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1 Introduction

This memo provides an update to the size-of-computing metrics estimated in [1]. We im-
prove these preliminary estimations by considering explicitly the effect of the subarray
configuration in the distribution of the w coordinate for each visibility, and the size of the
support function for each value of w in the calculation of the computational load that will
be required to image each science case of the ROP and the EOP.

2 The Reference Observing Program and the Envelope Ob-
serving Program

We consider as input two observational programs defined by the ngVLA SciOps group, the
Reference Observing Program (ROP) and the Envelope Observing Program (EOP). The
ROP defines a set of 27 observations that will be necessary to achieve the ngVLA key science
goals. The EOP consists of 63 observations, defining what a typical year would look like.
The ROP input table is presented in Table 1, while the EOP table can be found in Table 6
in the Appendix. The columns are:

e scnum: science case number

e scname: science case name

e frac: science use fraction

e fov: field of view, in arcseconds

e psf: point spread function FWHM (or desired resolution), in milli-arcseconds
e dr: dynamic range

e freq: center frequency, in Hz

e bw: bandwidth, in Hz

e chan: science channel width, in Hz

e dump: maximum dump time, in seconds

e sub-array: required sub-array
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We start by calculating several quantities that are necessary to estimate data rates
and computational loads, in a similar manner as it was done in the ngVLA Quantitative
eXchange Model [3]. These are:

e The actual bandwidth for the rows where this quantity was defined as “FULL”. We
lookup the center frequency in ngVLA band definitions.

e Likewise, the FoV has been defined as “FULL” in several rows. For these, we calculate
the FoV as Oy ppw =~ 1.02-\/D in radians. We use the lower frequency for each band,
which gives the larger beamwidth, for the purpose of estimating upper bounds for the
processing load.

e We estimate the image linear dimension by dividing the FoV by the resolution and
assuming that the bandwidth of the synthesized beam is 4 pixels.

e We calculate the channel width required to prevent bandwidth smearing for the re-
quired resolution. Using the resolution achieved by the subarray synthesized beam
(i.e., A\/Bmaz, with Bj,4, being the maximum baseline in the subarray) gives a num-
ber of channels that is prohibitively expensive. Assuming that imaging will use the
required resolution instead (which is equivalent to dropping the visibilities correspond-
ing to the larger baselines with corresponding decrease in sensitivity), we calculate
the channel width as described in [2] using 5 = 0.5, and take of minimum of this value
and the value provided in the ROP/EOP tables.

e We calculate the dump time required to prevent loss of power due to time-average
smearing as described in [2], and we take the mininum of this value and the one defined
in the ROP/EOP table.

e For the purposes of this memo, we are only interested in the data rates and computa-
tional load for the synthesis imaging science cases. Pulsar science cases are processed
in the Pulsar Engine, internal to the CSP. Hence, the pulsar science cases are removed
from the calculations. For the ROP they correspond to science cases 25, 26 and 27,
and for the EOP these are 50 and 59.

These derived parameters for the ROP and EOP are shown in Tables 2 and 7, respec-
tively.

3 Data Rates

The data rates, in GVisibilities per second, are calculated as

TNpol * NMant * (nant + 1) * Nchannel
2 ting - 109

where n,,, is the number of polarization products, n4y,¢ is the number of antennas, ncpanner
is the number of channels, ¢;,; is the integration duration in seconds, and auto-correlations
are included. Visibilities are represented in single precision (32 bits, or 4 bytes), so we use
8 bytes per visibility, given that visibilities are complex numbers. From the image linear
size and the number of channels we calculate the image and cube sizes, assuming the pixels
are stored in single precision as well. These rates are summarized in Table 3 below. We
include an estimation of the High Level Data Product (HLDP) data rate, assumming an

A [GVis/sec| =
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average SB length of 4 hours, which produces 4 data products: the restored image, the
model image, the residual image, and the PSF image. We also include an estimation of the
number of pixels, calculated as the image size squared times the number of polarizations
and the number of channels.

Table 3: Summary of data rates for ROP and EOP.

