
ngVLA Multi-subarray Scheduling Algorithm

ngVLA Computing Memo # 9

Rafael Hiriart

January 16, 2024

1 Introduction

This note analyses several requirements applicable to the online Scheduler for
ngVLA. The need to optimize and automate sub-array operations will substan-
tially increase the complexity of this component for ngVLA, compared with the
dynamic schedulers implemented for JVLA and ALMA. Scheduling problems
can be notoriously hard to solve, and for some problems no practical algorithms
are known to exist. In order to reduce this risk, this note attempts to formalize
the relevant requirements and classify the type of scheduling problem required
by ngVLA. A candidate algorithm is proposed which transforms the dynamic
sub-array partitioning and SB allocation problems into the graph shortest-path
problem.

2 Requirements

The fact that the ngVLA is required to create both a schedule of sub-arrays
along with a schedule of the SBs that will be executed in these sub-arrays in
an optimal way (for a given optimization function) makes the algorithm sub-
stantially different from similar systems like ALMA or JVLA, which basically
concern themselves only with creating a schedule of SBs to run in a single sub-
array. The single-subarray problem is essentially a “greedy” algorithm, a class
of algorithms that always make the choice that looks best for a given moment.
(See Appendix A for a description of the VLA algorithm.) For some problems,
this strategy produces an optimal or close to optimal solution, most of the time.
However, for multiple sub-array scheduling the situation changes. It becomes
necessary to to evaluate different alternatives of forming sub-arrays on longer
time-scales to find the best solution. Indeed, for multiple sub-arrays, executing
the highest ranked SB that is observable at any given time is not necessarily the
best approach. For instance, it may be better to defer the execution of the high-
est ranked SB and execute lower ranked SBs in a different sub-array partition
instead. This path may produce a better global solution for the problem.

1

How do we define what it is meant by a “better” solution? First, it is
necessary to define the optimization function for this problem, which hasn’t
been defined yet. Similarly as done for ALMA and JVLA, this function needs
to incorporate the attributes of each SB and their relative priorities, but it
should also include the notion of time efficiency; that is, the need to execute
all the accepted SBs in the minimum amount of time possible. It is this last
condition that makes the problem a global optimization problem. Given that
the single-subarray scheduling problem is greedy, its “optimization function”
can be described as finding the best SB to run at a given moment. This is
different than choosing the best way of running a pool of SBs during an entire
observing season, considering that executions can be parallelized by using sub-
arrays. Time efficiency doesn’t appear in the single-subarray problem at all,
being subsumed in its “greediness”.

One way of defining multiple sub-array scheduling as an optimization prob-
lem is:

Min
∑
i

wiCi (1)

where Ci corresponds to each SB completion time (the time of completion of the
SB, not its duration!) and wi is a weight per SB. This is an optimization function
typically used in scheduling algorithms, along with the maximum “span” Cmax,
the maximum completion time or the total time length of the schedule. The
advantage of the weighted sum is that it allows us to incorporate directly a
weight per each SB in the optimization function. These weights can be based
on the scientific rank of each SB and other criteria, as it has been done in ALMA
and JVLA. For a single sub-array, the algorithm will prefer to execute the SBs
with the larger weights first. This is easy to demonstrate: if we swap any two
SBs in this solution, then the sum increases. This is also true for multiple sub-
arrays, where it is necessary to execute the SBs belonging to each sub-array
in order of decreasing weights. The difference comes from the extra degree of
freedom of having to partition the array in sub-arrays. This will “scramble” the
global ordering of executions, but not the ordering for a single sub-array. We
will assume that a function similar to the above is used to drive the search for
an optimal solution.

The Scheduling Concept document[2] mentions that the optimization func-
tion will most likely be formed as a function of the “antenna-hours” and the
rank of each SB, which needs to be maximized. The antenna-hours1 are used to
account for the fact that the same SB can be executed in different sub-arrays.
The sub-array where the SB will end up running may be different than the sub-
array that was used to calculate the target time assigned to each SB, so some

1I haven’t seen a definition for the “antenna-hours” yet. Given that the sensitivity for a
point interferometric observation is proportional to 1/

√
N2τ , with N the number of antennas

and τ the observation time, then I would think that in order to maintain the sensitivity
constant when observing an SB in different sub-arrays, it would be necessary to maintain
N2τ constant, not Nτ , my naive definition for “antenna-hours”. If this is correct, may be it
would be more proper to call it “baseline-hours” instead. Anyway, I don’t quite understand
the “antenna-hours” yet. It should be defined formally at a given point.

