage. In the case of GPUs, a thread block’s access is efficient if consecutive threads
in the block access consecutive values in memory at once, allowing for optimally coalesced memory
access. In general, these access patterns can be achieved either through implementation logic or
through array layouts.

Thus the following design elements are key to the high performance version of the pseudo-code
algorithm: parallelization of the loop over measured data (line 9), synchronization among parallel
units of execution in the access to resampled data (line 12), parallelization over the support of one
or both dimensions of the convolution kernels (lines 10 and 11), and array layout optimization of the
arrays for resampled data and convolution kernels (lines 7 and 8, including four dimensional index for
the convolution kernels). High performance gridding can be expected to be limited by the following

9By “layout” we refer to the mapping from a logical array index to a linear memory address offset. In normal usage,
for the C and C++ programming languages, multi-dimensional arrays are stored in “row-major” layout, while for
the Fortran programming language, arrays are stored in “column-major” format. The notion of row-major and
column-major orders for multi-dimensional arrays is generalized by layouts. For dense, multi-dimensional arrays,
the options for regular, dense layouts are equivalent to permutations of the dimensions of the array.

5



factors: latency for the first access to the resampled values on the coarse grid for each measured data
value, cost of synchronization in the access to resampled data, and memory access efficiency of the
loops over the convolution kernel support. Because of the unordered access to points on the coarse
grid that is a result of the unordered measured data (plus parallelization), every iteration of the
outermost loop will likely have a high latency cost because the resampled data for the points on the
coarse grid that are to be updated will not be in “near” memory at the beginning of that iteration.
The latency cost of each measured data point will be only weakly dependent on other factors such
as grid size, convolution support size, oversampling factor, or the set of all points in the measured
data, and we may consider it to be a fixed value (on average) per measured data point. The cost of
synchronization to update the resampled data will depend upon the synchronization method, but,
on average, may be expected to be a function of the level of contention. The level of contention may
depend upon many factors, such as the method of synchronization, the degree of parallelization, the
size of the measured data set, the coarse grid size, and the convolution kernel support size. The
memory access efficiency to the grid by the inner loops will depend on the array layouts of both the
resampled data and the convolution kernel. With the right layouts, the algorithm’s performance
should approach the limit set by the maximum memory bandwidth of the computer architecture
as the convolution kernel support size increases (disregarding, for the moment, the other limiting
factors discussed previously). Note that for GPU architectures, typical convolution kernel support
sizes are far too small to utilize the maximum memory bandwidth in the inner loops, and therefore,
all else being equal, the convolution kernel support size will be the determining factor for realized
memory throughput by the algorithm.

Additional features

Full Stokes imaging with Mueller matrices

For high quality, full polarization imaging, it is necessary to model the complete Mueller matrix.
Whereas all imaging may be described with Mueller matrix components, in many applications several
components of the matrix are identically zero, potentially reducing both memory (along with device
I/O) and compute loads. To realize the potential gains of identically zero Mueller matrix elements,
an efficient, sparse representation of the matrix may be beneficial. The Mueller matrix affects the
selection of convolution kernels used in both gridding and degridding.

Full Stokes imaging of course assumes that visibilities being gridded exist in the form of various
polarization products. During gridding, for every point on the fine grid, the Mueller matrix linearly
combines the various polarization products of the visibilities measured at that point to compute
the update to a point on the coarse grid. Consideration of computational efficiency thus suggests
that the incremental update (i.e, the linear combination of visibilities) be computed first, to be then
followed by a single update to a point on the coarse grid. These considerations lead to the conclusion
that it may be most efficient to organize visibilities into groups containing all polarization products
at every point on the fine grid.

6



Sum of weights

In order to compute the correct normalization of the values resampled onto the coarse grid, it is
necessary to compute the sum of the convolution kernel values used for gridding each visibility to
every Stokes plane in the coarse (image) grid, multiplied by a weight associated with the visibility,
summed over all visibilities. The sums of convolution kernel values may be implemented using
reductions to short vectors (of length equal to the number polarization products in the visibility
data) in the innermost loops over the domain of the convolution function kernel in pseudo-code
algorithm in order to restrict memory accesses to local memory, followed by a single update to a
global array of weights, one per visibility. As the updates to the sum-of-weights global array occur in
parallel over the set of visibilities, these updates must also be synchronized. Finally, the computation
of the sum of weights should be optional, as the sum does not change from one major cycle to the
next, and thus the cost of its computation may be avoided by the majority of major cycles.