ROP EOP
Average Data Rate [GVis/sec] 1.934710 2.636177
Average Data Rate [GBytes/sec] 15.477683 21.089419
Average Data rate [PBytes/month] 40.118156 54.663773
Peak Data Rate [GVis/sec] 33.461785 40.448311
Peak Data Rate [GBytes/sec] 267.694278 323.586490
Median Data Rate [GVis/sec] 0.032188 0.118245
90% Quantile Data Rate [GVis/sec] 2.013198 5.478574
Average Image Size (1 Plane) [MBytes] 57.072190 69.815383
Max Image Size (1 Plane) [MBytes] 307.371024 1605.925476
Average Cube Size [TBytes] 2.380373 5.842852
Max Image Cube Size [TBytes] 37.701780 215.746452
Median Image Cube Size [TIBytes] 0.175634 0.091198
90% Quantile Cube Size [TBytes] 12.801836 13.379510
Average Number of Pixels [GPixels] 595.093231 1460.713077
Average HLDP Data Rate [GBytes/sec] 0.661215 1.623015
Ratio HLDP DR / Vis DR [%] 4.272052 7.695871

The distributions of visibility data rates and cube sizes, across the science cases defined
in the ROP and EOP are shown in Figures 1 and 2. Both distributions are similar, with
most of the science cases generating relatively modest data rates while a few extreme cases
skew the metrics higher. In fact, 90% of the science cases require less than 2 GVis/sec for
the ROP, and 5.4 GVis/sec for the EOP, while the rest 10% generate much larger data
rates, peaking at 33.4 Gvis/sec for the ROP and 40.4 Gvis/sec EOP. The same can be said
for the cube sizes, with 90% of them being less than 12.8 TBytes for the ROP and 13.3
TBytes for the EOP.

4 Gridding Processing Load

As described in [1], the number of FLOPS to grid the visibilities in one major cycle is

C = Nop x Y Nyis(v,w) x S*(v,w) (1)

v,w

where N, is the number of FLOPs per multiply-add operation, which is

(2)

~]20 for complex gridding (W-proj and A-proj)
7112 for real (standard) gridding

For standard gridding the support function doesn’t depend on either w or v. For A-proj the
support function depends on v, but not on w. In the case of W-proj the support function
depends on both v and w. The dependence on v can be subsumed into w when this quantity
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is measured in wavelengths. N,;s is the number of visibilities in the intervals [v, v + Av]
and [w,w + Aw] for some way to partition the (v,w) domain. S is the support size of
the convolution function. This convolution function is the result of combining the prolate
spheroidal function with the A-proj kernel and the W-proj kernel, with the choice of which
kernels are combined depending on the science case. When more than one convolution
kernel is combined, the final convolution function is the result of convolving the individual
kernels (as convolution is a distributive operation), although in practice they are usually
computed by applying the Fourier transform to the kernels, multiplying them, and applying
the inverse Fourier transform to return to the (u,v) space. Both approaches should yield
the same result, so we assume that the support size of the combined kernel is roughly the
sum of the support sizes of the kernels being convolved.

To estimate the computational load, we normalize N,;s by the total number of visibilities
on the major cycle, divide by the time that it took to receive these visibilities and introduce
an “expansion” factor K, to extrapolate from the computational load of one major cycle to
the whole observation:

FLOP} =\ [Vls] X 2 X Nop x K¢ % ZNvis(Vyw) x S%(v,w) (3)

sec

cr [
sec

v,w

The sum at the left side represents the number of multiply-add operations per visibility.

The factor of 2 accounts for the fact that algorithms performs gridding and de-gridding

operations at the same time. The factor K. accounts for the number of major cycles and

several other factors and algorithmic options that increase the number of FLOPs:

K¢ =1.1 X Njger X Ngpo x (12 if Full-Mueller) x (3 if multi-term)x
(1.18 if multi-scale) x (Ngefear if self-calibration)

(4)

These are from left to right:

e The cost of the deconvolution needs to be accounted for. Unfortunately we don’t
have an easy way to account for these FLOPs, given that the number of minor cycle
iterations will depend on the observed brightness distribution and parameters such as
the threshold used when cleaning. We can assume that it will be a relatively minor
percentage of the cost of gridding, say 10%.

e The algorithm is iterative so the same visibilities are gridded multiple times. We
assume that the number of major cycle iterations Ny, falls somewhere in the interval
[10, 50].

e The N,, FLOPs are for each Stokes component, so we need to introduce the number
of Stokes components N;p.

o If Full-Mueller is needed, it is necessary to introduce an additional factor of 12, as
imaging is performed independently for each element in the 4 x 4 Mueller matrix with
the exception of the diagonal elements.

e If the Multi-Scale algorithm is needed, an additional factor of 3 needs to be introduced.

o If Multi-Term algorithm is needed, the cost of deconvolution needs to be scaled by
the number of scales, say 30% instead of 10% (i.e. a factor of 1.3/1.1 = 1.18).



e The number of self-calibration iterations Ny rcqr needs to be factored in when self-
calibration is performed (it is expected that it will be necessary for bands 1-4). Ny fcal
is usually 2 — 3 iterations.