2

way of scaling the allocated time is needed. The intention behind this optimiza-
tion function seems to be to maximize the use of the antenna-hours executed
during an observing season, giving preference to the highest ranked SBs. Note
that this function doesn’t incorporate the notion of time efficiency by means
of the completion times like the function we were suggesting above. In fact, if
we sum all the SB ranks scaled in some way by their antenna-hours, for all the
SBs in the pool, there’s actually nothing to optimize in the scheduling sense, as
the sum is constant for any schedule. I assume that this is because the sum is
formed only over a sub-interval—the observing season— of the total length of
the schedule, or in different words, the pool contains more SBs that we can pos-
sibly observe in an observing season, and we only sum for the observing season.
If this is correct, then it can be demonstrated that minimizing the sum of the
weighted completion times actually maximizes the scaled sum of the ranks. See
the end of Appendix A for the demonstration and some additional discussion.

The optimization function is one of such sub-problems that need to be de-
fined for the scheduling algorithm to operate. The others are:

SB weighting algorithm The weights are a function of several factors: the
science rank, the stringency of the observation, the degree of completeness,
and the SB weather requirements versus current conditions, amongst oth-
ers. Weights can be dynamic, e.g. high frequency observations requiring
low PWV and atmospheric stability should increase in priority when these
conditions are present.

SB filtering algorithm Depending on the present weather, hour angle, or
hardware availability, some SBs may not be observable at all. We want
to remove these SBs from the pool to be considered prior to running the
algorithm.

SB to sub-array mapping algorithm A function that maps each SB with
the sub-array where it should be executed is necessary. This mapping
depends on SB characteristics such as its Largest Angular Scale (LAS)
and required resolution. This mapping is probably not strict: it makes
little difference if a few antennas are removed or added from/to a sub-
array. We assume that each SB can be mapped to one or more sub-arrays.
For now we will assume that this mapping is 1:1 and relax this condition
afterwards.

The above algorithms, which belong clearly to the scientific domain, are used by
the scheduling optimization algorithm. We assume that they will be defined by
the Science IPT. The first two may not be very different from similar algorithms
constructed for ALMA and the JVLA.

The algorithm is required to produce an optimal schedule in three timescales:

The long-term scheduler Where it is necessary to produce a schedule for
an entire observing season or a longer period of time, based on historical
weather data.

3

The short-term scheduler Where the schedule spans only one or a few days,
based on forecasted weather data.

The real-time scheduler Where the scheduler optimizes only for the few next
hours, based on the current (measured) weather conditions.

Although the long-term scheduler and the short-term scheduler are SB-based,
the real-time scheduler could be Scan-based, in order to facilitate the handling
of triggered observations and pausing/resuming observations.

The solutions for these three schedulers should be consistent; i.e., if the
weather conditions were to be exactly the same as recorded in the historical
data, then the short-time schedule would be just a sub-schedule inside the long-
term schedule and likewise the real-time schedule would be an even smaller sub-
schedule inside the short-time schedule. This is rarely the case, as deviations
from the expected weather patterns will introduce differences between them.
We foresee the need for an “integrated” scheduler system, where as the actual
weather plays out, deviations from previous solutions are propagated to update
the longer timescale solutions, allowing the operation planning groups respon-
sible for them to visualize the impact of these deviations (e.g. with pressure
plots) possibly adjusting the inputs of the shorter timescale schedulers to better
align them with overarching operational goals (e.g. get all the SBs ranked A
observed, equalize the completion of SBs across different science domains, etc.)

3 Multi-Processor Task Scheduling

The study of scheduling algorithms is an active area of research in computer
science, mathematics, and operations research. There are many different types
of scheduling problems, which are usually classified by means of a triplet α|β|γ,
where α specifies the machine environment, β specifies the job characteristics,
and γ denotes the optimization function. See [1] and [4]. For example, the single-
subarray problem with the optimization function proposed above is denoted by
1||

∑
wiCi. This represents a scheduling problem with one machine, general

job characteristics, and the weighted sum of the job completions as objective
function. (The solution for this problem is to sequence the jobs by order of
nondecreasing ratios pi/wi, where pi is the processing time.) It is worthwhile to
study the already existing algorithms, even if the cases published aren’t an exact
match for the ngVLA scheduling problem. A suitable algorithm can be a starting
point from where to develop our particular scheduling system, and provide a
useful analysis framework to asses its complexity. In some cases, scheduling
problems may be demonstrated to be NP-complete or NP-hard. This is a strong
indication that we may be better off looking at approximation algorithms instead
of attempting to find optimal solutions.