Degridding

A single major cycle of the iterative imaging algorithm begins with the gridding phase, in which
residual, measured visibilities are resampled onto a regular grid, and the cycle completes with the
degridding phase, in which model visibilities are constructed at the coordinates of the measured
visibilities from the residual image. The degridding algorithm is closely related to the gridding
algorithm, and requires very similar inputs and operations as the gridding algorithm.

An important difference of degridding from gridding is that in degridding the visibilities are updated,
and the model values are only read, not written. When the outer loop over visibilities is parallelized (as
in gridding), the access pattern of visibility values in degridding does not require synchronized access
at this level. Additionally, because model values are read-only during degridding, no synchronization
is required to access those values.

The grouping of visibilities across polarization products can also be exploited by the degridding
algorithm. In degridding, similar to gridding, there exist two, nested loops over the domain of the
convolution function kernel (on the coarse grid). These inner loops may be implemented using
reductions to short vectors (of length equal to the number of polarization products in the visibility
data) to accumulate the contributions of the product of model and convolution function kernel over
all points in the domain of the convolution function kernel to every visibility polarization product.

Residual and predicted visibilities

At the conclusion of imaging, it is often desirable to produce the final, residual visibilities. Similarly,
it can be useful to produce predicted visibilities, that is the visibilities at the coordinates of the
measured visibilities but based entirely on the model visibilities.

7



Convolution kernel phase screen

For the correction of some pointing offsets (for example, a difference in antenna pointing center and
correlator phase center) a complex phase gradient can be applied to the convolution kernel during
gridding and degridding. On-the-fly calculation of the correction factors given user-supplied phase
gradient values, and their application during gridding and degridding is an efficient strategy given
the memory-bandwidth limited nature of the gridding and degridding algorithms.

Efficient I/O to accelerators

Effective use of GPU accelerators often requires the ability to overlap data movement between
CPU and GPU memory with computation on the GPU. Further contributions to efficiency are
possible by overlapping work on the CPU host with the asynchronous progress of GPU tasks. The
implementation of a software library that implements high performance gridding should support
these optimizations to promote efficiency in the use of high performance gridding by client CPU
codes.

Implementation

HPG

The implementation of high performance gridding is available in the HPG project. The main
repository of the HPG source code is located at https://gitlab.nrao.edu/mpokorny/hpg. The
primary build artifacts are a library, libhpg, and C++ header files for use by client codes. A secondary
build artifact is minigridder, a mini-app designed for HPG code debugging and profiling10.

Full Stokes imaging with Mueller matrices

For full Stokes imaging, in both gridding and degridding, the visibilities for multiple polarization
products are combined according to the values of a Mueller matrix. For this reason, it is computa-
tionally efficient to represent groups of visibilities that share common metadata and differ only in
their polarization product identities. An additional benefit of such a representation is the reduction
of (repeated) metadata that would otherwise be associated with each visibility separately. However,
as the visibilities must often be copied into device memory prior to gridding or degridding, to reduce

10The minigridder mini-app, which was used for many of the performance tests reported in this memo, has been
subject to significant changes since those original tests were conducted. For example, a previous version of
minigridder included the CASA gridding algorithm as an option, in which the relevant CASA gridding source
code (for A/W-projection) was copied to minigridder and modified with the bare minimum of changes needed
to function in minigridder (in the attempt to maintain fidelity with the original CASA code.) However, later
development of additional HPG features required changes to minigridder that were difficult to integrate with the
CASA gridding algorithm option, and thus that option was subsequently removed. Similarly, previous minigridder
versions provided options to control array layouts in order to measure their effect on performance, but these options
have also been removed. Metrics reported by minigridder, such as utilized memory bandwidth, have also been
removed as the gridding/degridding algorithms developed further.

8

https://gitlab.nrao.edu/mpokorny/hpg


device I/O as well as device memory usage, it is important to minimize the size of the groups of
visibilities. For the support of efficient representations of visibility groups, the size of the visibility
groups is determined at compile time by HPG client code.11

The elements of a Mueller matrix used for imaging may be considered as convolution operators. It is
not only sufficient to implement the elements of a Mueller matrix as indexes in an ordered set of
convolution kernels, but it is also efficient to do so when a single convolution kernel may be indexed
by multiple elements of the Mueller matrices used for gridding or degridding. An additional measure
of efficiency is gained by representing identically zero convolution operators by a special, sentinel
index value for those elements in the Mueller matrix, thus potentially avoiding some floating point
operations, as well as reducing memory requirements. In HPG we implement this as follows: given
a set of convolution kernels C = {C0, C1, ..., CN−1}, where none of the Ci is identically zero, then
the Mueller matrix elements are integers Mi,j ∈ {−1, 0, 1, ...N − 1} where an element with value -1
indicates an identically zero convolution kernel.