These factors could combine in the worst case to raise K. to 93,456 (!) In the best
case K. = 22. At this time, we don’t have enough information to determine when these
algorithmic options are required for each case. Assuming that a typical observation will
demand a number of iterations of 20, all Stokes parameters, and 3 self-cal iterations, we
arrive to a typical K, value of 264.

We can justify the assumption of the relatively minor role that deconvolution plays in the
computing load by estimating an upper bound for this operation. From Table 3, the average
number of pixels Np;, is approximately 1,000 GPixels. When performing deconvolution, two
operations are relevant: searching for the peak in the residual image and substracting the
PSF image from the residual image. Assuming a worst-case linear search for the first
operation, the number of operations involved in finding the peak is N,;,. Substracting the
two images is also of order N,;;, so one iteration of the minor cycle should be of the order
Np%-x. If we assume that every pizel in the image generates a minor cycle, then the cost of
deconvolution becomes N;fm ~ 10° GPixels. On the other hand, from Table 5 the average
computational load for gridding is ~ 60 PFLOPs/sec. To estimate one major cycle we
divide this figure by K. = 264 to obtain 60.0/264.0 = 0.23 PFLOPs/sec. For an SB of 4
hours this generates 4 x 3600 x 0.23 = 3,272 PFLOPs, or ~ 10'® FLOPs, which is in the
same order than the volume of operations for deconvolution. As only a fraction of pixels in
an image are actually substracted during a minor cycle, then this fraction should be more
or less the ratio between the deconvolution operations in one minor cycle and the gridding
operations in one major cycle.

When performing only standard gridding, assuming a support function of size 7 x 7,
equation [3] becomes

CL [FLOP] =\ [VIS} x 1176 [F%[OP] X Ke.

sec sec 1S

For convenience, we define a factor K. (the “complexity factor”) as the ratio of the
number of FLOPs per visibility for a given science case and the number of FLOPs per
visibility for the standard gridding algorithm, i.e.,

2X Nop X D, Nyis(v,w) x S?(v,w) .
c 1176 ®

This factor is equal to 1 in the case of standard gridding, increasing when a science case
requires A-proj, W-proj, or both.

With this, we can simplify equation 3, after correcting the value 1176 for computing
overheads as reported in [1] (instead of 1176 FLOPs for standard gridding, we measured
1280). We assume the overheads cancel out in K., so we can estimate this parameter using
Equation 5. On the other hand, we do consider the measured overheads in the calculation
of C'L, as shown below:

L [FLOP] _ |:V1S FLOP

] x (1280 x K.) [ Vi ] x Ke. (6)

sec sec 1S

In order to evaluate K, for the different science cases in the ROP and EOP, it is necessary
to evaluate the distribution of w for the different ngVLA sub-arrays, assuming some sky



coordinates; and estimate the support size for the different kernels. These calculations are
discussed in the following sections.

4.1 The w-term distribution

The w-term distribution is calculated purely from geometry [6]. We use the ngVLA array
configuration rev. D, and adopt a target with a declination close to zenith at 30 degrees,
observed during 8 hours, from an hour angle of -4.0 hours to +4.0 hours. The normalized
w-distribution that results from this observation is shown in Figure 3. Figure 4 shows the
corresponding UV-distributions.

The w-term is quantized in w-planes following a w* mapping, so small values of w are
quantized more finely than larger values. This has been shown empirically to provide better
numerical accuracy and is the practice adapted by CASA. Incidentally, this is the reason
why the support function appears to follow a quadratic function when plotted against the
w-planes (the integer numbers enumerating the planes, not the value w value). The support
size actually doesn’t seem to be quadratic when plotted against w, as shown in the next

2

section.