Scheduling problems are characterized in terms of “machines” and “jobs”
that are executed in these machines. In some cases, the jobs can be sub-divided
in “operations”. Jobs and operations are naturally mapped to scheduling blocks
and scans in our case. We could map machines to sub-arrays if it weren’t be

4

by the condition that incompatible sub-arrays which have a non-empty intersec-
tion of common antennas can’t be executed in parallel. This type of problem
falls in the category of Multiprocessor Tasks (MPT), where each job (or task)
requires one or more processors (antennas in our case) at a time. This category
of scheduling problem takes into account our condition of sub-array incompati-
bility. Specifically, the problem denoted by

MPTm|pi = 1|
∑

wiCi (2)

seems to be a good starting point. This is a MPT problem with m machines
(antennas), unitary processing time, and the weighted sum of completions as
optimization function.

The condition pi = 1 is not as restrictive as it seems as the “unit of time”
can be defined as small as it is convenient (e.g. 0.5 hour if SB-based, or 5
minutes if Scan-based). In fact, it is a valuable simplification given that the
dynamic scheduler needs to synchronize the creation and destruction of sub-
arrays anyway. This algorithm can provide a base solution that can be adjusted
in a second pass to account for non-integral processing times with respect to
the choice of unit time. Also, as it is expected that different observations share
calibration scans in ngVLA and other related optimizations, the exact processing
time for each SB may not be known before execution, and the scheduler may
need to rely on estimations.

The algorithm for this problem transforms the scheduling problem into the
shortest-path graph problem, for which several efficient algorithms exist. We
explain how this works by means of a simple example.

Let’s imagine that we have 4 SBs {SB1, SB2, SB3, SB4} and 5 antennas
A = {A1, A2, A3, A4, A5}. Using the SB to sub-array mapping algorithm, we
associate each SB with a sub-array µi ⊆ A. Using the SB weighting algorithm,
we assign each SB a weight wi:

SB1 → µ1 = {A1, A2}, w1 = 1
SB2 → µ2 = {A1, A2, A3}, w2 = 2
SB3 → µ3 = {A4, A5}, w3 = 5
SB4 → µ4 = {A1, A2}, w4 = 3

First, we compile the list of sub-arrays and their corresponding SBs, ordered
by nonincreasing weight. The real algorithm is more complicated, because the
ordering depends on more factors than just the weights (e.g. target observability,
which would be part of the criteria considered by the SB filtering algorithm),
but for now assume that for each sub-array, the SBs are observed in the ordering
defined only by their weights.

SA1 = {A1, A2} → (SB4, SB1)
SA2 = {A1, A2, A3} → (SB2)
SA3 = {A4, A5} → (SB3)

We define a tuple (t; i1, i2, i3), where each ij represents the partial schedule
of all the SBs that have been observed in the interval [0, t]. In other words,

5

the ij ’s represent the number of SBs observed so far in the sub-array. For our
example the ij ’s are defined in Table 1.

ij 0 1 2
SA1 - SB4 (w = 3) SB1 (w = 1)
SA2 - SB2 (w = 2) -
SA3 - SB3 (w = 5) -

Table 1: Tuple definitions for each sub-array.

We then form a graph following these rules:

� Start with the tuple (0; 0, ..., 0), i.e. at time 0 nothing has been observed.
The end tuple is (4; 2, 1, 1), that is, the tuple that represents all the SBs
observed serially.

� The immediate successor of vertex u = (t; i1, ..., iR) is given by v = (t +
1; i1 + x1, ..., iR + xR), where x1, ..., xR satisfy the following conditions:

– xν ∈ {0, 1} for ν = 1, ..., R

– During each period, only one SB per sub-array can be scheduled, and
the scheduling of the SBs in each tuple needs to be compatible.

� Each vertex that starts at time t has a cost given by
∑

wi(t+1), where the
sum covers all the SBs that are observed next (i.e., the ones that increased
ij by 1).

The resultant graph for our example is shown in Figure 1. Note that in each
one of the tuples, after the first number that represents the time, the next
numbers represent each possible sub-array. For each one of these sub-arrays,
the corresponding number is increased if we decide to observe the next SB in
this sub-array; otherwise, the number stays the same. For creating the tuples of
the graph, we don’t actually need to know what specific SB is observed, we only
care about the sub-arrays compatibility. The specific SBs that are observed in
each sub-array are only considered when computing the cost of each arc.