In current CASA and HPG degridding and gridding code, it is assumed that the Mueller matrix is
unitary. In HPG, while the representation of Mueller matrices described above is fully generic, the
assumption of a unitary Mueller matrix is manifest in the implementation of the degridding and
gridding kernels. Although it would be simple to support the general case in HPG without a change
to its API, this would generally impose a runtime cost in memory usage12, and therefore we have
opted for simplicity over generality, and consistency with CASA at this time.

Degridding

During degridding, the coordinates of each visibility are used to evaluate the model at those
coordinates. Degridding a visibility requires write access to local variables, and read-only access to
the visibility, model values and convolution kernel values.

The degridding kernel is distinct from the gridding kernel. While this design requires an additional
traversal of visibility data, experiments indicate that overall performance improves on many-core
processors and GPUs with this design.

Gridding

Gridding a visibility requires write access to global variables (the grid values), and read-only access
to the visibility and convolution kernel values. Write access to global variables in a parallel program
requires synchronization to values that are updated to prevent interference by other threads of
execution; in HPG, we implement this with atomic updates, which is an efficient technique for GPU
processors.

11The HPG type is VisData<N>, where the template parameter N is an unsigned integer in the set {1, 2, 3, 4}.
Additionally, the type VisDataVector represents the type std::vector<VisData<N>> with the parameter N being
erased, both for use by client code and to provide isolation of the HPG API from its implementation.

12The additional memory requirement could be avoided with the addition of new methods in the HPG API, however.

9



Residual and predicted visibilities

For some use cases the HPG client may need to access the residual visibilities, or the difference
of measured and model visibilities at the coordinates of the measured visibilities. Typically, the
residual visibilities are only accessed at the end of imaging. Another use case requires access to
the predicted visibilities, or the model visibilities at the coordinates of the measured visibilities.
In order to support asynchronous progress of computation on capable devices (e.g, GPUs), both
of these values are returned as “futures.” The HPG future types are somewhat different from the
usual std::future types in that completion can only occur during a call to an HPG Gridder or
GridderState method or function, despite computations continuing asynchronously on capable
devices. Because of this design, a blocking call to something like std::future::wait() would be
prone to deadlock (assuming single-threaded client code). The typical usage in HPG, rather, is to
call hpg::future::get() to poll the state of the hpg::future value. Futures are always assured
to have completed after a call to the fence() method of Gridder or GridderState.

The choice of predicted or residual visibilities depends on whether the operation is only degridding,
or both degridding and gridding. In both cases, the evaluation of predicted or residual visibilities
takes place after degridding (if selected), and before gridding (if selected).

Convolution kernel phase screen

Convolution phase gradients are provided by client code as input for gridding and degridding as part
of the metadata of each group of visibilities. Complex phase values derived from phase gradients are
computed and applied to the convolution kernels on-the-fly, as needed, for degridding and gridding.
Following testing conducted during development, it was determined that the application of the phase
screen has no negative performance impact, and therefore a phase screen is always applied by HPG.
If no effective phase screen application is to be used, users can simply provide zero-valued phase
gradients where they are required.

Array layouts

Performance of gridding and degridding is sensitive primarily to the layout in memory of the arrays
used to represent the convolution kernels, the grid values, and the model values. HPG ensures that
there is a distinction in the client-side representation of these arrays from the HPG implementation
side in order that array layouts used by HPG can be optimized to every supported processor type
independent of client code. Nevertheless, for improved efficiency in data transfer to device memory
during gridding, HPG has added support for clients to reorganize convolution kernel values into
optimal layouts for devices in host memory. This capability allows storing those arrays in persistent
memory well ahead of time, outside the imaging process itself, and then loading those arrays to
device memory without the cost of reorganization during imaging.

10



Asynchronous data transfers

HPG supports asynchronous data transfers between host and device memory on all devices that
are capable. Quantities that allow asynchronous transfers are convolution kernels, model values,
data visibilities and residual or predicted visibilities. HPG implements a task queue of limited
size, determined by the client code, for asynchronous device tasks. Although calls to most HPG
functions may be non-blocking in many cases, those functions may block when the task queue is full.
The primary purpose of limiting the size of the queue is to control the use of device memory for
degridding and gridding.