4.2 Support size for W-proj

The W-proj convolution kernel is the Fourier transform of the function

G(l,m) _ e2m’w\/17127m271 (7)

The support size depends on w, the FoV and the frequency, as the pixel size in the (u,v)
space is the reciprocal of the FoV, and w is measured in wavelengths. Some example kernels
are shown in Figure 7 in the Appendix. We could find out the support size numerically
by applying the Fourier transform to [7] and counting pixels until the convolution function
decreases belows a certain threshold, but an analytic expression for the support size has been
reported in [4], and as Figure 8 shows, is in good agreement with the numerical approach.
Hence, we use the expression

20700\ | w6100
S(waefov):29fov\/< g ) + 27T77f . (8)

4.3 Support size for A-proj

The A-proj kernel is the Fourier transform of the multplication of the primary beam func-
tions of each antenna participating in a baseline. We assume that the primary beam can
be approximated by a Gaussian' function with a half-power beamwidth 6 ppy, which has

the form
0 2
A(f) = Apexp | —41n2 <> (10)
OupBW
"Which is convenient because the Fourier transform of a Gaussian is a Gaussian:
f{eiaﬂg}(u) _ \/gefﬂ—%ﬂ/a (9)
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Assuming all antennas have the same primary beam, the multiplication of two of them is
another Gaussian:

Ot pBwW

2
A2(6) = A2exp [—81n2 <9) ] (11)
We can derive a expression for the standard deviation of % {A%}:

2vIn2 2D
- _

— = —+In2 12
m0uppw T N (12)

where we approximated Oy ppw ~ \/D.
As the size of the pixels Au = 1/6¢,,, we approximate the A-proj support size as 30:

30 6D0,,
S(Ofon, V) = A—(; = TJ;V\/IHQ (13)

Note that the size in both [8] and [13] are only one side of the function so it needs to
be multiplied by 2 to get the full support size of the convolution function.

4.4 Estimation of the complexity factor K¢

Using the results of the last three last sub-sections we estimate the complexity factor K.
calculating the weighed sum from Equation [5]. The range of w values is partitioned in 128
w-planes, and the bandwidth for each science case is partitioned in 10 intervals. The values
of w in meters are converted to wavelengths for each one of these frequencies. Figure 5
shows how the factor K. varies with FoV and frequency for the main subarray. It is
readily apparent how the computational cost grows very fast for the wide-field science
cases. A few science cases surpass a value of K. of 100. For these W-proj will probably
be too computationally expensive, and other approaches such as w-stacking, w-snapshots,
or faceting maybe less computationally expensive than pure W-proj. Similar plots for the
other subarrays referenced in the ROP and EOP can be found in the appendix.

Figure 5 shows in addition the usual criteria to decide when an observation requires
W-proj or A-proj. An observation requires W-proj when

2
Bmax -0 ov

: >1 (14)

with By,q, being the maximum baseline of the subarray. This relation is shown as a seg-
mented orange line in the plot. All science cases above this line would require wide-field
correction. The green segmented line shows the criteria for A-proj, which is

A

Ofon > 0.5 D (15)
with D being the antenna diameter. Also shown in the plot as a segmented blue line is the
primary beam FWHM. It can be seen that several science cases are above this line. These
correspond to the cases where the FoV was specified as “FULL” in the ROP/EOP, and as
explained above the low frequency was used to calculate the FoV. The decision of using the
low frequency to calculate the FoV for these cases was verified with SciOps and represents
a worst-case calculation. It is evident in the plot that if the middle or end frequency were
used instead, the cost of computing for the cases demanding large FoV would decrease in an
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Complexity Factor Kc for 'main' subarray
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Figure 5: Dependency of K, with FoV and frequency for the main subarray, along with the
science cases for the ROP and EOP. The horizontal bars represent the bandwidth required
by each science case. The cases above the orange segmented line would require W-proj, and
the ones above the green line would require A-proj.

order of magnitude. These are the observations that are driving the average computational
load high.

For the purposes of this memo, we attempt to reduce the load of these cases by applying
an hybrid algorithm that combines faceting with W-projection. This is illustrated in Fig-
ure 6 for ROP science case 15. We assume a number of facets ranging from 1 (i.e. no faceting
at all) to a number of facets such that processing each one won’t require W-projection. We
calculate this maximum number of facets using equation 14. For each number of facet, we
plot N2, K. and the multiplication of both, which is the computational cost of applying
the hybrid algorithm. This function has a minimum, which becomes the value of K, to use
for these science cases.