Finally, we solve for the shortest path. This path represents the SB and sub-
array schedule that minimizes the optimization function, as shown in Figure 2.

Note that the algorithm works with 3 structures:

� The sub-array SB table, examplified in Table 1. Although in the example
the SBs are ordered only by weight, in reality the ordering can be quite
more complex. The targets for each SB needs to be observable; the weights
can be dynamic, changing with the specific weather conditions at each time
or increasing in priority if other SBs in the program has been observed.
There is also the need to consider SB dependencies in the ordering. How
to order the SBs for each sub-array, on the other hand, is a problem that
has been solved for JVLA and ALMA. It is the single-subarray problem.

6

Figure 1: Example graph for a MPT scheduling problem.

� The sub-array compatibility chart. As noted before, this is the only struc-
ture that is needed when forming the graph (besides the total number of
SBs to be executed in each sub-array). What specific SB is executed next
needs to be considered only when computing the cost of each arc. Sim-
ilarly, it is not necessary to know what specific antennas are included in
each sub-array, only whether they are compatible with each other. This
suggests the idea that the sub-arrays may be “fuzzy”. They may contain
more or less antennas, in which case the observation time will need to be
adjusted. For forming the graph, this doesn’t matter so much, as we only
need to consider their (fuzzy) mutual compatibility.

� The graph, formed from the above two structures.

As an analogy, we can compare this algorithm applied to multiple levels
(long-term, short-term, and real-time) with a hiker that needs to traverse some
unknown terrain. The graph acts like a map for deciding the least costly route
to follow. The hiker can’t possibly know the best route to follow without con-
sidering the whole map. The problem is that when he starts, the map is not
very good as it is based solely on unreliable historical information. As the hiker
goes on his journey, he will need to correct the map (by changing the arc costs
depending on weather conditions hardware availability, etc.), which forces the
hiker to re-plan the route frequently, basing his judgement on what he can now
see of the terrain, and his best guess of what he can’t.

7

Figure 2: Solution for the example MPT scheduling problem. The schedule
displayed in red is optimal, with a cost of 9.

4 Application Considerations of MPT Schedul-
ing

In the worst case the shortest path can be calculated in O(R2RnR+1) with R
being the number of possible sub-arrays (a couple of dozens?) and n being
the number of SBs (a few thousands?). In practice we can expect that the
runtime should be considerable better as the SBs are filtered for each time,
and we only need to consider their respective sub-arrays to form each tuple
combination. (And also this O(·) calculation is an upper-bound calculation.)
We could prototype the algorithm using data from the ROP and EOP to assess
its performance characteristics in realistic scenarios.

An important point is that the graph only needs to be formed when solving
the long-term scheduler for the first time, based on historical data. Then the
graph can be stored and maintained in subsequent runs, modifying it to account
for changes related with the use of forecasted or measured data. These changes
are mostly changes in the arc costs, the graph topology not being affected much2.
This suggests that maintaining the graph should be a relatively inexpensive
operation (TBC). As time goes on, the shortest-path calculation should also
become more inexpensive, as only a fraction of the graph needs to be considered.

Given that the graph is persistently stored, along with the history of each
SB that have been already observed (the path followed in the graph so far),

2Unless an SB is removed, in which case nodes needs to be removed from the end of the
graph. This may be ignored as the pool of SB contains more SBs that can be scheduled in an
observing season.

8

it should be relatively easy to “fold” the graph to calculate pressure plots and
simulate what would happen when the scheduling parameters are modified. As
the three multi-level schedulers rely on the same graph, their results should be
consistent.

5 Extensions

The first extension that may be needed is related with the SB to sub-array
mapping algorithm. Instead of a 1:1 mapping between an SB and a sub-array,
we may have a 1:n mapping, with n being a few (“less flexible” sub-arrays in
[2]) to a large number of possibilities (“more flexible” sub-arrays). This case is
actually found in [1] and is called Multi-Mode Multiprocessor-Task Scheduling
Problems (MMPT). These problems are composed by an assignment problem
(the problem of assigning a sub-array to each SB from a set of candidate sub-
arrays), followed by a MPT problem (the problem of forming the schedule,
as described before). Although still possible to be solved in polinomial time,
this kind of problems explodes combinatorially (the possible assignments are
bounded by n2m , with n the number of SBs and m the number of antennas,
see [1] for the development). This strongly suggests to favor the “less flexible”
approach. We may yet find a clever way to introduce this condition, but it is
clearly a research problem. On the other hand, do this assignment really needs
to be so flexible? It is clear that there must be constraints on what sub-arrays
can be used to observe each SB. Mapping each SB to a reference sub-array with
possible alternatives that can be optimized for a given graph path node may
be an option. Each path node represents both a partition of sub-arrays and
an SB allocation on them. We may want to optimize each node by considering
alternative sub-array partitions following some criteria yet to be defined. This
may be more tractable than combinatorially trying every possible assignment
of sub-arrays to SBs and solving the associated MPT problem.