Testing

Phase 1

Phase 1 testing was conducted using an early version of HPG13 and minigridder, with the primary
goal of demonstrating the performance effects of array layouts, and for a comparison with CASA
gridding performance.

All phase 1 performance tests were conducted on the machine “yaghan.aoc.nrao.edu.” This machine
has 256 GiB of RAM, a dual socket 16-core Intel Xeon Gold 5222 CPU @ 3.80 GHz, and an NVIDIA
Tesla V100 GPU with 32 GiB RAM. Compiler options were used to create the minigridder executable
for the “cascadelake” x86_64 micro-architecture, and the “7.0” NVIDIA compute capability. In
order to match the types used for gridding in CASA, all reported tests have used single-precision
complex values for the measured data and the convolution kernel, and double-precision complex
values for the resampled data.

Layout tuning

The selection of optimal layouts for the multi-dimensional arrays used in high performance gridding
ought to be relatively simple. But before describing the method used to optimize array layouts, it is
useful to introduce the encoded descriptions of layouts used by minigridder, both as a shorthand
in this discussion of layouts, and in following descriptions of trial configurations and their results.

Layouts used by minigridder may be encoded by a short string of characters: X and Y for the coarse
grid dimensions, and x and y for the minor grid dimensions. A layout is specified by concatenating
the characters from the set that describes the logical array dimensions, but in order from smallest
stride (in memory) to largest stride. For example, the coarse grid G, with logical array indexes
X and Y , is encoded by the string “YX” for row-major layout order, and “XY” for column-major
layout order.

The layouts for the convolution kernel array are somewhat more diverse; with four dimensions, there
are 4! possible layouts. Also of note is that each of the two “usual” two dimensional array layouts is
equivalent to one of the four dimensional layouts. For example, the four dimensional layout “xXyY”
13The original demonstration version of the gridding kernel implementation went by the name “HTG,” which one may

still find in some of the following plots.

11



yields the same layout of values in memory as the original two dimensional array in column-major
order. This feature allows for a single convolution kernel array instance needed for CASA as a
two-dimensional array to be created and used by minigridder as a four-dimensional array.

The principles of cached access to CPU memory, and coalesced access to GPU memory, suggest the
following heuristic (table 1) for optimal array layouts for the high performance gridding algorithm

Table 1: Optimal array layout heuristic
device grid ck
CPU YX YX..
GPU XY XY..

where the . characters are used to indicate an indeterminate choice (of x and y, in the case of the
convolution kernel array). Because the dimensions x and y do not correspond to any loop indexes,
the effect on performance of their position in the layout is less significant than the positions of X
and Y, as well as being more difficult to predict.

The optimal array layouts may not necessarily agree with those determined by the above heuristic.
The actual effect of the array layouts on performance may depend upon specific details of a processor,
such as cache size and instruction set, the compiler used to build the executable, or the problem
shape. While one could identify the optimal array layouts for each of these cases, for the purposes of
this memo we wish simply to evaluate the quality of the heuristic, and to provide an illustration of
the effect of array layouts.

The following table 2 shows the effect on performance of various array layouts for one example
problem shape. While only some of the forty-eight possible layout combinations are shown, those
include the best performing, the worst performing, the expected best performing by the heuristic,
and the two-dimensional equivalent layouts of the convolution kernel.

Table 2: Estimated memory throughput (GB/s) for selected table layouts. Other parameters: grid
size 10000, ck size 31, oversampling 40.

grid layout ck layout bw rel perf
XY XYxy 592 1.000
XY XYyx 592 1.000
XY YXxy 386 0.652
XY xXyY 335 0.566
XY yYxX 304 0.514
YX XxYy 51 0.086
YX xXyY 48 0.081
YX yYxX 47 0.079
YX yxXY 47 0.079

Note that the optimal layouts on the GPU agree with the layout heuristics, and also note that the

12



performance degrades significantly with many other layouts. In particular, note that for each grid
layout, the convolution kernel layouts that are equivalent to two-dimensional layouts are among the
worst performing.

Effect of synchronization

Here we measure the effect of synchronization on algorithm performance on a GPU. An atomic update
operation will likely have some fixed performance cost plus a cost that increases with increasing
contention14. Increasing the size of the measured data set (i.e, number of visibilities) while the grid
size remains fixed will result in increasing contention to updates on the grid. Results are shown in
table 3.