The values of K., along with the computational load for each science case are presented
in Table 4 for the ROP and Table 8 for the EOP. The averages are presented in Table 5.

5 Computational efficiencies

The metrics presented in Table 5 correspond to the computational loads generated by the
observations in the ROP and EOP. In order for the processing system to image the incoming
data without accumulating visibilities that will never be processed, the system throughput
needs to be greater than the average computational load (handling the peak computational
load is discussed in the next section). This is a basic requirement for any queueing system:
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Faceting Computational Cost for SC 15

17500 A — Kc
Nfacets™2
15000 A —— Kc * Nfacets”™2
12500 A
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2500 A L e
O .
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Figure 6: Example application of an hybrid algorithm that combines facets and W-proj to
science case #15 of the ROP. The image is divided N?acet . facets, and each one is processed
using W-proj. The number of facets starts at 1 (no facetting) and ends with the number of
facets such that processing each one doesn’t require W-proj. The relative cost of processing
all the facets is K, - NJ%Q cets- The minimum of this expression replaces K. without faceting
in the calculation of the computing load.
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Table 5: Computational load summary for ROP and EOP.

ROP EOP
Average Computational Load [PFLOPs/sec] 85.478609 59.898202
Peak Computation Load [PFLOPs/sec] 1142.565236 1353.931735
80% Percentile [PFLOPs/sec] 3.018969 3.543039

the system throughput needs to be greater than the incoming input rate, or the queue
becomes unstable.

In order to estimate how many computational resources will be needed in order to keep
up with the computational load, we need to consider the fact that only a fraction of the
maximum computing capability of a given processor is available to be used by a given
algorithm. Let’s define this fraction as the computational efficiency. This is a critical driver
for the cost of the processing system.

Two effects need to be considered: the efficiency in a single processor, which we define
as the core efficiency; and the efficiency achieved on a system of multiple processors, the
parallelization efficiency. The overall computational efficiency is the multiplication of both.

The observed computing throughput of a single processor is

FLOPs

Xobs,single _
Exec. time for a single proc.

On the other hand, the throughput of a parallel execution is
Xobs,par _

FLOPs
~ Exec. time for a parallel system

xobs,single Exec. time for a single proc.

Exec. time for a parallel system
— Xobs,single . Sp(N)
where Sp(N) is the speedup, as a function of the number of processors N.

The observed processor throughput differs from the nominal maximum processor through-
put by the core efficiency factor e.:

Xobs,single —¢ Xsingle
=€, .

Matching the load generated by gridding with the observed performance of the parallel
system (otherwise the system becomes unstable)

CL=1280-\-K, K, = XP¥ = ¢ X5M9leGp(N)

Multiplying and dividing by the number of processors N and defining the parallelization
efficiency €, = Sp(IN)/N as the ratio of the real speedup and the ideal speedup (N):

CL =N - X5mlee e,

This expression is convenient for calculating the cost of the system, as X*™9%€ is the maxi-
mum computing capacity of a processor as reported in its specification. The total number
of processors that are needed to keep up with a given computational load is then

CL

Np'r‘oc - 7606stingle .

(16)
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If the cost of a processor is Cproc, then the cost of the SDP computing systems is

@ Cproc

Csdp = Nproc  Cproc = €ctp " Y single

(17)

However, Cproc/X ™9 is just the ($/FLOPs/sec) ratio that we can probably find out
looking around at the HPC market, and we can define CL' = C'L/(e.€p,) as an “effective”
computing load that incorporates the efficiencies. With this

, $
Csap = OL- (FLOPs/sec> (18)

For example, an NVIDIA A100 is capable of sustaining 9.7 TFLOPs/sec and costs
around $10,000. This gives 103,092.8 $/PFLOPs/sec. Assuming both efficiencies as 1, we
could build the SDP for $7.73MM. On the other hand, if the core efficiency is 0.1 and the
parallelization efficiency is 0.8, then we would need to pay $96.64MM. This illustrates the
importance of optimizing the efficiencies in the design and implementation. We don’t have
currently any estimation for these important parameters, so we can only say that the cost
of the system will be more than $7.73MM!