Another extension, applicable to the real-time scheduler, is to perform the
scheduling on scan units instead of SB units. We can assume this is only ap-
plicable to the real-time scheduler, while the long and short-term schedulers
remain SB-based. This may present several advantages:

� It simplifies handling triggered observations and in general the external
coordination required by VLBI and “follow-along”.

� It simplifies pausing and resuming observations, and the adoption of other
reliability techniques (e.g. swapping antennas in case of failures).

� It simplifies making observations to adapt to changing conditions during
an observation (e.g. the scheduler may decide to omit or add calibration
scans, adapt to changing RFI conditions, etc.)

� Enables inter-SB optimizations, like sharing calibration scans.

9

� It simplifies “recursive sub-arraying”, where a sub-array is broken into
sub-sub-arrays, which observe independently, and can be merged later,
etc.

For the scheduling algorithm, this doesn’t seem to be overly complex. Each
node in the graph would be unpacked to form multiple scans nodes, which
would be scheduled and submitted for execution independently, with the sched-
uler dynamically introducing optimizations like the ones itemized above. As
this may be a bit “experimental”, and the value of these optimizations are yet
to be demonstrated, we should probably introduce scan-based along with the
traditional SB-based scheduling and execution system.

A The VLA Algorithm

The VLA dynamic scheduling algorithm is described in detail in [3]. A summary
is provided in this section.

The algorithm proceeds in three stages:

1. Ineligible SBs are filtered from the pool of schedulable SBs.

2. A priority is assigned to each eligible SB.

3. An observing schedule is created for a given time horizon, with the default
being 24 hours.

In the filtering stage, the filters described in Table 2 are applied to select
the eligible SBs from the pool of schedulable SBs.

In the prioritization stage, a priority is calculated for each SB according to
the criteria shown in Table 3. Priorities are assigned to each Project, Program
Block and Scheduling Block, with the most granular priority overriding the
priority for its parent structure. The different priority criteria are combined as
a weighted sum to calculate the final priority for each SB:

P = αpp+ αuu+ αss+ αoo+ αnn+ ασσ + αll (3)

After calculating the priorities, the algorithm creates the observing schedule
as follows:

1. Add all the eligible and fixed date SBs to the schedule if their time intervals
overlap with the schedule window. Set aside any fixed date SB that doesn’t
overlap with the schedule SB, to be used in step 4 below.

2. Sort all the remaining dynamic SB blocks by priority.

3. For each of the SBs from step 2:

(a) Try to fit the SB in between already scheduled SBs without moving
the already scheduled SBs.

10

Filter Description
API The SB’s RMS phase limit must be above the

current API (Atmospheric Phase Interferometer)
reading.

Wind Speed The SB’s Wind Speed limit must be above the
current Wind Speed reading.

Array Configuration The SB must be eligible to be run in the current
configuration.

Receiver Band The SB must contain receiver bands that can be
scheduled currently.

Date (Dynamic) The SB’s earliest start date must come before the
end of the schedule window.

Date (Fixed Date) The SB’s fixed start time must be from 24 hours
before the schedule window to 24 hours after the
schedule window.

LST The SB’s Local Sidereal Time (LST) start range
must overlap with the schedule window. This filter
does not apply to Fixed Date blocks.

SB Type Only “normal” SBs are considered. Manual SBs
must be submitted manually from the client.

Time Remaining Only blocks with enough time remaining in their
containing Program Block (PB) are considered.
Six minutes of sidereal time “grace” period has
been allowed, to allow for some uncertainty in time
calculations.

Scheduling Status Only SBs in “schedulable” status are considered.

Table 2: SB filtering criteria applied in the VLA scheduling algorithm.

(b) If the previous step fails, try to insert the SB into a too-narrow gap
in the schedule by shifting as many SBs as necessary to the right
(later in the schedule) in order to make room.

4. Add the fixed date SBs that were set aside in step 1 to the schedule. These
are added in this step rather than in step 1 so these “out of bounds” blocks
don’t cause confusion while scheduling the dynamic SBs.