Table 3: Estimated memory throughput (GB/s), with and without synchronized grid value updates.
Other parameters: grid size 1000, ck size 11, oversampling 20, grid layout XY, ck layout
XYxy.

num vis sync bw no sync bw sync:no sync ratio
1e+04 576 638 0.90
1e+05 644 765 0.84
1e+06 651 779 0.84
1e+07 656 781 0.84
1e+08 667 796 0.84

Performance scaling

In this section we present performance scaling results with various problem shape parameters.

Grid size To measure the performance scaling effect of grid size, we control for the level of update
contention by also scaling the number of visibilities with the number of points in the grid, as shown
in table 4. While not presented here, similar results are obtained when the number of visibilities
remains fixed.

Table 4: Grid sizes and number of visibilities for grid size scaling trials (figure 1) .
gsize nvis
500 1.0e+04

1000 4.0e+04
2000 1.6e+05
4000 6.4e+05
8000 2.56e+06

14There are conditions under which atomic updates on GPUs are known to be faster than non-atomic updates, so the
fixed cost is by no means assured.

13



gsize nvis
16000 1.024e+07
32000 4.096e+07

Figure 1: Performance scaling with grid size. Other parameters: ck size 9, oversampling 20, grid
layout XY, ck layout XYxy.

The increase in performance for very small grid sizes is likely due to increased cache efficiency. A
grid of size 500 is small enough to fit entirely into L2 cache on the Tesla V100 GPU.

Number of visibilities The performance scaling effect of number of visibilities is effectively constant
(table 5). Because of overheads due to CUDA kernel launches, performance slightly improves for a
larger number of visibilities.

Table 5: Number of visibilities versus estimated memory throughput (GB/s). Other parameters:
grid size 10000, ck size 9, oversampling 20, grid layout XY, ck layout XYxy.

num vis bw
1e+04 357
1e+06 360
1e+07 367
1e+08 367

14



Convolution kernel support size Here we measure the performance scaling effect of the convolution
kernel support size. As has been described above, it is expected that the memory bandwidth will
improve as the support size increases, and to approach a limit determined by access latency to the
grid and the convolution kernel values. Results are shown in figure 2.

Figure 2: Performance scaling with convolution kernel size. Other parameters: grid size 10000,
oversampling 20, number of visibilities 1e6, grid layout XY, ck layout XYxy.

Performance comparisons

In this section we compare the performance of the high performance gridding kernel GPU implemen-
tation with the performance of the CASA gridding kernel CPU implementation in minigridder for
various problem shapes. All results compare the gridding rate of visibilities for high performance
gridding on a single GPU vs CASA gridding on a single CPU. Extrapolating these results to real
applications will require some caution, as there are significant factors that will affect outcomes. For
example, although the CASA gridder is single-threaded, in typical usage a single node will run
concurrent processes for an imaging job, and the scaling performance of those concurrent processes
will have some bearing on the comparison. Also, the GPU tests were conducted with a single kernel
running at a time; the performance effect of multiple, concurrent kernels on the GPU has not been
determined.

For the first test, we vary the size of the convolution kernel and the oversampling factor. The results
(figure 3) show that the high performance gridding kernel processes visibilities at a rate of at least
one hundred times that of the CASA gridding kernel, across the entire range of convolution sizes and
oversampling factors. This result also shows that the high performance gridder is largely unaffected
by the oversampling factor.

15



Figure 3: Performance of high performance gridding on GPU vs CASA gridding on CPU as a function
of convolution size and oversampling. Other parameters: grid size 10000

Phase 2

Performance tests in phase 2 were completed using a very recent version of HPG on two NVIDIA
GPU systems. As implemented, the degridding and gridding algorithms are expected to be most
efficient running on GPU systems; measurements for multi-core CPU performance have not yet been
completed.

The tests have been designed to measure the performance of the degridding/gridding kernel, specifi-
cally not including the I/O to move data between CPU and GPU memories. In a complete imaging
application the I/O might, in fact, become the performance limiting factor, but for the development
and evaluation of the degridding/gridding kernel, the I/O becomes a source of confusion and is
best omitted from the test. On the other hand, the HPG library is designed to support overlap-
ping computation and communication with capable devices. Ongoing work to integrate HPG and
CASA will provide a basis to evaluate the usability and effectiveness of the current HPG design for
asynchronous I/O, but the results of that work will only appear in a future memo.

Tests were conducted to measure the scaling of performance with various imaging parameters. The
most basic performance metric is the rate at which visibilities are processed, whether degridding,
gridding or both.