In practice, an important factor limiting the core efficiency is the machine balance
compared with the arithmetic intensity of the algorithm running in a machine. The machine
balance for a given computer hardware is the total number of FLOPs that can be executed
in the machine divided by the memory bandwidth. The arithmetic intensity for a given
application measures the number of FLOPs executed per memory operation. Both are
measured in FLOPs/Byte or FLOPs/Word. If the arithmetic intensity is lower than the
machine balance, then the processor cannot achieve its computational capacity because it
is not being fed the data that it needs for the computation at a high enough rate. Note that
although the machine balance is defined in terms of the memory bandwidth (and many
profiling tools based on the roofline model do so as well), the data needs to be fed into
memory from disk in the first place, so it would be more proper to compare arithmetic
intensities with a system balance that takes into consideration the full memory/storage
hierarchy. Memory bandwidths can reach thousands of GBytes/sec, while data can be read
from SSD disks only at a few GBytes/sec. One way to provide a more realistic system
balance would be to consider the entire memory and storage hierarchy, the memory sizes
at each level of the hierarchy, and the probability of cache hits given the usage patters of
the algorithm and the size of the cache lines. See for example [7].

As pointed out in [1], the total number of bytes that need to be read to grid a single
visibility point are

e 2 complex numbers for two polarizations: 2 x 2 x 4 = 16 bytes,
e 2 weight floats: 2 x 4 = 8 bytes,
e 3 uvw coordinate doubles: 3 x 8 = 24 bytes,

For a total of 48 bytes. On the other hand, the number of floating point operations is
40 FLOPs x S?(w, v) for complex gridding, and 24 FLOPs x 72 for standard gridding. This
gives an arithmetic intensity of

Al = j% - S%(w,v) = 0.83 - S%(w,v) (19)
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for complex gridding, while for standard gridding AI = 24.5 FLOPs/Byte. Note that this
calculation does not include the convolution functions. If these need to be loaded then the
Al falls to very low numbers. We assume that they will be computed “on-the-fly” on the
GPU or CPU, and loaded into GPU memory using a high-bandwidth interconnect, to the
point that it doesn’t affect the efficiency of the computations. This is an important aspect
for DMS to verify, design and implement.

For example, an NVIDIA V100 GPU is capable of sustaining 6.6 TFLOPs/sec in FP64.
Assuming that we feed this GPU from a single SSD disk with a bandwidth of 2.0 GBytes/sec,
the “system balance” would be 3,300. The AI would need to be higher than this number in
order to fully use the GPU. For standard gridding we are hopeless. At this bandwidth, we
can only achieve a maximum of 24.5 FLOPs/Byte x 2.0 GBytes/sec = 49 GFLOPs/sec, a
core efficiency of only 49/6,600 = 0.0074, not even 1%! For complex gridding the support
function would need to be at least 63 for processing not to be constrained by I/0O. As most
of the workloads in the ROP/EOP don’t require A-proj or W-proj, we should highlight that
solving the bandwidth problem is critical for reducing the cost of the system.

Let’s switch now our attention to the parallelization efficiency. As explained above

. Real Speedup  Sp(N)
P Ideal Speedup N

(20)

The behavior of this parameter depends on how the problem scales. There are two different
ways of characterizing the scaling behaviour:

e Strong scaling is defined as how the speedup behaves as the number of processors
increases for a fixed problem size.

e Weak scaling is defined as how the speedup behaves as the number of processors
increases for a fixed problem size per processor.

In other words, in a strong scaling problem we maintain the size of the problem the same
as we add processors, while in a weak scaling problem the size of the problem increases as
we add processors.

If the problem is divided in the parts that can be parallelized, and the parts that can’t,
assigning a fraction s to the former and a fraction p to the latter (s + p = 1), then strong

scalability follows Amdahl’s law
s+p

s+ &

1 1
TP Now s
3+N N—oo S

Sp(N) =

and the speedup saturates as N becomes large. This fact will affect the latency that it
is possible to achieve. For a strongly scaling problem there is a point where adding more
processors doesn’t improve the latency, and the parallelization efficiency becomes very small:

1
 N-s+p Nooco

€p

On the other hand, weak scaling follows Gustafson’s Law

s+p-N

Sp(N) = P
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=s+p-N
_s+p-N
P N N%oo,p

and the efficiency approaches the fraction of the problem that can be parallelized when the
number of processors is large.