Note that in steps 3a and 3b, the algorithm considers the LST ranges of
both the SB to be inserted and the SBs already scheduled (an SB may contain
multiple alternative LST ranges). It only inserts an SB by moving the already
inserted SBs in step 3b if all the SBs that needs to be moved still comply with
their LST ranges in their new locations. The algorithm also considers SBs
requiring multiple iterations.

The final schedule is presented to the operator, who can accept all or part
of the schedule. The current practice is that only the first SB in the schedule
is accepted for observation, and the algorithm is executed again just as the SB

11

Type Range Default
Weight

Description

Primary (p) [1, 3] αp = 3.0 From the TAC. Scheduling priority. A →
1; B → 2; C → 3.

Urgency (u) [0, 2] αu = 1.0 0: Short time scale transient; 1: Partially
completed projects and completion badly
needed; 2: Normal science and tests.

Science (s) [0, 10] αs = 0.03 The linear-rank score from the Science
Review Panel.

Override (o) Any αo = 1.0 To allow schedulers to force the algorithm
in special cases.

Nice (n) [0, 1] αn = 1.0 To allow observers to lower the priority of
their own SBs (not exposed currently).

Stringency (σ) log2(API) +
log2(wind)

ασ = 0.33 Favors blocks with strict weather limits.

Length (l) log2(SBlength) αl = −0.25 Favors longer Scheduling Blocks.

Table 3: Components in the calculation of priorities, with their default weight.
The first three components (p, u, s) are required, and the last two (σ, l) are
calculated.

execution is ending.
This algorithm is greedy in the sense that during each iteration it tries to

schedule a single SB regarding all the gaps left in a partially filled schedule as
available3. The algorithm will schedule each SB by order of priority as soon as
possible. In fact, as the higher ranked SB will have their completion times lower
than the lower ranked SBs (they are executed first), this algorithm minimizes
the objective function in Equation 1. In this equation, the weight w for each
SB has a higher value when its priority is higher, while in the description of the
VLA algorithm above P has a lower value when its priority is higher. Hence,
we can consider one as the reciprocal of the other, i.e. w = 1/P .

If we ignore the constraints imposed by the LST ranges, the single subarray
problem can be modeled as a 1||

∑
wiCi queueing problem. The solution for

this problem is scheduling the SB in order of non-decreasing ratios di/wi:

d1
w1

≤ d2
w2

≤ ... ≤ dn
wn

(4)

where di is the duration of SB i, and wi its weight (or inverse priority). If we
assume di = 1

w1 ≥ w2 ≥ ... ≥ wn (5)

To demonstrate this, let’s assume that SB j has been scheduled immediately

3Granted, the algorithm does modify the other SB locations when nudging them forward
to make room, but it’s arguibly still fundamentally greedy, scheduling one SB at a time. This
is adequate for single-subarray scheduling.

12

before SB i. If we interchange i and j, the optimization function grows by

widi + wj(di + dj)− wjdj − wi(di + dj) = wjdi − widj

which is always non negative because dj/wj ≤ di/wi. Hence any swap in the
schedule doesn’t make the objective function decrease and scheduling the SBs
as shown in equation 4 minimizes

∑
i wiCi.

Now, if we assume a solution that minimizes
∑

i wiCi, then this solution will
comply with equation 4 and hence it will also be a solution of

Max
∑
i

wi

di
(6)

where the sum is performed over any sub-interval of the schedule starting at
the beginning of the schedule. This can be seen as an alternative way of stating
the optimization function, which makes clear that we are trying to “pack” as
many higher ranked SBs as possible in the schedule. Dividing the weight by
the SB duration has the effect of discouraging early scheduling of long running
SBs, which is similar to what the VLA does by using a negative weight αl in
the calculation of the priority4. As noted before, it is necessary to consider the
case of an SB running in a different subarray that the one used to calculate
its duration. This can be introduced in this equation as a normalization of the
durations di, using antenna-hours (or baseline-hours).

References

[1] Peter Brucker. Scheduling Algorithms. Springer, 2006.

[2] Bryan Butler. NGVLA Observation Scheduling Concept. Technical report,
NRAO ngVLA, 08 2023.

[3] Bryan Butler and Keith Cummings. The VLA Scheduler. Technical report,
NRAO, 2011.

[4] Michael L. Pinedo. Scheduling, Theory, Algorithms, and Systems. Springer,
2015.

4Note that we use the word “weight” with two meanings: as the weight for each SB as in
equation 1, which is the inverse of the SB priority; and as the weights in the VLA prioritization
function in equation 3

13