Test parameters:

• Convolution kernel (linear) size

– 2i + 1,∀i ∈ {3, 4, ..., 9}

16



• oversampling

– 10× 2i, ∀i ∈ {0, 1, ..., 6}

• devices

– V100
– A100

• Mueller matrix shape

– I1 (1x1 diagonal)
– I2 (2x2 diagonal)
– I4 (4x4 diagonal)
– D2 (2x2 dense)
– D4 (4x4 dense)

• sum-of-weights in gridding

– on
– off

• operations

– gridding
– degridding
– degridding and gridding

All scripts used to conduct the performance tests for this memo, and analyze the test data are
available at http://gitlab.nrao.edu/mpokorny/ngvla_hpg_memo, under the analysis sub-directory.
The test data itself can also be found at that web site under the data sub-directory. We provide
several plots here to summarize the performance data collected.

Test methods

As described below, HPG has been implemented using the Kokkos15 (Edwards, Trott, and Sunderland
2014) core libraries. For this performance test suite, we used the Kokkos profiling tools interface
to acquire timing data for the execution of gridding and degridding kernels. The Kokkos profiling
tools interface supports the acquisition of timing data to be enabled at runtime, without recompiling
HPG or minigridder16. The tool we use for gathering the timing metrics is timemory17 (Madsen et
al. 2020).

The regions of code for which timing metrics are collected by the test suite are as close as possible
for the Kokkos profiling interface to the gridding and degridding computational kernels alone. It is
important to understand that the overhead for most of these metrics has been reduced to only the

15Part of the Kokkos C++ Performance Portability Programming EcoSystem. For more information, see https:
//github.com/kokkos/kokkos.

16There is no significant impact to performance when Kokkos profiling is not enabled at runtime. The Kokkos profiling
tools interface is a permanent feature of Kokkos in recent versions.

17https://github.com/NERSC/timemory

17

http://gitlab.nrao.edu/mpokorny/ngvla_hpg_memo
https://github.com/NERSC/timemory
https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos
https://github.com/NERSC/timemory


kernel launch time18; in particular, no data movement to or from the memory used by the kernels is
included in the overhead. What this means for applications is that the timing metrics collected for
these tests represent the best possible performance of HPG, and applications may find that other
factors (not included in these measurements) are performance limiting.

Results

Test results are shown in the following sections with graphical plots. In many cases, plots contain a
set of graphs for various choices of HPG parameters. The names of parameters used in the plots
indicate the following:

• operation: HPG operation on visibility and/or model data

– grid: gridding only
– degrid: degridding only
– both: degridding and gridding

• mueller_indexes: shape of Mueller matrix

– I1: 1x1 diagonal
– I2: 2x2 diagonal
– I4: 4x4 diagonal
– D2: 2x2 dense
– D4: 4x4 dense

• ck_size: linear size of convolution kernel
• oversampling: convolution kernel oversampling factor

Performance with NVIDIA V100 GPU Tests were performed using the machine “yaghan.aoc.nrao.edu,”
which has one NVIDIA V100 GPU with 32 GiB Memory. Results are summarized in figure 4.

Performance with NVIDIA A100 GPU Tests were performed using the machine “hal-
dgx.ncsa.illinois.edu”19, which has eight NVIDIA A100 GPUs, each with 40GiB memory. Note that
the test suite uses only one GPU. Results are summarized in figure 5.

Relative performance of NVIDIA A100 to NVIDIA V100 Differences in performance of the V100
and A100 GPUs are not readily apparent in the log-log graphs of figures 4 and 5. For easier
comparison of differences, figure 6 depicts the ratios of performance metrics.

Note that the HPG source code used for the two models of GPU is strictly identical.

18Timing metrics used for this memo reflect what are close to the best possible externally visible measurements. For
example, timing for degridding followed by gridding (what is named the “both” operation, subsequently) is recorded
as a single measurement, although, internally, HPG will run two kernels in sequence.

19This work utilizes resources supported by the National Science Foundation’s Major Research Instrumentation
program, grant #1725729, as well as the University of Illinois at Urbana-Champaign.

18



Figure 4: Visibility processing performance for V100.

19



Figure 5: Visibility processing performance for A100

20



Figure 6: Relative performance A100 vs V100

21



Performance for choice of operation To highlight the performance differences for the various
operations supported by HPG — namely, only gridding, only degridding, or both degridding and
gridding — figure 7 depicts line graphs of the data shown in figures 4 and 5, but for a single value of
the oversampling factor (20).

Figure 7: Performance for oversampling factor 20

Performance for sum-of-weights computation

To show the performance effect of the choice of whether or not HPG computes the sum of weights,
we plot the ratio of performance metrics in figure 8.