Does our problem exhibit weak or strongly scaling behaviour? Both, actually. When
doing cube imaging, each spectral channel can be processed fairly independently. As we
add more spectral planes, the total problem size just becomes bigger. This is a weak scaling
problem, or how it is sometimes called, an embarrasingly parallel problem. On the other
hand, when doing continuous imaging, MFS, or the processing of each spectral channel in
a cube; there are portions of the problem that can be parallelized (gridding, FFT), while
other parts of the algorithm are more difficult to parallelize (e.g. the deconvolution). This
is strongly parallel problem. Which one of these scaling law dominates will depend on the
science case. When the size of the problem is determined by the number of channels and
we want to do cube imaging (e.g. ROP KSG 2) then we have a weak scaling problem. On
the other hand, if the size of the problem is determined by the size of the support function
(e.g. ROP 15) and we are doing continuous imaging, then we could expect the problem to
exhibit a strongly scaling behaviour.

In practical terms, if the problem scales strongly we would assign just enough processors
to maintain the parallelization efficiency to a reasonable level. This may affect the latency
that such cases can achieve. As explained in the following section, this doesn’t affect the
total cost of the system, as the total number of processors required to maintain the average
throughput is unaffected by this assignment. On the other hand, not being able to achieve
a sufficiently high parallelization efficiency could affect the processing system’s ability to
deliver products for triggered observations with their required timeliness.

6 Conclusions

The data rates for the ROP and EOP were calculated and summarized in Table 3. The
EOP data rates are larger than the ROP (by 36% for the average). Both distributions are
similar, with most of the science cases generating relatively modest data rates (more than
80% of the science cases are less than 5 GVis/sec), with a few cases producing much larger
data rates (as large as 40 GVis/sec).

A simple model was developed to characterize the computational load that the science
cases in the ROP and EOP will impose on the system, from the visibility data rate (equa-
tion 6). Several processing options (including self-calibration) and the iterative nature of
the algorithms where included as factors over the processing of a standard gridding ma-
jor cycle. The impact of having to compensate for wide-field distortions and the effect of
the primary beam on the computational load was captured in the complexity factor (K.),
which was defined as the weighted average of the squared support function. This parameter
increases very rapidly with the field of view and the frequency of each observation. Most
of the science cases defined in the ROP and EOP have modest complexity factors, but for
a few cases where this parameter is significatively higher, due to the combination of their
required field of view and frequency. These cases drive the required computational capacity
for the processing system an order of magnitude higher than otherwise would be required.
Science cases that generate high data rates also drive the computational load high, but
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their impact is secondary. The required computational loads for the ROP and EOP are
summarized in Table 5.

In order to specify the system in terms of number of processors and size of storage
buffers; the efficiency of executing the software implementation of the algorithms on a
physical hardware platform need to be considered. We developed a simple model based
on two parameters: the core efficiency and the parallelization efficiency. The cost of the
processing system directly depend on the values of these parameters. As these are at this
moment largely unknown, it is not possible to estimate the cost of the processing system.
These efficiencies not only depend on the quality of an implementation, but on system
design parameters such as the system aggregated bandwidth and the proportion of code that
has/can been parallelized. Low efficiencies can increase the cost of the processing system
by orders of magnitude. If the cost for the processing system is capped, low efficiencies will
constraint the ability of the ngVLA to deliver the science it was designed for. We suggest to
mitigate this risk by allocating resources to develop prototype implementations and evaluate
their performance, with the objective of providing estimations of these parameters as close
as possible to the real values. This work should inform the system design and algorithm
development activities. In general, with the exception of the measurements presented in [1]
— which only included FLOPs/sec and I/0O rate for a few cases — the model used in this
memo to extrapolate the computing loads to the scale of ngVLA relies solely on theoretical
arguments. These should be validated by measurement, and until this is done, the figures
resulting from this model should be considered only as order-of-magnitude estimations.