Performance variation with oversampling factor

To show the performance effect of the oversampling factor, we plot the performance at a given value
of the oversampling factor relative to the performance at the minimum tested oversampling factor
(10) in figure 9.

22



Figure 8: Effect of sum-of-weights computation

23



Figure 9: Effect of oversampling factor

24



Evaluation

Dependence on GPU model

As the HPG source code is implemented using the Kokkos core libraries20, the identical source code
can be built to run on a specific version of GPU at compile time. Assuming that the gridding
kernel is memory bandwidth limited as described above, and memory accesses are to GPU system
memory, performance metric ratios between models of GPUs should be proportional to the ratio of
GPU memory bandwidths. This description of expected relative performance is, of course, based
on a simple model, and actual relative performance will depend on detailed differences of GPU
architectures, as well as the ability of the Kokkos core libraries to optimize code for each architecture.
As the memory bandwidths of the tested V100 and A100 systems are 900 GB/sec and 1555 GB/sec,
respectively, we should expect roughly a 1555/900, or 1.73 performance ratio for HPG gridding
with these two GPU architectures. As shown in figure 6, pmeasured performance ratios exhibit a
complex dependence on gridding parameters, but expectations based on the simple model of memory
bandwidths do appear to be reasonable. We conclude that the Kokkos core library is highly effective
for the efficient implementation of performance portable code.

Dependence on choice of operation

One expects processing time to be proportional to the square of the linear size of the convolution
kernel; although not shown here, linear regressions of log-log plots in figure 7 in every case verify the
exponent is very close to the expected value.

The details of which of the gridding or degridding kernels performs better is complex. Naively, one
would expect degridding to perform better than gridding, due to degridding using only updates to
local data. Measurements indicate that actual performance is somewhat more complicated: at small
convolution kernel sizes gridding performs better than degridding in many cases, although as kernel
sizes increase, the performance ranking of kernels meets expectations.

Dependence on sum-of-weights computation

Computing the sum of weights generally needs only to be done once during the imaging process
(during gridding). To avoid doing excessive computation, HPG allows users to select whether or
not to do this computation, but the runtime cost of the sum-of-weights computation is unclear a
priori, as the computational cost is a small fraction of the cost of gridding. Test results (figure 8)
show some benefit of avoiding the sum-of-weights computation, in particular for smaller convolution
kernel sizes.

20Part of the Kokkos C++ Performance Portability Programming EcoSystem. For more information, see https:
//github.com/kokkos/kokkos.

25

https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos


Dependence on oversampling factor

The layouts of the convolution kernel, model and grid values in HPG were designed for maximum
performance. The layout of the convolution kernel values, especially, was designed to minimize effects
on performance of the oversampling factor. The test results, as shown in figure 9, do exhibit some
dependence on the oversampling factor, especially for dense Mueller matrices and small convolution
kernel sizes. In most cases, the performance penalty with increasing oversampling factor grows up to
some plateau level, with the plateau level decreasing with increasing convolution kernel size.

HPG with CASA

Performance tests

Work on integrating HPG with CASA for further testing is currently ongoing. A test version of
CASA that uses HPG for degridding and gridding is complete, and full scale imaging testing for
accuracy and performance using VLASS data is underway. One of the outcomes of these tests will
be an evaluation of the impact of HPG gridding on overall imaging performance.

Scaling tests

Whatever the outcome of current testing with HPG and CASA for VLASS, ngVLA imaging
performance will ultimately depend strongly on the scaling characteristics of imaging with the
number of processes, and system characteristics (processor type, clock rate, memory, I/O). Given
that the GPU implementation in HPG is the highest performing implementation, scaling of imaging
performance with number of GPUs is of the greatest interest. Two different scaling dimensions
are possible: multiple GPUs in a single cluster node, and multiple nodes in a cluster. Eventually
both scaling dimensions should be explored to determine the optimal performance and resource
usage. Preliminary planning is underway to develop these tests, but the test program has not been
started; results will appear in a following memo. Investigations have begun into the feasibility of
using high-performance GPU platforms at the National Center for Supercomputing Applications (to
which the ngVLA computing IPT was recently granted access) for these scaling tests.

Other applications of HPG

Full-size ngVLA simulations

It is currently impractical to create full-size ngVLA simulated data sets using CASA due to
performance limitations. With the performance improvements of HPG, this limitation will be
raised significantly, allowing the creation of more accurate simulated data sets to enable improved
evaluations of ngVLA performance under a wide range of use cases.

26



Appendices

Current HPG architecture

The most recent version of HPG is geared to users of the top-level API, as manifested in hpg.hpp.
The design of lower levels of the implementation, however, is structured to permit future developments
that will support access to the library functionality at these levels. Much of the implementation
currently is present in the hpg.cc and hpg_impl.hpp source files, and it is not recommended that
users write code against the interfaces therein. For all intents and purposes, the current architecture
is accurately depicted in figure 10.

HPG

HPG implementation

Kokkos

Figure 10: Current architecture

Nevertheless, interested developers may get some sense of a latent, future architectural design within
those files.

Future HPG architecture

Current plans are to design and implement an architecture within the current HPG implementation
to allow client codes to access HPG functionality at lower levels. Conceptually, the architectural
layers, with progressively lower layers containing progressively fewer built-in features will be designed
as follows.

HPG high level API (Gridder, GridderState)
HPG-impl implementation of high level API (hpg.cc, or direct access to runtime and Kokkos)
HPG-runtime stream management, data movement, kernel launches

27



HPG-core compute kernels

The intent of this architecture is primarily to provide a clean interface to the HPG compute kernels,
opening the possibility of calling those kernels from alternative runtime code.

Kokkos

HPG

HPG-impl

HPG-runtime

HPG-core

Figure 11: Future architecture

References
Bhatnagar, Sanjay, Rafael Hiriart, and Martin Pokorny. 2021. “Size-of-Computing Estimates

for ngVLA Synthesis Imaging.” Next Generation Very Large Array Computing Memos. http:
//library.nrao.edu/public/memos/ngvla/NGVLAC_04.pdf.

Edwards, H. Carter, Christian R. Trott, and Daniel Sunderland. 2014. “Kokkos: Enabling Manycore
Performance Portability Through Polymorphic Memory Access Patterns.” Journal of Parallel
and Distributed Computing 74 (12): 3202–16. https://doi.org/10.1016/j.jpdc.2014.07.003.

Madsen, Jonathan R., Muaaz G. Awan, Hugo Brunie, Jack Deslippe, Rahul Gayatri, Leonid
Oliker, Yunsong Wang, Charlene Yang, and Samuel Williams. 2020. “Timemory: Modular
Performance Analysis for HPC.” In High Performance Computing, 12151:434–52. Springer, Cham.
https://doi.org/10.1007/978-3-030-50743-5_22.

Rao, Urvashi, Sanjay Bhatnagar, Maxim A. Voronkov, and Tim J. Cornwell. 2009. “Advances in
Calibration and Imaging Techniques in Radio Interferometry.” Proceedings of the IEEE 97 (8):
1472–81. https://doi.org/10.1109/JPROC.2009.2014853.

“Synthesis Imaging Using CASA tclean.” n.d. Casadocs. Accessed August 19, 2021. https:
//casadocs.readthedocs.io/en/stable/notebooks/synthesis_imaging.html.

28

http://library.nrao.edu/public/memos/ngvla/NGVLAC_04.pdf
http://library.nrao.edu/public/memos/ngvla/NGVLAC_04.pdf
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1007/978-3-030-50743-5_22
https://doi.org/10.1109/JPROC.2009.2014853
https://casadocs.readthedocs.io/en/stable/notebooks/synthesis_imaging.html
https://casadocs.readthedocs.io/en/stable/notebooks/synthesis_imaging.html

	Introduction
	Gridding kernel
	Algorithm design
	Memory access analysis
	Parallel algorithm description
	Additional features
	Full Stokes imaging with Mueller matrices
	Sum of weights
	Degridding
	Residual and predicted visibilities
	Convolution kernel phase screen
	Efficient I/O to accelerators


	Implementation
	HPG
	Full Stokes imaging with Mueller matrices
	Degridding
	Gridding
	Residual and predicted visibilities
	Convolution kernel phase screen
	Array layouts
	Asynchronous data transfers

	Testing
	Phase 1
	Layout tuning
	Effect of synchronization
	Performance scaling
	Performance comparisons

	Phase 2
	Test methods
	Results
	Performance for sum-of-weights computation
	Performance variation with oversampling factor


	Evaluation
	Dependence on GPU model
	Dependence on choice of operation
	Dependence on sum-of-weights computation
	Dependence on oversampling factor

	HPG with CASA
	Performance tests
	Scaling tests

	Other applications of HPG
	Full-size ngVLA simulations

	Appendices
	Current HPG architecture
	Future HPG architecture

	References