It is worthwhile to point out that the estimations presented in this document may
represent a worst-case model, that could be overestimating the computational load. There
are several opportunities for reducing the computational load that were not introduced in
the calculations, as they require either further analysis or requirement clarifications. These
are:

e As discussed in section 4.4, several science cases in the ROP and EOP have defined
their required FoV as “FULL”. This requirement is ambiguous, as the calculation of
the FoV depends on a frequency that is not well defined for an observation with a
sizable bandwidth. We have followed the guideline of using the lower frequency in the
bandwidth as a worst-case estimation, but as Figure 5 shows, a significant reduction
in the computational load can be achived if these cases can define a smaller FoV.

e As pointed out in [5], the subarray used by each science case in the ROP and EOP
includes baselines that are longer than necessary for the required angular resolution.
Substantial reductions in data rates and computational load can be achieved if the
subarrays assigned to each case are tailored to their resolution, discarding baselines
that won’t be gridded. Decreasing the number of antennas implies a reduction in
sensitivity that needs to be compensated with longer observation times.

e We have applied equations 14 and 15 to determine whether each science case require
W-proj and/or A-proj. However, these decisions may need to be reconsidered in light
of other science requirements. One example is ROP-15, which generates a very high
imaging computational load given its large FoV, even though the images will be used
for quick-look purposes. Would it be possible to decrease the amount of processing
generated by W-proj in this case, and maybe other similar cases?

e We have applied an hybrid algorithm that combines facetting and W-proj to reduce
the computational load of wide-field cases. Other algorithms may be able to optimize
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processing even further, e.g. w-stacking or w-snapshots. These possibilities need to
be investigated and quantified.

Nevertheless, the estimations presented in this memo do represent our current understand-
ing of the data rate and computational requirements from the information that we have
currently available. We recommend that further analysis of the above topics be priori-
tized, and the parameters necessary to introduce these optimizations be added to the ROP
and EOP input tables prepared by SciOps. Once this has been done, the data rate and
computational load estimations can be updated accordingly.
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A few W-proj kernels for FoV=2.5 deg
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Figure 7: Example W-proj kernel functions for a FoV of 2.5 degrees.

W-proj Support Size for FoV=2.5 deg, threshold=0.05
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Figure 8: Comparison of support functions calculated numerically (blue line) and using the
analytical approximation defined in [4] (orange line).
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Complexity Factor Kc for 'core' subarray
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Figure 9: Estimation of the complexity factor K.

120

as a function of the field of view and

frequency, for the core subarray. Also shown are the science cases from the ROP and EOP,

with the horizontal bar representing the bandwidth

required by each case. The cases above

the orange segmented line would require W-proj, and the ones above the green line would

require A-proj.

Complexity Factor Kc for 'main+Iba' subarray
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Figure 10: Estimation of the complexity factor K.

as a function of the field of view and

frequency, for the main + Iba subarray. Also shown are the science cases from the ROP

and EOP, with the horizontal bar representing the

bandwidth required by each case. The

cases above the orange segmented line would require W-proj, and the ones above the green

line would require A-proj.
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Figure 11: Estimation of the complexity factor K. as a function of the field of view and
frequency, for the mid subarray. Also shown are the science cases from the ROP and EOP,
with the horizontal bar representing the bandwidth required by each case. The cases above
the orange segmented line would require W-proj, and the ones above the green line would
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Complexity Factor Kc for 'lba+mid' subarray
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Figure 12: Estimation of the complexity factor K. as a function of the field of view and
frequency, for the mid + lba subarray. Also shown are the science cases from the ROP and
EOP, with the horizontal bar representing the bandwidth required by each case. The cases
above the orange segmented line would require W-proj, and the ones above the green line

frequency (GHz)

would require A-proj.

31



Complexity Factor Kc for 'plains+core' subarray
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Figure 13: Estimation of the complexity factor K. as a function of the field of view and
frequency, for the spiral + core subarray. Also shown are the science cases from the ROP
and EOP, with the horizontal bar representing the bandwidth required by each case. The
cases above the orange segmented line would require W-proj, and the ones above the green
line would require A-proj.

Complexity Factor Kc for 'plains+mid' subarray
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Figure 14: Estimation of the complexity factor K. as a function of the field of view and
frequency, for the spiral + lba subarray. Also shown are the science cases from the ROP
and EOP, with the horizontal bar representing the bandwidth required by each case. The
cases above the orange segmented line would require W-proj, and the ones above the green
line would require A-proj.
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